凸轮机构(机械原理)

合集下载

机械原理与设计之凸轮机构概述

机械原理与设计之凸轮机构概述

机械原理与设计之凸轮机构概述摘要本文介绍了机械原理与设计中的凸轮机构。

凸轮机构是一种常用于工程和机械设计中的传动机构,能够将旋转运动转化为直线运动。

本文将详细介绍凸轮机构的基本原理、构造和应用领域,并讨论凸轮机构的设计要点和优缺点。

引言凸轮机构是一种基于凸轮的传动机构,其通过凸轮与从动件之间的接触,将旋转运动转化为直线运动。

凸轮机构广泛应用于机械制造领域和工程设计中,例如发动机、工具机和自动化装置等。

熟悉凸轮机构的工作原理和设计方法对于机械工程师和设计师来说至关重要。

一、凸轮机构的基本原理凸轮机构的基本原理是利用凸轮的几何形状,通过其与从动件的接触来实现运动转换。

凸轮通常是一个圆柱体,其几何形状决定了从动件的运动规律。

当凸轮旋转时,凸轮上的凸起与从动件相互作用,驱动从动件做直线运动。

凸轮的几何形状可以根据特定的运动要求进行设计和调整。

二、凸轮机构的构造凸轮机构由凸轮、从动件和传动组成。

凸轮是凸轮机构的核心部件,其几何形状决定了从动件的运动规律。

从动件与凸轮相互作用,通过凸轮的旋转实现直线运动。

传动装置用于传递动力和控制凸轮的旋转。

凸轮机构的构造可以基于具体的应用需求进行设计和调整。

凸轮机构广泛应用于许多机械设备和自动化系统中。

它们常见的应用领域包括: - 发动机:凸轮机构用于控制气门的开启和关闭,调节进气和排气过程; - 工具机:凸轮机构用于控制工具的运动,例如车床的进给机构和转塔机床的换刀装置; - 自动化装置:凸轮机构用于实现复杂的运动路径和动作,例如自动化流水线和机器人系统。

四、凸轮机构的设计要点设计凸轮机构时,需要考虑以下要点: 1. 凸轮的几何形状:凸轮的形状应根据需要的从动件运动规律进行设计。

2. 从动件的类型:根据不同的运动要求,选择合适的从动件类型,如销轴、滑块或摇杆等。

3. 传动装置:选择合适的传动装置,以传递动力和控制凸轮的旋转。

4. 动力和扭矩:确定凸轮机构所需的动力和扭矩,以确保正常运行。

机械原理9凸轮机构

机械原理9凸轮机构

复合型橡胶凸轮
未来凸轮机构中将逐步使用复 合型橡胶凸轮代替铸铁或钢凸 轮,以降低噪音、提高安卓性 等。
绿色环保
凸轮机构的绿色环保趋势也将 是未来重要的发展方向,主要 包括材料的生产过程及使用环 保等方面。
凸轮机构在汽车发动机中的应用
汽车发动机气门控制
凸轮机构通过传递卡盘、摇臂等 控制部分实现汽车发动机的运转 规律。
汽车变速器控制机构
凸轮机构也可用于汽车变速器的 运转,控制配合机构实现汽车的 变速和前进后退等功能。
汽车转向机构
前轮转向机构和汽车转向机构都 可以使用凸轮机构来实现控制驾 驶员操作,具有精度和可靠性等 优点。
特点
设计简单,使用广泛。凸轮在 运动过程中会带动其他机构的 工作。
应用
• 汽车发动机的进气门和 排气门传动机构。
• 纺织设备中控制织机各 部件升降、打开、闭合、 控制采纱、切纱等工作。
• 数控机床、切割等机械 设备中的传动与定位机 构。
双动凸轮机构
定义
双动凸轮机构主要由两个凸轮 和一对滑块组成,可以实现两 个互不相同的运动规律。
特点
控制运动精确、运动简单、且 适用于高速运动,长时间负载 等方面。
应用
• 工业设备中的精密机构、 机械手臂等,在精度要 求高的应用中广泛使用。
• 汽车发动机中控制滑门 和配油器的开关等。
• 用于复杂的机电一体化 的设计中,如机床、生 产线等方面。
凸轮轮廓的设计
确定轮廓确定参数
在凸轮轮廓设计中参数的确定 是很关键的,需要考虑一些因 素:凸轮的型号、运动学、力 学特性等方面,使得凸轮轮廓 达到最优的效果。
3 最重要的运动特点是
具有非规律的运动过程,同时常与制动件、相切滑块联合使用。

凸轮机械原理ppt

凸轮机械原理ppt
凸轮机构的基本结构
凸轮、从动件和机架是凸轮机构的基本结构,其中凸轮是控制从动件运动的 关键元件。
凸轮机构的分类
根据凸轮和从动件的运动关系,凸轮机构可分为平面凸轮机构和空间凸轮机 构,以及摆动从动件凸轮机构和移动从动件凸轮机构。
凸轮机构的优化目标与方法
凸轮机构的优化目标
主要包括提高凸轮机构的传力性能、减小凸轮和从动件之间的接触应力、降低凸 轮机构的振动和噪声等方面。
凸轮机构的工作过程是凸轮转动时,从动件在凸轮轮 廓控制下沿着一定轨迹进行往复运动。
平面凸轮机构又可以分为尖顶从动件、滚子从动件和 平底从动件三种类型。
从动件的运动规律取决于凸轮的轮廓形状和从动件的 Βιβλιοθήκη 构形式。凸轮机构的运动规律
凸轮机构的运动规律取决于凸轮的轮廓形状和从动件 的结构形式。
每种运动规律都有其特点和应用范围,可以根据实际 需要选择合适的运动规律。
解决方法
为了减小冲击,可以在配合部件之间加入阻尼材料,如橡胶 、聚氨酯等,以吸收冲击能量。同时,可以调整配合间隙的 大小,提高配合部件的刚度,以减小冲击。
凸轮机构的疲劳及解决方法
总结词
凸轮机构的疲劳是由于长期承受交变载荷 的作用,使得配合部件表面出现微裂纹并 逐渐扩展,最终导致配合部件破坏。
VS
解决方法
2023
凸轮机械原理
目录
• 凸轮机构概述 • 凸轮机构的工作原理 • 凸轮机构的类型及特点 • 凸轮机构的常见问题及解决策略 • 凸轮机构的设计及优化 • 凸轮机构的应用前景与发展趋势
01
凸轮机构概述
凸轮机构的定义与特点
凸轮机构的定义
凸轮机构是一种广泛应用于各种机械中的高副机构,它由凸 轮、从动件和机架三个基本构件组成,通过凸轮的轮廓控制 从动件的位移和运动规律。

机械原理第9章凸轮机构及其设计

机械原理第9章凸轮机构及其设计

第二十一页,编辑于星期日:十四点 分。
②等减速推程段:
当δ =δ0/2 时,s = h /2,h/2 = C0+C1δ0/2+C2δ02/4 当δ = δ0 时,s = h ,v = 0,h = C0+C1δ0+C2δ02
0 = ωC1+2ωC2δ ,C1=-2 C2δ0 C0=-h,C1= 4h/δ0, C2=-2h/δ02
如图所示,选取Oxy坐标系,B0 点为凸轮廓线起始点。当凸轮转过δ 角度时,推杆位移为s。此时滚子中 心B点的坐标为
x (s0 s) sin e cos
y
(s0
s) cos
A7
C8 A6 C7
w
A8
-w
A9
C9 B8 B9 B7 r0
C10
B12100 ° B0
O
B1 a B2
C1 L C2φ1φ0
A10 A0
φ
Φ
o
2
1
2 3 456
180º
7 8 9 10
60º 120º
δ
(1)作出角位移线图;
(2)作初始位置;
A5
C6
B6 B1580°B4
C4
C5
φ3
φC23
A1
↓对心直动平底推杆盘形凸 轮机构
↑偏置直动尖端推杆盘形凸轮机 构
第十一页,编辑于星期日:十四点 分。
↑尖端摆动凸轮机构
↓平底摆动凸轮机构
↑滚子摆动凸轮机构
第十二页,编辑于星期日:十四点 分。
(4)按凸轮与从动件保持接触的方式分
力封闭型凸轮机构
利用推杆的重力、弹簧力或其他外力使推杆与凸轮保持接
触的
此外,还要考虑机构的冲击性能。

机械原理 第3章 凸轮机构

机械原理 第3章 凸轮机构

2


26
§3.3 凸轮轮廓曲线的设计 一、凸轮轮廓曲线设计是根据凸轮参数如 基圆半径、推程和推程运动角、回程及回程 运动角、远、近休止角、偏距等参数,用反 转法设计凸轮轮廓曲线。
27
二、1-对心反转图解法设计凸轮廓线,见下图:
28
29
2-偏心反转 图解法设计凸轮轮廓
主要介绍已知从动件运动规律线图设计凸轮轮廓。 一、直动从动件盘形凸轮轮廓的绘制 分别介绍以下两种类型。 1、偏置尖顶直动从动件盘形凸轮 已知从动件位移线图如图3-8 (b)所示,基圆半径 r0,凸轮行程h,推程运动角Φ=1800,休止角 Φs=300,回程角Φ'=900,按图示画出凸轮轮廓线。 作图步骤按反转法如下: 1)将Φ、Φ'各平为4等份,如图(b)中1-1';...8-8'。 并以偏距e和r0画圆,如图(a)所示。基圆与导 路的交点B0(C0)即为从动件的起始点。 2)以OC0为起点,在基圆上平分Φ=180和Φ'=90 分别得C1、C2、C3、和C6、C7、C8各点,并过 C0、C1 . . . 各点向偏距圆作切线,这些切线就是 反转法导路在此点的位置。 3)在各对应的切线上,取C1B1=11' ;C2B2=22' ....得从动件尖顶位置B1、B2、B3... 4)将B0、B1、B2…连接成光滑的曲线就是凸轮 轮廓线(注意:B4、B5是圆弧,B9、B0之间是基 圆) 最后画出图纸进行加工。 30 当e=0时,各切线变成通过O点的射线。
10
一、从动件的运动规律的描述与术语
从动杆位移线图的作图方法及基本名词术语
首先应确认,从动件的运 动规律是由主动件凸轮的轮 廓形状决定的。在图 3-5 中, 回转中心 O 到半径最小点 A 的 K' 圆叫基圆。图 3-5 中凸轮的轮 ϕk 廓规律是,弧 AB 间的半径逐 渐变大,对应的圆心角为 ϕ; 弧 BC 间半径保持不变,对应 K ϕk 的圆心角为 ϕ s ;弧 CD 间半径 逐步变小到基圆半径,对应 的圆心角为 ϕ ' ;弧 DA 间半径 保持基圆半径不变,对应的 圆心角为ϕs'。现凸轮以ω速度 顺时针转动,以 φ=ωt 为横坐 标,从动杆的移动 S为纵坐标, 则从动杆的移动曲线展开图 图3-12:凸轮轮廓与从动件位移线图 如(b)所示。其中: h--升程;ϕ--推程运动角;ϕs--远休止角; ϕ‘--回程运动角;ϕ's--近休止角。这 些角度总和为360˚。从图中可知,当凸轮从A点转过ϕk角到K点时,从动杆升高 到K’点;当凸轮从A点转过ϕ角度,从动杆升高了h到B点。其他各点作图方法 11 一样,然后将各点连成光滑的曲线,就是从杆的位移线图(b).

机械原理凸轮机构

机械原理凸轮机构

凸轮的基本形状及曲线方程
凸轮的形状决定了其运动特性和传动效果。常见的凸轮形状包括圆形凸轮、椭圆形凸轮、正弦形凸轮等, 每种形状都对应着特定的曲线方程。
凸轮机构的工作原理
凸轮机构的工作原理是利用凸轮的旋转运动,通过凸轮与其他机构之间的接 触或耦合,将输入的连续旋转运动转化为间断的直线或曲线运动。
凸轮机构的应用领域
循环式凸轮机构
循环式凸轮机构通过凸轮的旋转运动,实现循环运动的输出,常见应用于曲 柄连杆机构等。
直线往复式凸轮机构
直线往复式凸轮机构将旋转运动转化为直线往复运动,常用于自动化生产设 备中的往复运动部件。
内锥式凸轮机构
内锥式凸轮机构是一种特殊的锥形凸轮机构,通过凸轮的内锥轮廓形状,实现运动输出的变化。
凹槽式凸轮机构及其构成要素
凹槽式凸轮机构是一种常见的凸轮机构形式,由凹槽形状的凸轮、滚子或滑块以及传动杆等构成,用于 实现复杂的直线运动。
锥形凸轮机构的分类
锥形凸轮机构根据凸轮轮廓的变化规律进行分类,常见的类型包括线性锥形凸轮机构、径向锥形凸轮机 构等。
Hale Waihona Puke 摆动式凸轮机构摆动式凸轮机构利用凸轮的旋转运动,驱动摆动杆实现往复摆动运动,常见应用于钟摆、发动机连杆等 系统。
全逆截面凸轮机构
全逆截面凸轮机构通过凸轮轨迹的全逆截面形状,实现输出运动的复杂变化, 常用于工业机械传动装置等。
凸轮机构的性能分析方法
凸轮机构的性能分析涉及动力学、运动学和结构力学等方面,常用的方法包 括虚功原理、图解法、仿真模拟等。
凸轮机构的设计与制造
凸轮机构的设计与制造需要考虑传动比、凸轮轮廓形状、制造精度等因素,采用CAD技术和先进的制造 工艺。
了解机械原理的基本概念和原理是理解凸轮机构的重要前提。机械原理涉及 力学、动力学和材料科学的基础理论,是机械工程的核心。

机械原理课件9 凸轮机构

机械原理课件9 凸轮机构

1、凸轮廓线设计的基本原理
• 解析法、作图法 • 相对运动原理法:(也称反转法) • 此时,凸轮保持不动
• 对整个系统施加 -ω
运动
• 而从动件尖顶复合运动的 轨迹即凸轮的轮廓曲线。

A A A A A A A A
1 2
3’ 2’ 1’
ω
r0
1
O
2 3
3
2.用作图法设计凸轮廓线
1)对心直动尖顶从动件盘形凸轮
e
对心平底推杆凸轮机构
平底摆杆凸轮机构
从动件与凸轮之间易形成油膜,润滑状况好,受力平稳, 传动效率高,常用于高速场合。但与之相配合的凸轮轮廓 必须全部外凸。
偏心平底推杆凸轮机构
滚子摆杆凸轮机构
e
§9-2 推杆的运动规律
一.推杆常用的运动规律
凸轮机构设计的基本任务: 1)根据工作要求选定凸轮机构的形式; 2)推杆运动规律; 3)合理确定结构尺寸; 4)设计轮廓曲线。
a
2h 2
02
2 sin 0

R= 2
h
A 0 1 v
2
3 4
5
6
7
8

回程: s=h[1-δ /δ
0
′)/2π
0

+sin(2π δ /δ
0
0
]

v=hω [cos(2π δ /δ 0’)-1]/δ a=-2π
hω 2 sin(2π δ /δ

FI ma 0
(1).对心直动尖顶从动件盘形凸轮
s
h
对心直动尖顶从动件凸轮机构 中,已知凸轮的基圆半径rmin, 角速度ω和从动件的运动规律, 设计该凸轮轮廓曲线。 设计步骤小结:

08 凸轮机构(机械原理课程)

08 凸轮机构(机械原理课程)

第八章 凸轮机构1.从动件常用运动规律及其选择2.凸轮轮廓曲线的设计3.凸轮机构的结构尺寸4.圆柱凸轮机构简介教学重点与难点:1.凸轮机构从动件的各类运动规律动力性能。

2.压力角、基圆半径、偏距方位间的关系。

教学方法:课堂教学为主,习题课为辅,充分利用网络课程中的多媒体素材来表示抽象概念。

教学要求:1.了解凸轮机构的分类、凸轮机构从动件的常用运动规律动力性能。

2.能根据公式计算凸轮实际廓线上点的坐标值。

能根据公式分析压力角、基圆半径、偏距方位间的关系。

主要内容与基本要求一、本章主要内容(1)凸轮机构的组成、分类、特点及应用;(2)凸轮轮廓曲线的设计(3)从动件常用运动规律及其选择(4)凸轮机构的结构尺寸(5)圆柱凸轮机构简介二、本章基本要求(1)了解凸轮机构的类型和应用;(2)掌握推杆常用的运动规律的特点及选择运动规律时应考虑的因素;(3)能应用反转法对凸轮机构的运动过程进行分析;(4)能根据给定的运动规律,用解析法计算凸轮实际廓线上点的坐标值;(5)掌握压力角与自锁的关系,能根据公式分析压力角、基圆半径、偏距方位间的关系,以及滚子半径选择的原则;(6)能合理确定凸轮机构的基本尺寸。

重点与难点分析本章重点与难点1.凸轮机构从动件的各类运动规律动力性能。

2.压力角、基圆半径、偏距方位间的关系。

一、本章重点内容分析(1)推杆常用运动规律的特点及其学原则;(2)凸轮机构的运动过程的分析;(3)凸轮轮廓曲线的设计;(4)凸轮机构压力角与机构基本尺寸的关系。

二、本章难点内容分析1、凸轮机构设计的基本方法凸轮机构设计的基本方法是反转法,所依据的是相对运动原理,以图8-1所示的偏置式的尖顶直动推杆盘形凸轮为例,设想给整个机构一个与凸轮角速度ω大小相等而方向相反(即-ω)的转动,这时凸轮将静止不动,而推杆一方面随机架相对凸轮以ω角速度反转运动,另一方面又以原有的运动规律(s=s(δ))相对于机架运动。

由于推杆的尖顶始终与凸轮轮廓保持接触,所以在推杆这种复合运动中,其尖顶的运动轨迹即为凸轮的轮廓曲线。

凸轮机构(机械原理)

凸轮机构(机械原理)

OP v2 ds
凸轮的转向1 与从动件的转向2相反0arccoa2s2La2Lrb2
2与的 、压12在2力异LL运llO O OO角向1221PP动PP整。,规理a会L律得lO O减l22L,O P P和O2小Pt2P 基 g 摆 本动 LL尺l a l从(c s 寸动i2 n o 相 件 0 1( L同l 盘O Os 1 22 P的P ))形• 情c 凸tg (况轮 o 1 0 下机0 ,构s ) ( 1 )
根据结构和强度确定基圆半径
rh 1.75rs (7~10)mm rmrh3mm
根据实际轮廓的最小向径rm
确定基圆半径rb,校核压力角
rs
rh
rm
二、摆动从动件盘形凸轮机构的基本尺寸
n v2
t v2 K n
1件距、的有r摆b运关动O1动。从1 规a动PK律n件B、盘0+摆L形杆凸长O轮22度机、构n基P的圆压半O力1B径1角rb及与tL中a从2 心0动+ O2
式中,为凸轮的转角(rad); c0,c1,c2,… , 为n+1个待定系数。
1、n=1的运动规律 等速运动规律
s = c0+c1
v= c1 a=0
=0,s=0; =,s=h
S h
vh
a0
s
h
0
v
0
a
刚性冲击
0
a=0
2、 n=2的运动规律
s
s c0 c1 c2 2
amax -amax vmax h
c
2
o
s2(
)
c2
0
v s
vd
t
c1
2
422
s
in2(

机械原理凸轮机构精品课件

机械原理凸轮机构精品课件
则应选择直线或圆弧等易加工曲线作为凸轮的轮廓曲 线。如夹紧凸轮。
φ ω
工件
40
2. 机器的工作过程对推杆运动有要求,则应严格按工作 要求的运动规律来设计凸轮廓线。如刀架进给凸轮。
ωφ
h
41
3. 对高速凸轮,还应当考虑Vmax和amax。
①Vmax↑→动量mv↑, 对重载凸轮,则Vmax越小越好。
理论廓线上对应点B的坐标为:
x cos-( ) - sin(- ) e
y sin(- )
cos-(
)
s
s0
x e cos (s s0 ) sin
y
-e
sin
(s
s0
)
cos
式中 s0 r02 - e2
66
引入凸轮转向系数η和从动件偏置方位系数δ,且规定:
凸轮顺时针转动时η=1, 逆时针转动时η=-1;
Φ
Φ
Φ
29
(3)五次多项式运动规律(n=5)(推程)
s C0 C1 C2 2 C3 3 C4 4 C5 5
位移方程: s h[10( )3 -15( )4 6( )5 ]
速度方程: v h [30( )2 - 60( )3 30( )4 ]
加速度方程:a
h 2
2
[60( )
53
2.摆动从动件盘形凸轮机构
已知:凸轮以等角速度ω逆时针方向转动,凸轮轴与摆杆
回转中心的距离为a,凸轮基圆半径ro,摆杆长度l
和摆杆的运动规律。 设计:凸轮轮廓曲线。
54
μψ=( )°/mm μφ=( )°/mm
4’ 3’ 2’ 1’
123 4
5’ 6’
7’ 8’
5 6 78

机械原理补充习题(凸轮机构)答案

机械原理补充习题(凸轮机构)答案

第9章 凸轮机构一、主要内容:1、根据推杆运动规律利用反转法设计凸轮轮廓曲线2、特定凸轮机构,绘出其实际廓线(理论廓线)、图示位置凸轮机构的压力角,位移、以及凸轮从图示位置转过某个角度后凸轮机构的压力角和位移。

二、作图题 (说明:不必写作图步骤,但必须保留作图线)9-1、图示凸轮机构,凸轮轮廓是一个圆,圆心在A 点,在图上标注:(1)、凸轮的基圆r 0、实际廓线η,理论廓线η’ (2)、图示位置凸轮机构的压力角α,位移s(3)、凸轮从图示位置转过90。

后凸轮机构的压力角α’和位移s ’9-2、图示凸轮机构,凸轮轮廓是一个圆,圆心在A 点,在图上标注图示凸轮机构,要求在图上标注 基园r 0,图示位置压力角α,位移s ,凸轮从图示位置转过90o 后机构的压力角α’和位移s ’9-3 .图示偏心圆盘凸轮机构,圆盘半径R =50mm , e =25mm ,在图上标注凸轮的基圆r 0、从动件的行程h凸轮从图示位置转过90。

后凸轮机构的压力角α’和位移s ’,并且求出具体数值。

习题9-1 习题9-2 mm)13(2525255030)50/25(sin mm 502)(221-=--=︒====--+=-s e e R e R h α习题9-49-4 图示偏心圆盘凸轮机构,在图上标注(1)凸轮的基圆r 0、实际廓线η,理论廓线η’、偏距园e ;(2)图示位置从动杆的位移S 和压力角α;(3)从动杆由最低位置到图示位置,凸轮已转过的角度δ9-5如图所示为一凸轮机构,凸轮的轮廓为一个圆,圆心为O 1,凸轮的转动中心为O 。

在图上标注(1)凸轮的基圆r 0、实际廓线η,理论廓线η’、偏距园e ;(2)凸轮转过30。

时推杆的位移S 和压力角α ;9-6 图示偏置直动滚子从动件盘形凸轮机构中,凸轮以角速度逆时针方向转动。

试在图上:(1)画出理论轮廓曲线、基圆与偏距圆;(2)标出凸轮从图示位置转过90°时的压力角 和位移 s 。

机械原理凸轮机构

机械原理凸轮机构

O
Ov
1
1
2 3 4 5 6 234 56
速度的变化率(即跃度j)在这些 位置为无穷大——柔性冲击
v
O
2
适应场合:中速轻载
O
2
a a0
O 2
j
3.简谐运动(余弦加速度运动)
当质点在圆周上作匀速运动 时,它在该圆直径上的投影所构 成的运动规律—简谐运动
s
h 2
1
cos
π Φ
φ
特点:有柔性冲击
作平底的内包络线,即为所要设计 的凸轮廓线
4.4 解析法设计平面凸轮轮廓曲线
一、直动滚子从动件盘形凸轮
已知:凸轮以等角速度 逆
y
时针方向转动,凸轮基园半
径ro、滚子半径rr,导路和凸
e
轮轴心间的相对位置及偏距e,
B0 ''
n
从动件的运动规律 s s(。)
1. 理论廓线方程: B(x, y)
s0 O
4.1.2 凸轮机构的分类
1. 按凸轮的形状分类
盘形凸轮 移动凸轮
圆柱凸轮
盘形凸轮:最基本的形式,结构简单,应用最为广泛
移动凸轮:凸轮相对机架做直线运动
圆柱凸轮:空间凸轮机构
2. 按从动件的形状分类
尖端能以任意复杂的凸轮轮廓 保持接触,从而使从动件实现 任意的运动规律。但尖端处极 易磨损,只适用于低速场合。
d
min
s
e
L

rb r' Cu
O
4.6 圆柱凸轮机构
一、直动从动件圆柱凸轮机构
O
rm 1
O a)
v1
η η
1
η 2
v2

凸轮结构

凸轮结构

机械原理—凸轮机构 机械原理 凸轮机构
19.4.3 滚子半径的确定
rr ≤ ρ min − [ ρ s ]
工程上:最小曲率半径的许用值[ρs](一般3-5mm)
滚子移动 平底移动 滚子摆动 实际廓线方程:
若已知理论廓线上任一点B的坐标(x,y), 只要沿理论廓线在该点法线方向取距离, 即可得到实际廓线上相应点B'的坐标 (x',y')。 B点处的法线斜率为
式中 和 , 可由理论廓线方程求得。 对应实际廓线上B’点的坐标为
机械原理—凸轮机构 机械原理 凸轮机构 19.3.3 解析法设计凸轮轮廓
机械原理—凸轮机构 机械原理 凸轮机构
c等径凸轮机构
两滚子中心间的 距离始终保持不变。 距离始终保持不变。
缺点: 缺点:
从动件运动规律的选择受到一定的限制
机械原理—凸轮机构 机械原理 凸轮机构
d共轭凸轮机构 (主回凸轮机构) 主回凸轮机构)
一个凸轮推动从 动件完成正行程运动, 动件完成正行程运动 , 另一个凸轮推动从动 件完成反行程的运动
机械原理—凸轮机构 机械原理 凸轮机构 19.3.2 图解法设计凸轮轮廓
尖底 滚子 平底 摆动 给定从动件位移曲线s=s(φ), 偏距(offset)e 。设计偏置滚子 移动从动件盘形凸轮廓线。
① 选定基圆半径r0,画出基圆; ② 以偏距e为半径,画出偏距圆 (offset circle); ③ 将位移曲线作等分,确定设计 点及切点K0; ④ 自K0沿-ω方向相应等分偏距 圆,并过偏距圆上等分点 k1,k2……作偏距圆切线 切线; 切线
基圆─ 基圆 ─ 以凸轮轮廓的最 小向径r 小向径rb所作的圆 升程─ 升程 ─ 从动件上升的最 大距离h 大距离h 推程运动角Φ0 推程运动角Φ 远休止角Φ 远休止角Φs 回程运动角 Φ ' 0 近休止角 Φ 's 从动件运动规律(从动件位移线图) 从动件运动规律(从动件位移线图)

机械原理第3章 凸轮机构(第二版)

机械原理第3章 凸轮机构(第二版)

二、凸轮机构的分类
1.按凸轮的形状分 (1) 盘形凸轮机构
盘形凸轮是一个具有变化向径的盘形构件,绕固定转轴回转。 它是凸轮的基本型式,应用最为广泛。
(2)移动凸轮机构
移动凸轮相对机架作往复直线运动。 凸轮与从动件的相对运动是平面运动,属于平面凸轮机构。
(3)圆柱凸轮机构
圆柱凸轮是一个在圆柱上开有曲线槽或是在 圆柱端面上作出曲线轮廓的构件。 凸轮与从动件的相对运动是空间运动,属于 空间凸轮机构.
凸轮廓线上任意 两条平行切线间 的距离都等于框 架内侧的宽度。
两滚子中心间 的距离始终保 持不变。
等径凸轮机构
共轭凸轮机构
两滚子中心间的距离 始终保持不变。
主凸轮推动从动件——正行程, 从凸轮推动从动件——反行程。 克服了等宽、等径凸轮的缺点, 结构复杂,制造精度要求高。
从动件的运动规律的选择受到一定的限制,当180º范围内的 凸轮廓线根据从动件运动规律确定后,其余180º内的凸轮廓 线必须符合等宽、等径原则。
2. 按从动件形状及运动形式分
(1)按从动件形状: 尖顶、滚子和平底从动件
尖顶从动件
尖端能以任意复杂的凸轮轮廓保持接触, 从而使从动件实现任意的运动规律。
但尖端处极易磨损,只适用于低速场合。
滚子从动件
凸轮与从动件之间为滚动摩擦, 因此摩擦磨损较小,可用于传递 较大的动力。
平底从动件
从动件与凸轮之间易形成油膜, 润滑状况好,受力平稳,传动效 率高,常用于高速场合。但与之 相配合的凸轮轮廓须全部外凸。
三、 凸轮机构的特点
●运动特点:连续回转 → 往复运动。 ●优点:可精确实现任意运动规律,简单紧凑。 ●缺点:高副,线接触,易磨损,传力不大。 ●应用:传力不大的场合。

凸轮机构机械原理

凸轮机构机械原理

凸轮机构机械原理凸轮机构是一种重要的动力机构,常被用于驱动各种机械传动机构,如进气门、凸轮磨床等。

它是由凸轮、滑块、连杆等零件组成的,通过凸轮的回转运动,使滑块做直线或曲线运动,从而驱动其他机械零件进行工作。

凸轮机构具有结构简单、运动规律稳定、传动效果可靠等优点,因此在许多机械装置中得到了广泛应用。

凸轮机构的工作原理是凸轮的凸顶腔和滑块之间的相互作用。

常见的凸轮形状主要有圆形、椭圆形和正弦形等,在机械传动中起到不同形式的转动和直线动作。

在凸轮机构中,凸轮通过旋转或者平行移动来改变滑块的运动状态,使其在各个工作阶段完成不同的工作。

凸轮机构的运动是由凸轮的运动形状和滑块的连接方式共同决定的。

滑块的运动有直线运动和曲线运动两种形式。

当凸轮为圆形或椭圆形时,滑块呈现直线运动,这种凸轮机构被称为滚子机构;当凸轮为正弦形时,滑块呈现曲线运动,这种凸轮机构被称为滑块机构。

凸轮机构的滑块运动可分为快速行程和慢速行程两个阶段,通过凸轮的不同形状设计,可以实现不同的行程和速度要求。

凸轮机构的传动效果可靠并且具有一定的精度,这主要是由于滑块的运动轨迹是凸轮形状决定的。

滑块与凸轮之间的配合要求较高,一般要求其紧密配合,并采用润滑措施以减少磨损和噪声。

为了保证凸轮机构的正常运行,一般还需要加装一些辅助装置,如导向装置、回程装置等。

凸轮机构在应用中有很多种工作形式,如单凸轮、双凸轮、三凸轮等。

在设计凸轮机构时,需要考虑到工作的特点和要求,选择合适的凸轮形状和运动轨迹,以及相应的滑块、连杆等零件的结构参数。

凸轮机构的设计和制造需要考虑到许多因素,如传动比、工作精度、传动效率等。

为了使传动效果更好,一般会采用润滑措施,并且对关键部位进行加工和装配精度控制。

总之,凸轮机构是一种重要的动力机构,其工作原理是通过凸轮的回转运动,使滑块做直线或曲线运动,从而驱动其他机械零件进行工作。

凸轮机构具有结构简单、运动规律稳定、传动效果可靠等优点,因此在各种机械传动中得到了广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 缺点:
– 从动件与凸轮接触应力大,易磨损
• 用途:
– 载荷较小的运动控制
二、凸轮机构的分类
一)按凸轮的形状分
1、盘形凸轮 2、移动凸轮
3、圆柱凸轮
4、圆锥凸轮
二)按从动件上高副元素的几何形状分
1、尖顶从动件 2、滚子从动件 3、平底从动件
三)、按凸轮与从动件的锁合方式分
1、力锁合的凸轮机构
角位移, 摆幅max,
杆长l, 中心距a
四、凸轮机构的设计任务
1)从动件运动规律的设计
2)凸轮机构基本尺S寸(的) 设计
移摆摆滚平动动动子底O从从中从从1 动 动 心 动 动(件 件 的 件 件m: : 距 : :ahx基 基 离 除 除) 圆圆上上aΦ 及半半述述摆径径外外Φ杆,,rrSbb的,,Φ还平长'凸偏有底O度轮心滚长1Φl;转距子度'S 2动e半Lπ;。中径心rr。到a 从动件O2
R
sin( )
cos( )
O C0
C
e
x
cos sin
sin cos
xB1
y
B1
e
S0
S1
e
rb2
e2
S
xB
y
B
cos sin
sin e
cos
S0
S
e cos (S0 S ) sin e sin (S0 S ) cos
注意: 1) 若从动件导路相对于凸轮回转中心的偏置方向与x 方向同向,则e>0, 反之e<0。 2)若凸轮逆时针方向转动,则>0,反之 <0。
(一) 多项式运动规律 s=c0 + c1 + c22 + c33 + ……+ cnn v=( c1 + 2c2 + 3c32 + ……+ncnn-1) a=2(2c2 + 6c3 +12c42 + ……+n(n-1)cnn-2)
j=3(6c3 + 24c4 + ……+n(n-1)(n-2)cnn-3)
移动从动件盘形凸轮机构的基本尺寸
1、偏距e的大小和偏置方位的选择原则
• 应有利于减小从动件工作行程时的最大压 力角。
• 为此应使从动件在工作行程中,点C和点P 位于凸轮回转中心O的同侧,此时凸轮上C 点的线速度指向与从动件工作行程的线速 度指向相同。
• 偏距不宜取得太大,可近似取为:
e
1 2

(vmax vmin )
1
rb
2、凸轮基圆半径的确定
加大基圆半径,可减小压力角,有利于传力; 不足是:同时加大了机构尺寸。 因此,原则如下:
1)若机构受力不大,要求机构紧凑时; 取较小的基圆半径,按许用压力角求
rb
( v2 / 1 e s)2 e2 tg[ ]
( ds / d e s)2 e2 tg[ ]
2、形锁合的凸轮机构 1)沟槽凸轮机构 2)等宽凸轮机构 3)等径凸轮机构 4)主回凸轮机构
四)、根据从动件的运动形式分
摆动从动件凸轮机构
(对心、偏置)
移动从动件凸轮机构
三、凸轮机构的工作原理
B’
基圆
A O e
D
S0 S h
S 远休止角
BC
近休止角
(,S)
O (A) B
D
S ’
h

’ S
y A L a 0 B0
(2)尖顶摆动从动件盘形凸轮机构
- B1
xB
y
B
R
xB1
y
B1
rb O
B
xB1
y
B1
L a
sin( 0 L cos( 0
)
)
x
cos 0
a2
L2 2aL
rb2
若凸轮逆时针 方向转动,则 >0,反之 <0
xB
y
B
a a
sin cos
凸轮轮廓曲线设计的基本原理(反转法)
3
h
2
s2 s1 1
rb
11
O
-
s1
1' s2
2' 3'
h
S
3 h2
1
s1 s2
1
2
偏置尖顶从动件凸轮轮廓曲线设计(反转法)
3
2
h s2 s1
1
rb
1
O
1
-
1’ 2’
s1 s2 3'
e
S
h
3 2
1
s1 s2
1
2
偏置尖顶从动件凸轮轮廓曲线设计(反转法)
已知:S=S(),rb,e,
这时,若从动件运动规律已知,即s=s(φ)已知,代入上式, 可求得一系列rb,取最大者为基圆半径
2)若机构受力较大,对其尺寸又没 有严格的限制
根据结构和强度确定基圆半径
rh 1.75rs (7 ~ 10)mm rm rh 3mm
根据实际轮廓的最小向径rm
确定基圆半径rb,校核压力角
rs
rh
v c1 2c2
a 2 2c2
v0
0,s 增0,v加 0 多项 式2,s 的h 2 幂次,可获得性
2, s h 2 能 良,s 好h,v 的0 运动0 规律
柔性冲击a
柔性冲击
s
2h 2
2
v
4h
2
a
4h 2
2
s
h
2h 2
(
)2
v
4h
2
(
)
0
j
a
4h 2
2
等加速等减速运动规律
0
(二)余弦加速度规律
a
c1
cos t
c1
cos(
)
s
v
adt
c1
sin(
)
c2
0
s
vdt
c1
2
2 2
cos(
)
c2
c3
v
0, s 0, v 0
, s h
0 柔性冲击
s
h 2
1
cos(
)
a 0
v h sin( )
2
j
a
2h 2
2 2
cos( )
0
(三)正弦加速度规律
s
a
c1
1 与2同向
tgα
=Lal(sωin2 (ψω01
- 1) ψ)
1 tg(ψ0 ψ
)
§3-4 根据预定运动规律设计盘 形凸轮轮廓曲线
一、图解法设计盘形凸轮机构 二、解析法设计盘形凸轮机构
一、盘形凸轮机构的设计——图解法
(1)尖顶移动从动件盘形凸轮机构 (2)滚子移动从动件盘形凸轮机构 (3)尖顶摆动从动件盘形凸轮机构
rr=min
bmin = min - rr= 0
当rr<min时,实际轮廓为一光滑曲线。
当rr=min时,实际轮廓将出现尖点,极易磨损,
会引起运动失真。
min rr bmin = min - rr 3 mm, rr min - 3 mm
一般 rr 0.8 min 或 rr 0.4rb
1 (dy rr>dmin2 y
s
h
0 v
0
a
0
a=0
改进型等速运动规律
a
O
a
AB
O
C
F
D E
梯形加速度运动规律
三、从动件运动规律设计:
1、从动件的最大速度vmax要尽量小; 2、从动件的最大加速度amax要尽量小; 3、从动件的最大跃动度jmax要尽量小。
从动件常用基本运动规律特性
运动规律
Vmax
amax
(h /) (h 2/2)
3)凸轮机构曲线轮廓的设计
4)绘rb制凸e轮机构工作图 rb
§3-2从动件常用运动规律
一、基本运动规律 二、组合运动规律简介 三、从动件运动规律设计
运动循环的类型
S ()
S ()

Φ
Φ S
Φ'
Φ' S
升-停-回-停型 (RDRD)
S ()

Φ Φ'
Φ' S
升-回-停型 (RRD)
S ()

sin(t)
c1
sin(
2
)
v
adt
c1
2
cos( 2
)
c2
0
v s
vdt
c1
2
4 2 2
sin(
2
)
c2
c3
0, s 0
0
, s h
a
s
h
1
2
sin( 2
)
0
v
h
1
cos( 2
)
j
a 2h 2 sin( 2 )
0
2
二、组合运动规律简介
运动规律组合应遵循的原则: 1、对于中、低速运动的 凸轮机构,要 求从动件的 位移曲线在衔接处相切, 以保证速度曲线的连续。 2、对于中、高速运动的凸轮机构,则 还要求从动件的 速度曲线在衔接处相 切,以保证加速度曲线的连续。
L sin( 0 ) L cos( 0 )
(3)滚子从动件盘形凸轮机构的设计
(a)理论轮廓曲线的设计
rr y
n (b)实际轮廓
B0
B C’’
xC xB rr cos yC yB rr sin
rm
O
rb
相关文档
最新文档