数字图像处理课程内容及要求

合集下载

数字图像处理matlab课程设计

数字图像处理matlab课程设计

数字图像处理matlab课程设计一、课程目标知识目标:1. 理解数字图像处理的基本概念,掌握图像的表示和存储方式;2. 学会使用MATLAB软件进行数字图像处理,掌握相关函数和工具箱的使用方法;3. 掌握图像增强、滤波、边缘检测等基本图像处理技术;4. 了解图像分割、特征提取等高级图像处理技术。

技能目标:1. 能够运用MATLAB进行图像读取、显示和保存操作;2. 能够独立完成图像的增强、滤波等基本处理操作;3. 能够运用边缘检测算法对图像进行处理,提取关键特征;4. 能够根据实际需求选择合适的图像处理技术,解决实际问题。

情感态度价值观目标:1. 培养学生对数字图像处理技术的兴趣,激发其学习热情;2. 培养学生的团队合作意识,使其学会在团队中分享和交流;3. 培养学生严谨的科学态度,使其注重实验数据的真实性;4. 培养学生的创新思维,鼓励其探索新方法,提高解决问题的能力。

本课程旨在通过数字图像处理MATLAB课程设计,使学生在掌握基本理论知识的基础上,运用MATLAB软件进行图像处理实践。

课程注重理论与实践相结合,培养学生具备实际操作能力,并能运用所学知识解决实际问题。

针对学生的年级特点,课程目标既注重知识技能的传授,又关注情感态度价值观的培养,为学生今后的学习和工作奠定基础。

二、教学内容1. 数字图像处理基础- 图像表示与存储(RGB、灰度、二值图像)- 图像类型转换- MATLAB图像处理工具箱介绍2. 图像增强- 直方图均衡化- 伽玛校正- 图像锐化3. 图像滤波- 均值滤波- 中值滤波- 高斯滤波- 双边滤波4. 边缘检测- 索贝尔算子- 拉普拉斯算子- Canny边缘检测5. 图像分割- 阈值分割- 区域生长- 分水岭算法6. 特征提取与描述- 霍夫变换- SIFT算法- ORB算法教学内容根据课程目标进行选择和组织,注重科学性和系统性。

教学大纲明确分为六个部分,分别对应数字图像处理的基础知识、图像增强、滤波、边缘检测、图像分割和特征提取与描述。

数字图像处理的课程设计

数字图像处理的课程设计

数字图像处理的课程设计一、课程目标知识目标:1. 理解数字图像处理的基本概念,掌握图像的数字化表示方法;2. 掌握图像处理的基本操作,如图像变换、滤波、增强和复原;3. 了解常见的图像分割和特征提取方法,并应用于实际问题;4. 掌握图像压缩的基本原理及常用算法。

技能目标:1. 能够运用图像处理软件进行基本的图像编辑和操作;2. 能够编写简单的数字图像处理程序,实现对图像的基本处理功能;3. 能够运用所学的图像处理方法解决实际问题,如图像去噪、图像增强等;4. 能够对图像进行有效的压缩,以适应不同的应用场景。

情感态度价值观目标:1. 培养学生对数字图像处理技术的兴趣和热情,激发其探索精神;2. 培养学生的团队合作意识,学会与他人共同解决问题;3. 增强学生的实际操作能力,使其认识到理论与实践相结合的重要性;4. 引导学生关注图像处理技术在日常生活和各领域的应用,提高其科技素养。

课程性质:本课程为高年级选修课程,旨在使学生掌握数字图像处理的基本原理和方法,培养其实际应用能力。

学生特点:学生具备一定的数学基础和编程能力,对图像处理有一定了解,但尚未深入学习。

教学要求:结合学生特点和课程性质,注重理论与实践相结合,以实际应用为导向,提高学生的动手能力和创新能力。

通过本课程的学习,使学生能够达到上述课程目标,为未来进一步学习和研究打下坚实基础。

二、教学内容1. 数字图像基础:包括图像的数字化表示、图像质量评价、颜色模型等基本概念;- 教材章节:第1章 数字图像处理基础2. 图像增强:介绍直方图均衡化、图像平滑、锐化等增强方法;- 教材章节:第3章 图像增强3. 图像复原:涉及图像退化模型、逆滤波、维纳滤波等复原方法;- 教材章节:第4章 图像复原4. 图像分割与特征提取:包括阈值分割、边缘检测、区域生长等分割方法,以及特征点的提取和描述;- 教材章节:第5章 图像分割与特征提取5. 图像压缩:介绍图像压缩的基本原理,如JPEG、JPEG2000等压缩算法;- 教材章节:第6章 图像压缩6. 数字图像处理应用:分析图像处理在医学、遥感、计算机视觉等领域的应用案例;- 教材章节:第7章 数字图像处理应用教学进度安排:1. 数字图像基础(2学时)2. 图像增强(4学时)3. 图像复原(4学时)4. 图像分割与特征提取(6学时)5. 图像压缩(4学时)6. 数字图像处理应用(2学时)三、教学方法为提高教学效果,本课程将采用以下多样化的教学方法:1. 讲授法:教师通过系统的讲解,使学生掌握数字图像处理的基本概念、原理和方法。

数字图像处理matlab课程设计

数字图像处理matlab课程设计

数字图像处理matlab课程设计一、教学目标本课程的教学目标是使学生掌握数字图像处理的基本理论和方法,学会使用MATLAB软件进行图像处理和分析。

通过本课程的学习,学生应达到以下具体目标:1.理解数字图像处理的基本概念、原理和算法。

2.熟悉MATLAB图像处理工具箱的使用。

3.能够运用数字图像处理的基本算法解决实际问题。

4.能够使用MATLAB进行图像处理和分析,撰写相关的程序代码。

情感态度价值观目标:1.培养学生的创新意识和团队协作精神。

2.培养学生对数字图像处理技术的兴趣,提高其综合素质。

二、教学内容根据课程目标,本课程的教学内容主要包括以下几个部分:1.数字图像处理基本概念:图像处理的基本概念、图像数字化、图像表示和图像变换。

2.图像增强和复原:图像增强、图像去噪、图像复原。

3.图像分割和描述:图像分割、图像特征提取和描述。

4.图像形态学:形态学基本运算、形态学滤波、形态学重建。

5.MATLAB图像处理工具箱的使用:MATLAB图像处理工具箱的基本功能、常用图像处理函数。

6.图像处理实例分析:结合实际案例,分析数字图像处理技术的应用。

三、教学方法为了实现课程目标,本课程将采用以下教学方法:1.讲授法:通过讲解图像处理的基本概念、原理和算法,使学生掌握图像处理的基本知识。

2.案例分析法:通过分析实际案例,使学生了解数字图像处理技术在实际中的应用。

3.实验法:通过上机实验,使学生熟练掌握MATLAB图像处理工具箱的使用,提高学生的实际操作能力。

4.讨论法:学生进行课堂讨论,激发学生的思维,培养学生的创新意识和团队协作精神。

四、教学资源为了支持教学内容和教学方法的实施,本课程将采用以下教学资源:1.教材:《数字图像处理(MATLAB版)》。

2.参考书:相关领域的经典教材和论文。

3.多媒体资料:教学PPT、视频教程等。

4.实验设备:计算机、MATLAB软件、图像处理相关硬件设备。

五、教学评估本课程的评估方式包括平时表现、作业、考试等多个方面,以全面、客观、公正地评价学生的学习成果。

数字图像处理课程设计.

数字图像处理课程设计.

数字图像处理课程设计.一、教学目标本课程的教学目标是使学生掌握数字图像处理的基本理论、方法和应用,培养学生运用数字图像处理技术解决实际问题的能力。

具体目标如下:1.知识目标:(1)掌握数字图像处理的基本概念、原理和算法;(2)了解数字图像处理的发展历程和应用领域;(3)熟悉常见的数字图像处理技术,如图像滤波、边缘检测、图像压缩等。

2.技能目标:(1)能够运用数字图像处理技术对图像进行基本处理;(2)具备分析图像问题、选择合适算法解决问题的能力;(3)掌握编程实现数字图像处理算法的方法。

3.情感态度价值观目标:(1)培养学生的创新意识和团队合作精神;(2)增强学生对数字图像处理技术的兴趣和好奇心;(3)培养学生运用科技手段解决实际问题的责任感。

二、教学内容本课程的教学内容主要包括以下几个部分:1.数字图像处理基本概念:数字图像的定义、特点、表示方法等;2.图像处理基本运算:图像滤波、边缘检测、图像增强等;3.图像压缩技术:JPEG、PNG等图像压缩算法;4.图像分割与描述:图像分割方法、图像特征提取等;5.图像处理应用案例:数字图像处理在实际领域的应用。

三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式进行教学:1.讲授法:教师讲解基本概念、原理和方法,引导学生理解数字图像处理的核心知识;2.案例分析法:通过分析实际案例,使学生掌握数字图像处理技术的应用;3.实验法:安排实验课程,让学生动手实践,培养实际操作能力;4.讨论法:学生进行小组讨论,激发学生的创新思维和团队合作精神。

四、教学资源为了支持本课程的教学,我们将准备以下教学资源:1.教材:《数字图像处理教程》等;2.参考书:相关领域的学术论文、技术报告等;3.多媒体资料:教学PPT、视频教程等;4.实验设备:计算机、图像处理软件、实验器材等。

通过以上教学资源的支持,为学生提供丰富的学习资料和实践平台,提高学生的学习效果。

五、教学评估本课程的教学评估将采用多元化、全过程的评价方式,以全面、客观地评价学生的学习成果。

数字图像处理课程设计opencv

数字图像处理课程设计opencv

数字图像处理课程设计opencv一、教学目标本课程的教学目标是使学生掌握数字图像处理的基本理论、方法和OpenCV编程技能。

通过本课程的学习,学生应能理解数字图像处理的基本概念,掌握常用的图像处理算法,并能够运用OpenCV库进行实际的图像处理操作。

具体来说,知识目标包括:1.理解数字图像处理的基本概念和原理。

2.掌握数字图像处理的基本算法和常用技术。

3.熟悉OpenCV库的基本结构和功能。

技能目标包括:1.能够运用OpenCV库进行数字图像处理的基本操作。

2.能够编写简单的数字图像处理程序。

3.能够分析和解决数字图像处理实际问题。

情感态度价值观目标包括:1.培养对数字图像处理的兴趣和热情。

2.培养学生的创新意识和实践能力。

3.培养学生的团队合作精神和沟通交流能力。

二、教学内容本课程的教学内容主要包括数字图像处理的基本理论、方法和OpenCV编程实践。

教学大纲如下:1.数字图像处理概述1.1 数字图像处理的基本概念1.2 数字图像处理的应用领域2.图像处理基本算法2.1 图像滤波2.2 图像增强2.3 图像边缘检测3.OpenCV库的使用3.1 OpenCV库的基本结构3.2 OpenCV库的基本功能4.图像处理实例分析4.1 图像去噪实例4.2 图像增强实例4.3 图像边缘检测实例三、教学方法本课程采用多种教学方法相结合的方式,包括讲授法、讨论法、案例分析法和实验法等。

1.讲授法:通过教师的讲解,使学生掌握数字图像处理的基本理论和方法。

2.讨论法:通过小组讨论,激发学生的思考,培养学生的创新意识和实践能力。

3.案例分析法:通过分析实际案例,使学生能够将理论知识应用于实际问题。

4.实验法:通过实验操作,使学生掌握OpenCV库的基本功能,并能够编写实际的图像处理程序。

四、教学资源本课程的教学资源包括教材、参考书、多媒体资料和实验设备等。

1.教材:选用《数字图像处理》(李航著)作为主要教材,辅助以相关参考书籍。

数字图像处理课程设计

数字图像处理课程设计

数字图像处理课程设计一、课程目标知识目标:1. 学生能够理解数字图像处理的基本概念,掌握图像的数字化过程、图像格式和颜色空间等基础知识;2. 学生能够掌握图像处理的基本操作,如图像的读取、显示、保存和变换;3. 学生能够了解并运用图像滤波、边缘检测、图像分割等常用算法;4. 学生能够理解图像特征提取和描述的基本方法,并应用于图像识别和分类。

技能目标:1. 学生能够运用编程语言(如Python)和相关库(如OpenCV)进行数字图像处理实践操作;2. 学生能够运用图像处理技术解决实际问题,如图像增强、图像复原和图像分析;3. 学生能够通过实际案例,掌握图像处理算法的选择和优化方法;4. 学生能够运用所学知识,开展小组合作,共同完成图像处理项目。

情感态度价值观目标:1. 学生培养对数字图像处理技术的兴趣和热情,增强学习动力;2. 学生树立正确的图像处理观念,遵循学术道德,不侵犯他人隐私;3. 学生培养团队协作精神,学会与他人分享和交流,提高沟通能力;4. 学生能够认识到数字图像处理技术在日常生活和各行各业中的应用价值,激发创新意识。

课程性质:本课程为实践性较强的学科,注重理论知识与实际应用的结合。

学生特点:高中年级学生,具备一定的数学和编程基础,对图像处理技术有一定了解,好奇心强,喜欢动手实践。

教学要求:教师应注重启发式教学,引导学生主动探究,培养学生的实践能力和创新精神。

教学过程中,关注学生的个体差异,提供个性化指导,确保课程目标的达成。

同时,注重过程性评价,全面评估学生的学习成果。

二、教学内容1. 数字图像处理基础- 图像的数字化过程- 常见图像格式及颜色空间- 图像的读取、显示和保存2. 图像处理基本操作- 图像变换(几何变换、灰度变换)- 图像增强(直方图均衡化、空间滤波)- 图像复原(逆滤波、维纳滤波)3. 图像滤波与边缘检测- 常用滤波算法(均值滤波、中值滤波、高斯滤波)- 边缘检测算法(Sobel算子、Canny算子)4. 图像分割- 阈值分割(全局阈值、局部阈值)- 区域分割(区域生长、分裂合并)5. 图像特征提取与描述- 基本特征(颜色特征、纹理特征、形状特征)- 特征描述(HOG描述子、SIFT描述子)6. 图像识别与分类- 基本分类算法(K最近邻、支持向量机)- 深度学习方法(卷积神经网络)7. 实践项目- 图像增强与复原- 边缘检测与图像分割- 特征提取与图像分类教学内容安排与进度:1. 第1-2周:数字图像处理基础2. 第3-4周:图像处理基本操作3. 第5-6周:图像滤波与边缘检测4. 第7-8周:图像分割5. 第9-10周:图像特征提取与描述6. 第11-12周:图像识别与分类7. 第13-14周:实践项目教材关联:教学内容与教材章节紧密关联,涵盖《数字图像处理》教材中的基础知识和实践应用。

数字图像技术课程设计

数字图像技术课程设计

数字图像技术课程设计一、教学目标本课程旨在通过数字图像技术的学习,让学生掌握基础的图像处理原理和常见的图像处理方法,能够熟练使用数字图像处理软件,具备基本的图像处理和分析能力。

在知识目标方面,要求学生了解数字图像的基本概念、图像处理的基本算法和图像处理软件的基本操作。

在技能目标方面,要求学生能够熟练使用图像处理软件进行图像编辑、色彩调整、滤镜应用等基本操作,并能对实际问题进行图像处理和分析。

在情感态度价值观目标方面,通过数字图像技术的学习,培养学生的创新意识和审美能力,提高学生对数字图像技术的兴趣和热情。

二、教学内容本课程的教学内容主要包括数字图像的基本概念、图像处理的基本算法和图像处理软件的基本操作。

具体包括:数字图像的定义、分类和基本属性;图像处理的基本算法,如图像滤波、图像增强、图像分割等;图像处理软件的基本操作,如Photoshop、Pnt等软件的使用。

三、教学方法为了提高学生的学习兴趣和主动性,本课程将采用多种教学方法相结合的方式进行教学。

包括:讲授法,用于讲解数字图像的基本概念和图像处理的基本算法;讨论法,用于探讨图像处理软件的使用方法和实际应用;案例分析法,用于分析具体的图像处理案例;实验法,用于让学生亲手操作图像处理软件,提高学生的实践能力。

四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将选择和准备以下教学资源:教材,用于提供基本的学习内容和知识体系;参考书,用于提供更多的学习资料和案例分析;多媒体资料,如教学PPT、视频等,用于增强课堂教学的趣味性和生动性;实验设备,如计算机、投影仪等,用于进行实验教学和软件操作练习。

五、教学评估本课程的评估方式包括平时表现、作业和考试三个部分。

平时表现主要评估学生在课堂上的参与程度和表现,包括提问、回答问题、讨论等,占总分的30%。

作业主要包括课堂练习和课后作业,占总分的40%。

考试包括期中考试和期末考试,占总分的30%。

数字图像处理教学大纲

数字图像处理教学大纲

数字图像处理教学大纲一、课程基本信息课程名称:数字图像处理课程类别:专业必修课学分:X总学时:X授课对象:具体专业二、课程教学目标通过本课程的学习,使学生掌握数字图像处理的基本概念、原理和方法,具备运用相关知识和技术解决实际问题的能力。

具体包括:1、理解数字图像的获取、表示和存储方式。

2、掌握数字图像增强、复原、压缩、分割等基本处理技术。

3、能够运用编程工具实现简单的数字图像处理算法。

4、培养学生的创新思维和实践能力,为进一步学习和从事相关领域的工作打下坚实的基础。

三、课程教学内容(一)数字图像基础1、图像的感知和获取视觉系统的特性图像的形成与数字化图像的采样和量化2、数字图像的表示灰度图像彩色图像图像的矩阵表示3、数字图像的存储图像文件格式图像数据库(二)图像增强1、空域增强灰度变换直方图均衡化空域滤波2、频域增强傅里叶变换频域滤波(三)图像复原1、图像退化模型常见的退化原因退化函数的建立2、逆滤波原理与实现局限性3、维纳滤波基本原理算法实现(四)图像压缩1、图像压缩的基本原理信息论基础冗余度2、无损压缩霍夫曼编码算术编码3、有损压缩预测编码变换编码(五)图像分割1、阈值分割全局阈值局部阈值2、边缘检测梯度算子拉普拉斯算子Canny 算子3、区域分割区域生长区域分裂与合并(六)图像特征提取与描述1、颜色特征颜色直方图颜色矩2、纹理特征统计方法结构方法3、形状特征边界描述区域描述(七)图像识别1、模式识别基础分类器设计特征选择与提取2、图像分类与识别应用人脸识别车牌识别四、课程教学方法1、课堂讲授通过讲解理论知识,使学生掌握数字图像处理的基本概念、原理和方法。

2、实验教学安排一定数量的实验课程,让学生通过实践加深对理论知识的理解,提高编程和解决实际问题的能力。

3、案例分析结合实际应用案例,引导学生分析问题、解决问题,培养学生的创新思维和实践能力。

4、小组讨论组织学生进行小组讨论,促进学生之间的交流与合作,激发学生的学习兴趣和主动性。

数字图像的课程设计

数字图像的课程设计

数字图像的课程设计一、课程目标知识目标:1. 学生能理解数字图像的基本概念,掌握图像的像素、分辨率、颜色模型等基础知识。

2. 学生能了解数字图像处理的基本方法,包括图像滤波、边缘检测、图像增强等。

3. 学生能掌握至少一种数字图像处理软件或编程语言,并运用其进行简单的图像处理操作。

技能目标:1. 学生能够运用所学知识,独立进行数字图像的拍摄、编辑和处理。

2. 学生能够运用图像处理软件或编程语言,解决实际问题,如改善图像质量、提取图像特征等。

3. 学生能够通过小组合作,完成数字图像作品的创作,提高团队协作和沟通能力。

情感态度价值观目标:1. 学生能够认识到数字图像在日常生活和各行各业的重要性,激发对图像处理技术的兴趣。

2. 学生在学习过程中,培养观察力、创新意识和审美观念,提高对美的感知和鉴赏能力。

3. 学生能够遵循道德规范,尊重他人的知识产权,养成良好的信息素养。

课程性质:本课程为信息技术学科,结合实际操作,注重理论与实践相结合。

学生特点:六年级学生具备一定的信息技术基础,对新鲜事物充满好奇,喜欢动手操作。

教学要求:教师应采用启发式教学,引导学生主动探究,关注个体差异,提高学生的实践能力。

同时,注重培养学生的团队协作、沟通表达和创新能力。

通过本课程的学习,使学生能够掌握数字图像的基础知识,提高图像处理技能,形成正确的价值观。

二、教学内容1. 数字图像基础知识:- 图像的像素与分辨率- 颜色模型(RGB、CMYK等)- 图像文件的格式(JPG、PNG、BMP等)2. 数字图像处理基本方法:- 图像滤波(高斯滤波、中值滤波等)- 边缘检测(Sobel算子、Canny算子等)- 图像增强(直方图均衡化、对比度增强等)3. 数字图像处理软件及应用:- 常用图像处理软件(如Photoshop、GIMP等)的操作与使用- 图像处理编程语言(如Python中的OpenCV库)的基本应用4. 实践项目与作品创作:- 拍摄并处理个人照片,学会调整曝光、对比度等参数- 小组合作创作数字图像作品,运用所学知识进行图像合成、特效制作等教学内容安排与进度:第一周:数字图像基础知识学习,了解图像像素、分辨率、颜色模型等概念第二周:学习数字图像处理基本方法,掌握图像滤波、边缘检测等操作第三周:介绍数字图像处理软件及编程语言,学会使用软件进行图像处理第四周:实践项目与作品创作,巩固所学知识,提高实际操作能力教材章节关联:本教学内容与教材中“数字图像处理”章节相关,涵盖了该章节的核心知识点,结合实际操作,使学生更好地理解和掌握数字图像处理技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数字图像处理》实验内容及要求实验内容一、灰度图像的快速傅立叶变换1、 实验任务对一幅灰度图像实现快速傅立叶变换(DFT ),得到并显示出其频谱图,观察图像傅立叶变换的一些重要性质。

2、 实验条件微机一台、vc++6.0集成开发环境。

3、实验原理傅立叶变换是一种常见的图像正交变换,通过变换可以减少图像数据的相关性,获取图像的整体特点,有利于用较少的数据量表示原始图像。

二维离散傅立叶变换的定义如下:112()00(,)(,)ux vyM N j M Nx y F u v f x y eπ---+===∑∑傅立叶反变换为:112()001(,)(,)ux vy M N j M Nu v f x y F u v eMNπ--+===∑∑式中变量u 、v 称为傅立叶变换的空间频率。

图像大小为M ×N 。

随着计算机技术和数字电路的迅速发展,离散傅立叶变换已经成为数字信号处理和图像处理的一种重要手段。

但是,离散傅立叶变换需要的计算量太大,运算时间长。

库里和图基提出的快速傅立叶变换大大减少了计算量和存储空间,因此本实验利用快速傅立叶变换来得到一幅灰度图像的频谱图。

快速傅立叶变换的基本思路是把序列分解成若干短序列,并与系数矩阵元素巧妙结合起来计算离散傅立叶变换。

若按照奇偶序列将X(n)进行划分,设:()(2)()(21)g n x n h n x n=⎧⎨=+⎩ (n=0,1,2,…,12N -)则一维傅立叶变换可以改写成下面的形式:1()()N mnNn X m x n W -==∑11220()()N N mn mnN N n n g n W h n W --===+∑∑1122(2)(21)(2)(21)NN m n m n N Nn n x n W x n W --+===++∑∑1122022(2)(21)N N mn mn mN N Nn n x n W x n W W --===++∑∑ =G(m)+mN W H(m)因此,一个求N 点的FFT 可以转换成两个求2N点的 FFT 。

根据以上公式推导直到2点的FFT 为止,这时可以由原始数据X (n )直接求出。

根据傅立叶变换的可分离性,图像的二维FFT 可以由先对图像的行进行一次一维FFT ,再对结果按列进行一次一维FFT 得到。

4、实验步骤(1) 实现灰度图像读取、保存模块; (2) 编程实现图像的快速傅立叶变换; (3) 将得到的频谱图显示出来。

5、实验结果实验采用大小为256×256的灰度图像couple.bmp 。

原始图像和快速傅立叶变换后的频谱图如图1和图2所示。

图1 couple.bmp 图2 FFT 图观察可以得到,图像的能量集中在低频部分。

另外,要显示出图2的结果,必须将图像的频谱原点移动到图像中心。

6、实验心得二、 灰度图像的直方图均匀化 1、实验任务⑴ 进一步掌握灰度图象直方图的概念,性质;⑵ 对一幅灰度图象实现直方图均衡化,对比修正前后的图像效果 ⑶ 通过Matlab 或VC++开发环境,编程实现灰度图象的直方图均匀化处理。

2、实验条件微机一台、vc++6.0集成开发环境。

3、 实验原理直方图均衡也称灰度均衡,目的是通过点运算使输入图像转换为在每一灰度级上都有相同的像素点数的输出图像(即输出的直方图是平的)。

按照图像的概率密度函数的定义:00()AD MAXB A i i D D f D H A ===∑01()()p x H x A =其中()H x 为直方图,0A 为图像的面积。

设转换前图像的概率密度函数为()r p r ,转换后图像的概率密度函数为()s p s ,转换函数为()s f r =。

由概率论知识,我们可以得到:()()s r drp s p r ds =这样,如果想使转换后的图像的概率密度函数为1(即直方图为平的),则必须满足:()r dsp r dr =等式两边对r 积分,可得:0001()()()rrr s f r P u du H u duA ===⎰⎰该转换公式被称为图像的累积分布函数。

直方图均衡的转换公式为:00()()AD M A X B A D D f D H u du A ==⎰对于离散图像,转换公式则为:()AD MAXB A ii D D f D HA ===∑4、实验步骤⑴ 实现灰度图像读取、保存模块; ⑵ 编程实现图像的直方图均衡。

5、实验结果实验采用大小为256×256的灰度图像couple.bmp 。

原始图像和直方图均匀化处理后的图如图1和图2所示。

图1 couple.bmp 图2 直方图均衡后三、图像平滑处理1、实验任务⑴理解图像噪声,模板等概念;⑵掌握邻域平滑法原理及实现方法;⑶掌握中值滤波法原理及实现方法;⑷通过Matlab或VC++环境编程实现对一幅有噪声的灰度图象的邻域平滑处理和中值滤波处理去除噪声。

2、实验条件微机一台、vc++6.0集成开发环境。

3、实验原理:⑴邻域平均法图像平滑处理就是用平滑模板对图像进行处理,以减少图像的噪声。

平滑模板的思想是通过一点和周围邻域内像素点的平均来去除突然变化的点,从而滤掉一定的噪声,其代价是图像有一定程度的模糊,减少图像的模糊是图像平滑处理研究的主要问题之一。

当模板中所有系数都取同样的值时,称其为Box模板,常用的3×3和5×5模板如下:3×3平滑模板5×5平滑模板利用Box模板对图像进行平滑处理又称为邻域平均法平滑处理。

Box模板对当前像素及其相邻的的像素点都一视同仁,统一进行平均处理,这样就可以滤去图像中的噪声。

⑵中值滤波法中值滤波是一种非线性的信号处理方法,与其对应的中值滤波器是一种非线性的滤波器。

中值滤波在一定的条件下可以克服线性滤波如最小均方滤波、均值滤波等带来的图像细节模糊问题,而且对滤除脉冲干扰及图像扫描噪声最为有效。

由于在实际运算过程中不需要图像的统计特征,因此也带来不少方便。

中值滤波一般采用一个含有奇数个点的滑动窗口,将窗口中各点灰度值的中值来替代指定点(一般是窗口的中心点)的灰度值。

对于奇数个元素,中值是指按大小排序后,中间的数值;对于偶数个元素,中值是指排序后中间两个元素灰度值的平均值。

对二维中值滤波来说,窗口的形状和尺寸对滤波器的效果影响很大。

不同图像内容和不同应用往往选用不同的窗口形状和尺寸。

常用的二维中值滤波窗口形状有线状、方形、圆形、十字形等。

4、实验步骤⑴实现灰度图像读取、保存模块;⑵读入灰度图像并加入椒盐噪声;⑶对图像进行中值滤波处理,并显示处理后的图像。

5、实验结果实验采用大小为256×256的灰度图像couple.bmp。

原始图像、加噪后的图像和中值滤波后的图像分别如图1、图2和图3所示。

图1 couple.bmp 图2 椒盐噪声图图3 中值滤波后四、图像边缘检测1、实验任务⑴了解图像边缘提取的基本概念;⑵了解进行边缘提取的基本方法;⑶掌握用不同算子对图像进行边缘检测的方法.⑷在Matlab或VC++环境下,编写程序分别用Roberts,Sobel和拉普拉斯高斯算子对图像进行边缘检测,比较三种算子处理的不同之处。

2、实验条件微机一台、vc++6.0集成开发环境。

3、实验原理图像的边缘是图像的最基本特征,它指的是周围像素灰度有阶跃变化或屋顶变化的那些像素的集合。

物体的边缘是由灰度的不连续性反映的。

阶跃性边缘是指它两边的像素的灰度值有着显著的不同,屋顶状边缘位于灰度值从增加到减少的变化转折点。

经典的边缘提取方法是考察图像的每个像素在某个领域内灰度的变换,利用边缘邻近一阶或二阶方向导数变换规律,用简单的方法检测边缘,这种方法称为边缘检测局部算子法。

常用的梯度算子如下表所示:拉普拉斯高斯(loG)算法是一种二阶边缘检测方法。

它通过寻找图像灰度值中二阶微分中的过零点(Zero Crossing)来检测边缘点。

其原理为,灰度级变形成的边缘经过微风算子形成一个单峰函数,峰值位置对应边缘点;对单峰函数进行微分,则峰值处的微分值为0,峰值两侧符号相反,而原先的极值点对英语二阶微分中的过零点,通过检测过零点即可将图像的边缘提取出来。

Laplacian算子为:近似计算为:常用的LOG算子是5*5的模板,如下所示:4、实验步骤⑴实现灰度图像读取、保存模块;⑵读入灰度图像并用Roberts算子检测边缘。

5、实验结果实验采用大小为256×256的灰度图像couple.bmp。

原始图像和边缘检测图像分别如图1和图2所示。

图1 couple.bmp 图2 Roberts边缘检测五、图像的转置1、实验任务对一幅灰度图像实现转置,得到并显示出其转置后的图像。

2、实验条件微机一台、vc++6.0集成开发环境。

3、实验原理图像的转置操作是将图像的x 坐标和y 坐标互换。

该操作将改变图像的大小:图像的高度和宽度将互换。

转置的变换矩阵的表达式如下:101001100010011x x y y ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭它的逆变换矩阵表达式是:001010100110011x x y y ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ 即 0101x y y x =⎧⎨=⎩4、 实验步骤 ⑴ 实现灰度图像读取、保存模块;⑵ 编程实现图像的转置;⑶ 将得到的转置图显示出来。

5、 实验结果实验采用大小为256×256的灰度图像couple.bmp 。

原始图像和转置后的图像如图1和图2所示。

图1 couple.bmp 图2 转置图像六、灰度图像的伪彩色编码1、实验任务将一幅灰度图像转换为一幅彩色图像并显示出来。

2、实验条件微机一台、vc++6.0集成开发环境。

3、实验原理因为人眼对灰度微弱递变的敏感程度远远小于对色彩变化的敏感程度,所以将一幅灰度图像按照特定的彩色编码表进行彩色变换,这样就可以看到图像更加精细的结构。

要将灰度图像进行伪彩色变换,可以采用一个256色的调色板,其中定义了每种灰度对应颜色的RGB值。

4、实验步骤⑴实现灰度图像读取、保存模块;⑵按照伪彩色编码表更改当前DIB的调色板;⑶刷新当前视图显示彩色图像。

5、实验结果实验采用大小为256×256的灰度图像couple.bmp。

原始图像和伪彩色变换后的图如图1和图2所示。

图1 couple.bmp 图2 伪彩色图七、图像的复原1、实验任务用反向滤波方法复原一幅模糊的灰度图像。

2、实验条件微机一台、vc++6.0集成开发环境。

3、实验原理图像在形成、传输和记录的过程中,由于受到多种原因的影响,图像的质量会下降,这一降质过程称为图像的退化。

图像复原的目的就是尽可能复原被退化图像的本来面目。

相关文档
最新文档