毕业设计基于单片机的超声测距仪设计外文翻译(标准格式)
基于stm32单片机的超声波测距仪设计报告
基于stm32单片机的超声波测距仪设计报告1. 引言超声波测距仪(Ultrasonic Distance Sensor)是一种常用的测距设备,通过发送超声波脉冲并接收其反射信号来测量目标与测距仪之间的距离。
本报告将详细介绍基于stm32单片机的超声波测距仪的设计过程。
2. 设计原理超声波测距仪的基本原理是利用超声波在空气中的传播速度和反射特性来计算目标物体与测距仪之间的距离。
其中,stm32单片机作为测距仪的控制核心,通过发射超声波脉冲并测量接收到的回波时间来计算距离。
2.1 超声波传播速度超声波在空气中的传播速度约为340m/s,可以通过测量超声波往返的时间来计算出距离。
2.2 超声波反射信号当超声波遇到障碍物时,会产生反射信号,测距仪接收到这些反射信号并测量其时间差,再通过计算即可得到距离。
3. 硬件设计本设计使用stm32单片机作为核心控制器,并搭配超声波发射器和接收器模块。
3.1 超声波发射器超声波发射器负责产生超声波脉冲,并将脉冲信号发送到待测物体。
3.2 超声波接收器超声波接收器负责接收从物体反射回来的超声波信号,并将其转换为电信号。
3.3 stm32单片机stm32单片机作为测距仪的核心控制器,负责发射超声波脉冲、接收反射信号并计算距离。
4. 软件设计本设计涉及的软件设计包括超声波信号发射、接收信号处理和距离计算等。
4.1 超声波信号发射使用stm32单片机的GPIO口控制超声波发射模块,产生一定频率和周期的脉冲信号。
4.2 接收信号处理通过stm32单片机的ADC模块,将超声波接收器接收到的模拟信号转换为数字信号,并对信号进行处理和滤波。
4.3 距离计算根据接收到的超声波反射信号的时间差,结合超声波的传播速度,使用合适的算法计算出距离。
5. 实验结果与分析经过实际测试,基于stm32单片机的超声波测距仪达到了预期的效果。
能够精确测量目标与测距仪之间的距离,并显示在相关的显示设备上。
毕业设计论文 外文文献翻译 超声波测距 中英文对照
毕业设计论文外文文献翻译超声波测距中英文对照The Circuit Design of UltrasonicRanging System超声波测距系统的电路设计Ultrasonic Distance Meter超声波测距仪姓名:专业: 测控技术与仪器学号: 2007071071指导教师姓名,职称,:The Circuit Design of Ultrasonic Ranging SystemThis article described the three directions (before, left, right) ultrasonic ranging system is to understand the front of the robot, left and right environment to provide a movement away from the information. (Similar to GPS Positioning System)A principle of ultrasonic distance measurement1, the principle of piezoelectric ultrasonic generatorPiezoelectric ultrasonic generator is the use of piezoelectriccrystal resonators to work. Ultrasonic generator, the internal structure as shown in Figure 1, it has two piezoelectric chip and a resonance plate. When it's two plus pulse signal, the frequency equal to the intrinsic piezoelectric oscillation frequency chip, the chip will happen piezoelectric resonance, and promote the development of plate vibrationresonance, ultrasound is generated. Conversely, if the two are notinter-electrode voltage, when the board received ultrasonic resonance,it will be for vibration suppression of piezoelectric chip, the mechanical energy is converted to electrical signals, then it becomes the ultrasonic receiver.2, the principle of ultrasonic distance measurementUltrasonic transmitter in a direction to launch ultrasound, in the moment to launch the beginning of time at the same time, the spread of ultrasound in the air, obstacles on his way to return immediately, the ultrasonic reflected wave received by the receiver immediately stop the clock. Ultrasound in the air as the propagation velocity of 340m / s, according to the timer records the time t, we can calculate the distance between the launch distance barrier (s), that is: s = 340t / 2 Ultrasonic Ranging System for the Second Circuit DesignSystem is characterized by single-chip microcomputer to control the use of ultrasonic transmitter and ultrasonic receiver since the launch from time to time, single-chip selection of 8751, economic-to-use, and the chip has 4K of ROM, to facilitate programming. Circuit schematic diagram shown in Figure 2. Draw only the front range of the circuit wiring diagram, left and right in front of Ranging circuits and the same circuit, it is omitted.1,40 kHz ultrasonic pulse generated with the launchRanging system using the ultrasonic sensor of piezoelectric ceramic sensors UCM40, its operating voltage of the pulse signal is 40kHz, whichby the single-chip implementation of the following procedures to generate.puzel: mov 14h, # 12h; ultrasonic firing continued 200mshere: cpl p1.0; output 40kHz square wavenop;nop;nop;djnz 14h, here;retRanging in front of single-chip termination circuit P1.0 input port, single chip implementation of the above procedure, the P1.0 port in a40kHz pulse output signal, after amplification transistor T, the drive to launch the first ultrasonic UCM40T, issued 40kHz ultrasonic pulse, and the continued launch of 200ms. Ranging the right and the left side of the circuit, respectively, then input port P1.1 and P1.2, the working principle and circuit in front of the same location.2, reception and processing of ultrasonicUsed to receive the first launch of the first pair UCM40R, the ultrasonic pulse modulation signal into an alternating voltage, the op-amp amplification IC1A and after polarization IC1B to IC2. IC2 is locked loop with audio decoder chip LM567, internal voltage-controlledoscillator center frequency of f0 = 1/1.1R8C3, capacitor C4 determine their target bandwidth. R8-conditioning in the launch of the carrier frequency on the LM567 input signal is greater than 25mV, the outputfrom the high jump 8 feet into a low-level, as interrupt request signals to the single-chip processing.Ranging in front of single-chip termination circuit output port INT0 interrupt the highest priority, right or left location of the output circuit with output gate IC3A access INT1 port single-chip, whilesingle-chip P1.3 and P1. 4 received input IC3A, interrupted by the process to identify the source of inquiry to deal with, interruptpriority level for the first left right after. Part of the source codeis as follows:receive1: push pswpush accclr ex1; related external interrupt 1jnb p1.1, right; P1.1 pin to 0, ranging from right to interrupt service routine circuitjnb p1.2, left; P1.2 pin to 0, to the left ranging circuit interrupt service routinereturn: SETB EX1; open external interrupt 1pop accpop pswretiright: ...; right location entrance circuit interrupt serviceroutineAjmp Returnleft: ...; left Ranging entrance circuit interrupt service routineAjmp Return4, the calculation of ultrasonic propagation timeWhen you start firing at the same time start the single-chipcircuitry within the timer T0, the use of timer counting function records the time and the launch of ultrasonic reflected wave received time. When you receive the ultrasonic reflected wave, the receivercircuit outputs a negative jump in the end of INT0 or INT1 interrupt request generates a signal, single-chip microcomputer in response to external interrupt request, the implementation of the external interrupt service subroutine, read the time difference, calculating the distance . Some of its source code is as follows:RECEIVE0: PUSH PSWPUSH ACCCLR EX0; related external interrupt 0MOV R7, TH0; read the time valueMOV R6, TL0?CLR CMOV A, R6SUBB A, # 0BBH; calculate the time differenceMOV 31H, A; storage resultsMOV A, R7SUBB A, # 3CHMOV 30H, ASETB EX0; open external interrupt 0POP ACCPOP PSWRETIFourth, the ultrasonic ranging system software designSoftware is divided into two parts, the main program and interrupt service routine, shown in Figure 3 (a) (b) (c) below. Completion of the work of the main program is initialized, each sequence of ultrasonic transmitting and receiving control.Interrupt service routines from time to time to complete three ofthe rotation direction of ultrasonic launch, the main external interrupt service subroutine to read the value of completion time, distance calculation, the results of the output and so on.V. CONCLUSIONSRequired measuring range of 30cm ~ 200cm objects inside the plane to do a number of measurements found that the maximum error is 0.5cm, and good reproducibility. Single-chip design can be seen on the ultrasonic ranging system has a hardware structure is simple, reliable, small features such as measurement error. Therefore, it can be used not only for mobile robot can be used in other detection systems.Thoughts: As for why the receiver do not have the transistoramplifier circuit, because the magnification well, CX20106 integrated amplifier, but also with automatic gain control level, magnification to 76dB, the center frequency is 38k to 40k, is exactly resonant ultrasonic sensors frequency.超声波测距系统的电路设计本文所介绍的三方向(前、左、右)超声波测距系统,就是为机器人了解其前方、左侧和右侧的环境而提供一个运动距离信息。
超声波测距外文文献加中文翻译毕业设计
附录A 英文原文ULTASONIC RANGING IN AIRG. E. Rudashevski and A. A. GorbatovOne of the most important problems in instrumentation technology is the remote,contactless measurement of distances in the order of 0.2 to 10 m in air.Such a problem occurs,for instance,when measuring the relativethre edimensional position of separate machine members or structural units.Interesting possibilities for its solution are opened up by utilizing ultrasonic vibrations as an information carrier.The physical properties of air,in which the measurements are made,permit vibrations to be employed at frequencies up to 500 kHz for distances up to 0.5 m between a member and the transducer,or up to 60 kHz when ranging on obstacles located at distances up to 10 m.The problem of measuring distances in air is somewhat different from other problems in the a -pplication of ultrasound.Although the possibility of using acoustic ranging for this purpose has been known for a long time,and at first glance appears very simple,nevertheless at the present time there are only a small number of developments using this method that are suitable for practical purposes.The main difficulty here is in providing a reliable acoustic three-dimensional contact with the test object during severe changes in the air's characteristic.Practically all acoustic arrangements presently known for checking distances use a method of measuring the propagation time for certain information samples from the radiator to the reflecting member and back.The unmodulated acoustic(ultrasonic)vibrations radiated by a transducer are not in themselves a source of information.In order to transmit some informational communication that can then be selected at the receiving end after reflection from the test member,the radiated vibrations must be modulated.In this case the ultrasonic vibrations are the carrier of the information which lies in the modulation signal,i.e.,they are the means for establishing the spatial contact between the measuring instrument and the object being measured.This conclusion,however,does not mean that the analysis and selection of parameters for the carrier vibrations is of minor importance.On the contrary,the frequency of the carrier vibrations is linked in a very close manner with the coding method for the informational communication,with the passband of the receiving and radiating elements in the apparatus,with the spatial characteristics of the ultrasonic communication channel,and with the measuring accuracy.Let us dwell on the questions of general importance for ultrasonic ranging in air,namely:on the choice ofa carrier frequency and the amount of acoustic power received.An analysis shows that with conical directivity diagrams for the radiator and receiver,and assuming thatthe distance between radiator and receiver is substantially smaller than the distance to the obstacle,theamount of acoustic power arriving at the receiving area Pr for the case of reflection from an ideal planesurface located at right angles to the acoustic axis of the transducer comes towhere Prad is the amount of acoustic power radiated,B is the absorption coefficient for a plane wave inthe medium,L is the distance between the electroacoustic transducer and the test me -mber,d is the diameterof the radiator(receiver),assuming they are equal,and c~is the angle of the directivity diagram for theelectroacoustic transducer in the radiator.Both in Eq.(1)and below,the absorption coefficient is dependent on the amplitude and not on theintensity as in some works[1],and therefore we think it necessary to stress this difference.In the various problems of sound ranging on the test members of machines and structures,therelationship between the signal attenuations due to the absorption of a planewave and due to thegeometrical properties of the sound beam are,as a rule,quite different.It must be pointed out that the choiceof the geometrical parameters for the beam in specific practical cases is dictated by the shape of thereflecting surface and its spatial distortion relative to some average position.Let us consider in more detail the relationship betweenthe geometric and the power parameters ofacoustic beams for the most common cases of ranging on plane and cylindrical structural members.It is well known that the directional characteristic W of a circular piston vibrating in an infinite baffle is afunction of the ratio of the piston's diameter to the wavelength d/λ as found from the following expression:(2)where Jl is a Bessel function of the first order and α is the angle between a normal to the piston and aline projected from the center of the piston to the point of observation(radiation).From Eq.(2)it is readily found that a t w o-t o-o n e reduction in the sensitivity of a radiator with respectto sound pressure will occur at the angle(3)For angles α≤20.Eq.(3)can be simplified to(4) where c is the velocity of sound in the medimaa and f is the frequency of the radiated vibrations.It follows from Eq.(4)that when radiating into air where c=330 m/s e c,the necessary diameter of the radiator for a spedfied angle of the directivity diagram at the 0.5 level of pressure taken with respect to the fdc 76.05.0≈αaxis can befound to be(5)where disincm,f is in kHz,and α is in degrees of angle.Curves are shown in Fig.1 plotted from Eq.(5)for six angles of a radiator's directivity diagram.The directivity diagrm needed for a radiator is dictated by the maximum distance to be measured and bythe spatial disposition of the test member relative to the other structural members.In order to avoid theincidence of signals reflected from adjacent members onto the acoustic receiver,it is necessary to provide asmall angle of divergence for the sound beam and,as far as possible,a small-diameter radiator.These tworequirements are mutually inconsistent since for a given radiation frequency a reduction of the beam'sdivergence angle requires an increased radiator diameter.In fact,the diameter of the"sonicated"spot is controlled by two variables,namely:the diameter of theradiator and the divergence angle of the sound beam.In the general case the minimum diameter ofthe"sonicated"spot Dmin on a plane surface normally disposed to the radiator's axis is given by(6)where L is the least distance to the test surface. The specified value of Dmin corresponds to a radiator with a diameter(7)As seen from Eqs.(,6)and(7),the minimum diameter of the"sonieated"spot at the maximum requireddistancecannot be less than two radiator diameters.Naturally,with shorter distances to the obstacle the sizeof the"sonicated" surface is less.Let us consider the case of sound ranging on a cylindrically shaped object of radius R.The problem is to measure the distance from the electroacoustic transducer to the side surface of the cylinderwith its various possible displacements along the X and Y axes.The necessary angleαof the radiator'sdirectivity diagram is given in this case by the expression(8) whereα is the value of the angle for the directivity diagram,Ymax is the maximum displacement of the cylinder's center from the acoustic axis,and Lmin is the minimum distance from the center of theelectroacoustic transducer to the reflecting surface measured along the straight line connecting the center ofthe m e m b e r with the center of the transducer.It is clear that when measuring distance,the"running"time of the information signal is controlled by thefd α1400≈fcL d 5.1=fcLD 6min =min maxarcsinL R y +≥αlength of the path in a direction normal to the cylinder's surface,or in other words,the measure distance isalways the shortest one.This statement is correct for all cases of specular reflection of the vibrations from thetest surface.The simultaneous solution of Eqs.(2)and(8)when W=0.5 leads to the following expression:(9) In the particular case where the sound ranging takes place in air having c=330 m/sec,and on theasstunption that L min <<R,the necessary d i a m e t e r of a unidirectional piston radiator d can be found fromthe fomula (10) where d is in cm and f is in kHz. Curves are shown in Fig.2 for determining the necessary diameter of the radiator as a function of theratio of the cylinder's radius to the maximum displacement from the axis for four radiation frequencies.Alsoshown in this figure is the directivity diagram angle as a function of R and Y rnax for four ratios of m i n i m u mdistance to radius.The ultrasonic absorption in air is the second factor in determining the resolution of ultrasonic rangingdevices and their range of action.The results of physical investigations concerning the measurement ofultrasonic vibrations air are given in[1-3].Up until now there has been no unambiguous explanation of thediscrepancy between the theoretical and expe -rimental absorption results for ultrasonic vibrations inair.Thus,for frequencies in the order of 50 to 60 kHz at a temperature of+25oC and a relative humidity of37%the energy absorption coefficient for a plane wave is about 2.5dB/m while the theoretical value is 0.3 dB/m.The absorption coefficient B as a function of frequency for a temperature of+25o Cand a humidity of37%according to the data in[2]can be described by Table 1.The absorption coefficient depends on the relative humidity.Thus,for frequencies in the order of 10 to20kHz the highest value of the absorption coefficient occurs at 20%humidity[3],and at 40%humidity theabsorption is reduced by about two to one.For frequencies in the order of 60 kHz the maximum absorptionoccurs at 30.7o humidity,dropping when it is increased to 98% or lowered to 10%by a factor of approximatelyfour to one.The air temperature also has an appreciable effect on the ultrasonic absorption[1].When thetemperature of the medium is increased from+10 to+30,the absorption for frequencies between 30 and 50kHz increases by about three to one.Taking all the factors noted above into account we arrive at the following approximate values for theabsorption coefficient:at a frequency of 60 kHz /3min =0.15 m -1 and~max=0.5-1;at a frequency of 200 ()maxmin 76.0y L R d +=λmax25fy R d ≈kHz/~min=0.6 m -1 and B max =2 m -1.(11)The values for the minimum~min and rnaxil-num~max"transmittance"coefficients were obtained in thea bsence of aerosols and rain.Their difference is the result of the possible variations in temperature over therange from -3 0 to+50~and in relative hmnidity over the range from 10 to 98%.The overall value ofthe"transmittance"is obtained by multiplying the values of g and 0 for given values of L,f,and d.L I T E R A T U R E C I T E DMoscow(1957).Moscow(1960).附录B 中文翻译在空气中超声测距G. E. Rudashevski and A. A. Gorbatov在仪器技术中远程是最重要的一个问题。
毕业设计基于单片机的超声测距仪设计外文翻译
中英文翻译课题:鉴于单片机的超声波测距系统的设计专业电气工程及其自动化学生姓名孙旺班级M电气 112学号28指导教师吴冬春专业系主任顾春雷撰写日期2015年 3月 13日电气工程学院外文原文Ultrasonic ranging system designPublication title: Sensor Review. Bradford: 1993. Vol. 13 ABSTRACT:Ultrasonic ranging technology has wide using worth in many fields ,such as the industrial locale ,vehicle navigation and sonar engineering . Now it has been used in level measurement, self-guided autonomous vehicles, fieldwork robots automotive navigation ,air and underwater target detection ,identification , location and so on.So there is an important practicing meaning to learn the ranging theory and ways deeply. To improve the precision of theultrasonic ranging system in hand , satisfy the request of the engineering personnel for the ranging precision , the bound and the usage, a portable ultrasonic ranging system based on the single chip processor was developed .Keywords: Ultrasound r ,Ranging System ,Single Chip ProcessorWith the development of science and technology, the improvement of people's standard of living, speeding up the development and construction of the city.urban drainage system have greatly developed their situation is constantlyimproving. However, due to historical reasons many unpredictable factors inthe synthesis of her time, the city drainage system. In particular drainagesystem often lags behind urban construction. Therefore, there are often goodbuilding excavation has been building facilities to upgrade the drainage system phenomenon. It brought to the city sewage, and it is clear to the city sewageand drainage culvert in the sewage treatment system. comfort is very importantto people's lives. Mobile robots designed to clear the drainage culvert andthe automatic control system Free sewage culvert clear guarantee robot, therobot is designed to clear the culvert sewage to the core. Control System isthe core component of the development of ultrasonic range finder. Therefore,it is very important to design a good ultrasonic range finder.2. A principle of ultrasonic distance measurementThe principle of piezoelectric ultrasonic generatorPiezoelectric ultrasonic generator is the use of piezoelectric crystalresonators to work. Ultrasonic generator, the internal structure as shown,it has two piezoelectric chip and a resonance plate. When it's two plus pulsesignal, the frequency equal to the intrinsic piezoelectric oscillation frequency chip, the chip will happen piezoelectric resonance, and promote the development of plate vibration resonance, ultrasound is generated. Conversely, if the two are not inter-electrode voltage, when the board received ultrasonic resonance, it will be for vibration suppression of piezoelectric chip, themechanical energy is converted to electrical signals, then it becomes theultrasonic receiver.The traditional way to determine the moment of the echo's arrival is basedon thresholding the received signal with a fixed reference. The threshold ischosen well above the noise level, whereas the moment of arrival of an echois defined as the first moment the echo signal surpasses that threshold. Theintensity of an echo reflecting from an object strongly depends on the object's nature, size and distance from the sensor. Further, the time interval fromthe echo's starting point to the momentwhen it surpasses the threshold changes with the intensity of the echo. As a consequence, a considerable error mayoccur Even two echoes with different intensities arriving exactly at the sametime will surpass the threshold at different moments. The stronger one willsurpass the threshold earlier than the weaker, so it will be considered asbelonging to a nearer object.principle of ultrasonic distance measurementUltrasonic transmitter in a direction to launch ultrasound, in the momentto launch the beginning of time at the same time, the spread of ultrasoundin the air, obstacles on his way to return immediately, the ultrasonic reflected wave received by the receiver immediately stop the clock. Ultrasound in theair as the propagation velocity of 340m / s, according to the timer recordsthe time t, we can calculate the distance between the launch distancebarrier (s), that is: s = 340t / 2Ranging System for the Second Circuit DesignSystem is characterized by single-chip microcomputer to control the use ofultrasonic transmitter and ultrasonic receiver since the launch from time totime, single-chip selection of 8751, economic-to-use, and the chip has 4K ofROM, to facilitate programming. Circuit schematic diagram shown in Figure 2.Figure 1 circuit principle diagram40 kHz ultrasonic pulse generated with the launchRanging system using the ultrasonic sensor of piezoelectric ceramic sensors UCM40, its operating voltage of the pulse signal is 40kHz, which by the single-chip implementation of the following procedures to generate.puzel: mov 14h, # 12h; ultrasonic firing continued 200mshere: cpl ; output 40kHz square wavenop;nop;nop;djnz 14h, here;retRanging in front of single-chip termination circuit input port, singlechip implementation of the above procedure, the port in a 40kHz pulse outputsignal,after amplification transistor T, the drive to launch the first ultrasonic UCM40T, issued 40kHz ultrasonic pulse, and the continued launchof 200ms. Ranging the right and the left side of the circuit, respectively,then input port and , the working principle and circuit in front of the samelocation.Reception and processing of ultrasonicUsed to receive the first launch of the first pair UCM40R, the ultrasonic pulse modulation signal into an alternating voltage, the op-amp amplificationIC1A and after polarization IC1B to IC2. IC2 is locked loop with audio decoderchip LM567, internal voltage-controlled oscillator center frequency of f0 =1/, capacitor C4 determine their target bandwidth. R8-conditioning in the launch of the carrier frequency on the LM567 input signal is greater than 25mV, theoutput from the high jump 8 feet into a low-level, as interrupt request signals to the single-chip processing.Ranging in front of single-chip termination circuit output port INT0 interrupt the highest priority, right or left location of the output circuitwith output gate IC3A access INT1 port single-chip, while single-chip andP1. 4 received input IC3A, interrupted by the process to identify the sourceof inquiry to deal with, interrupt priority level for the first left rightafter. Part of the source code is as follows:receive1: push pswpush accclr ex1; related external interrupt 1jnb , right; pin to 0, ranging from right to interruptservice routine circuitjnb, left; pin to 0, to the left ranging circuit interrupt service routinereturn: SETB EX1; open external interrupt 1pop accpop pswretiright: ...; right location entrance circuit interrupt service routineAjmp Returnleft: ...; left Ranging entrance circuit interrupt service routineAjmp ReturnThe calculation of ultrasonic propagation timeWhen you start firing at the same time start the single-chip circuitrywithin the timer T0, the use of timer counting function records the time andthe launch of ultrasonic reflected wave received time. When you receive the ultrasonic reflected wave, the receiver circuit outputs a negative jump in theend of INT0 or INT1 interrupt request generates a signal, single-chip microcomputer in response to external interrupt request, the implementationof the external interrupt service subroutine, read the time difference, calculating the distance . Some of its source code is as follows: RECEIVE0: PUSH PSWPUSH ACCCLR EX0; related external interrupt 0MOV R7, TH0; read the time valueMOV R6, TL0CLR CMOV A, R6SUBB A, # 0BBH; calculate the time differenceMOV 31H, A; storage resultsMOV A, R7SUBB A, # 3CHMOV 30H, ASETB EX0; open external interrupt 0POP ACCPOP PSWRETIFor a flat target, a distance measurement consists of two phases: acoarse measurement and. a fine measurement:Step 1: Transmission of one pulse train to produce a simple ultrasonic wave.Step 2: Changing the gain of both echo amplifiers according to equation , until the echo is detected.Step 3: Detection of the amplitudes and zero-crossing times of both echoes.Step 4: Setting the gains of both echo amplifiers to normalize the output at,say 3 volts. Setting the period of the next pulses according to the :period of echoes. Setting the time window according to the data of step2.Step 5: Sending two pulse trains to produce an interfered wave. Testing thezero-crossing times and amplitudes of the echoes. If phase inversionoccurs in the echo, determine to otherwise calculate to by interpolationusing the amplitudes near the trough. Derive t sub m1 and t sub m2 .Step 6: Calculation of the distance y using equation .4. The ultrasonic ranging system software designSoftware is divided into two parts, the main program and interrupt service routine. Completion of the work of the main program is initialized, each sequence of ultrasonic transmitting and receiving control.Interrupt service routines from time to time to complete three of the rotationdirection of ultrasonic launch, the main external interrupt service subroutine to read the value of completion time, distance calculation, the results ofthe output and so on.5. ConclusionsRequired measuring range of 30cm ~ 200cm objects inside the plane to doa number of measurements found that the maximum error is , and good reproducibility. Single-chip design can be seen on the ultrasonic ranging system has a hardware structure is simple, reliable, small features such as measurement error. Therefore, it can be used not only for mobile robot can be used in other detection systems.Thoughts: As for why the receiver do not have the transistor amplifiercircuit, because the magnification well, integrated amplifier, but also withautomatic gain control level, magnification to 76dB, the center frequency is 38k to 40k, is exactly resonant ultrasonic sensors frequencyREFERENCES1. Fox, ., Khuri-Yakub, . and Kino, ., "High Frequency Acoustic WaveMeasurement in Air", in Proceedings of IEEE 1983 Ultrasonic Symposium, October 31-2 November, 1983, Atlanta, GA, pp. 581-4.2.Martin Abreu, ., Ceres, R. and Freire, T., "Ultrasonic Ranging: EnvelopeAnalysis Gives Improved Accuracy", Sensor Review, Vol. 12 No. 1, 1992, pp.17-21.3. Parrilla,M., Anaya, . and Fritsch, C., "Digital Signal Processing Techniques for High Accuracy Ultrasonic Range Measurements", IEEE Transactions: Instrumentation and Measurement, Vol. 40 No. 4, August 1991, pp. 759-63.4.Canali, C., Cicco, ., Mortem, B., Prudenziati, M., and Taron, A., "ATemperature Compensated Ultrasonic Sensor Operating in Air for Distanceand Proximity Measurement", IEEE Transaction on Industry Electronics, Vol.IE-29 No. 4, 1982, pp. 336-41.5.Martin, ., Ceres, R., Calderon, L and Freire, T., "Ultrasonic Ranging GetsThermal Correction", Sensor Review, Vol. 9 No. 3, 1989, pp. 153-5.外文译文超声波测距仪系统设计纲要:超声测距技术在工业现场、车辆导航、水声工程等领域都拥有宽泛的应用价值,当前已应用于物位丈量、机器人自动导航以及空气中与水下的目标探测、辨别、定位等场合。
基于单片机的超声波测距仪的设计与实现毕业论文
基于单片机的超声波测距仪的设计与实现中文摘要本设计基于单片机AT89C52,利用超声波传感器HC-SR04、LCD显示屏及蜂鸣器等元件共同实现了带温度补偿功能可报警的超声波测距仪。
我们以AT89C52作为主控芯片,通过计算超声波往返时间从而测量与前方障碍物的距离,并在LCD显示。
单片机控制超声波的发射。
然后单片机进行处理运算,把测量距离与设定的报警距离值进行比较判断,当测量距离小于设定值时,AT89C52发出指令控制蜂鸣器报警,并且AT89C52控制各部件刷新各测量值。
在不同温度下,超声波的传播速度是有差别的,所以我们通过DS18B20测温单元进行温度补偿,减小因温度变化引起的测量误差,提高测量精度。
超声波测距仪可以实现4m以内的精确测距,经验证误差小于3mm。
关键词:超声波;测距仪;AT89C52;DS18B20;报警Design and Realization of ultrasonic range finder basedABSTRACTThe design objective is to design and implement microcontroller based ultrasonic range finder. The main use of AT89C52, HC-SR04 ultrasonic sensor alarm system complete ranging production. We AT89C52 as the main chip, by calculating the round-trip time ultrasound to measure the distance to obstacles in front of, and displayed in the LCD. SCM ultrasonic transmitter. Then the microcontroller for processing operation to measure the distance and set alarm values are compared to judge distance, when measured distance is less than the set value, AT89C52 issue commands to control the buzzer alarm, and control each member refreshAT89C52 measured values. Because at different temperatures, ultrasonic wave propagation velocity is a difference, so we DS18B20 temperature measurement by the temperature compensation unit, reducing errors due to temperature changes, and improve measurement accuracy. Good design can achieve precise range ultrasonic distance within 4m, proven error is less than 3mm.Keywords:Ultrasonic;Location;AT89C52;DS18B20;Alarm目录第一章前言 (1)1.1 课题背景及意义 (1)1.1.1超声波特性 (1)1.1.2超声波测距 (2)1.2 超声波模块基本介绍 (3)1.2.1 超声波的电器特性 (3)1.2.2 超声波的工作原理 (5)1.3主要研究内容和关键问题 (6)第二章方案总体设计 (7)2.1 超声波测距仪功能 (7)2.2设计要求 (8)2.3系统基本方案 (9)2.3.1方案比较 (9)2.3.2方案汇总 (11)第三章系统硬件设计 (13)3.1 单片机最小系统 (13)3.2 超声波测距模块 (13)3.3 显示模块 (15)3.4温度补偿电路 (15)3.5 蜂鸣报警电路 (16)第四章系统软件设计 (17)4.1 A T89C52程序流程图 (17)4.2 计算距离程序流程图 (19)4.3 报警电路程序流程图 (19)4.4 超声波回波接收程序流程图 (20)第五章系统的调试与测试 (21)5.1 安装 (21)5.2 系统的调试 (21)第六章总结 (23)参考文献 (24)致谢.............................................................................................................................. 错误!未定义书签。
基于单片机的超声波测距仪设计毕业设计(论文)
本科毕业设计(论文) 题目基于单片机的超声波测距仪设计毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。
对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。
作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。
作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。
本人完全意识到本声明的法律后果由本人承担。
作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
涉密论文按学校规定处理。
作者签名:日期:年月日导师签名:日期:年月日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。
(完整word版)超声波测距外文翻译文献(word文档良心出品)
超声波测距毕业论文中英文对照资料外文翻译文献超声测距技术在工业现场、车辆导航、水声工程等领域都具有广泛的应用价值,目前已应用于物位测量、机器人自动导航以及空气中与水下的目标探测、识别、定位等场合。
因此,深入研究超声的测距理论和方法具有重要的实践意义。
为了进一步提高测距的精确度,满足工程人员对测量精度、测距量程和测距仪使用的要求,本文研制了一套基于单片机的便携式超声测距系统。
1随着技术的发展,人们生活水平的提高,城市发展建设加快,城市给排水系统也有较大展,其状况不断改善。
但是,由于历史原因合成时间住的许多不可预见因素,城市给排水系统,特别是排水系统往往落后于城市建设。
因此,经常出现开挖已经建设好的建筑设施来改造排水系统的现象。
城市污水给人们带来了困扰,因此箱涵的排污疏通对大城市给排水系统污水处理,人们生活舒适显得非常重要。
而设计研制箱涵排水疏通移动机器人的自动控制系统,保证机器人在箱涵中自由排污疏通,是箱涵排污疏通机器人的设计研制的核心部分。
控制系统核心部分就是超声波测距仪的研制。
因此,设计好的超声波测距仪就显得非常重要了。
2 波测距原理2.1压电式超声波发生器原理压电式超声波发生器实际上是利用压电晶体的谐振来工作的。
超声波发生器内部结构,它有两个压电晶片和一个共振板。
当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。
反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。
测量脉冲到达时间的传统方法是以拥有固定参数的接收信号开端为基础的。
这个界限恰恰选于噪音水平之上,然而脉冲到达时间被定义为脉冲信号刚好超过界限的第一时刻。
一个物体的脉冲强度很大程度上取决于这个物体的自然属性尺寸还有它与传感器的距离。
进一步说,从脉冲起始点到刚好超过界限之间的时间段随着脉冲的强度而改变。
基于单片机的超声波测距系统设计毕业论文
目录
第一章 绪论
超声波是指频率在 20kHz 以上的声波,它属于机械波的范畴。超声波也遵循一般机械 波在弹性介质中的传播规律,如在介质的分界面处发生反射和折射现象,在进入介质后被介 质吸收而发生衰减。它也有自已的特性,如它的频率可以非常高,达到兆赫级,因此,它在 介质中传播时能量可以集中在很小的范围内,具有良好的成束性,也就是方向性好。
器人的研究上得到了广泛的应用。同时由于超声波测距系统具有以上的这些优 点,因此在汽车倒车雷达的研制方面也得到了广泛的应用。
1.3 国内外相关研究情况 国内的超声波测[3]量主要集中在对 0~10 m 固体和液体的测量,一般测量精度 高,回波稳定[4]。近年来随着超声波技术研究的不断深入已广泛应用于各种工业 领域,如工业自动控制,建筑工程测量和机器人视觉识别等方面。此外在材料科 学、医学、生物科学等领域中也占据重要地位。 国外在提高超声波测距方面做了大量的研究,国内的一些学者也作了大量相 关的研究。 南昌航空工业学院的江泽涛[5]在《温度对液体中超声波速度的影响》一文中, 洋细地分析了温度对超声波在液体中传播速度的影响,导出了超声波速度同液体 压缩系数及密度的关系,研究了压缩系数及密度同温度的关系,进而研究了温度 对声速及声时的影响, 用实验测量了不同的液体成分下的声时同温度的关系。 Figneroa J.F.,Lamancusa J.S.[6]在《A method for accurate detection of time of arrival:AnalysiS and design of ultrasonic ranging system} 一文中,提出一种新的计时方法,该方法的原理是回波时延由峰值时延和相位时 延相加而得,分别用不同的检测方法得到峰值时延和相位时延,相加后即得回波 的传播时间。
基于单片机的超声测距仪毕业设计
毕业设计说明书基于单片机的超声测距仪设计学 院:专指导教师:2012年 6月信息与通信工程学院 通信工程基于单片机的超声测距仪设计摘要随着科学技术的快速发展,超声波将在测距仪中的应用越来越广。
超声测距仪作为一种新型的非常重要有用的工具在各方面都将有很大的发展空间,它将朝着更加高定位高精度的方向发展,以满足日益发展的社会需求。
查阅大量资料了解了超声测距仪研究的目的和意义及国内外的发展状况,通过对超声传感器的工作原理及特性的研究,以空气中超声波的传播速度为确定条件,利用发射超声波与反射回波时间差来测量待测距离,完成了超声测距仪的硬件和软件的设计,硬件电路主要包括发射电路、接收电路、前置放大电路、比较检测电路,实现了短距离的超声波测距。
关键词:超声波,单片机,超声传感器Microcontroller-based design of the ultrasonic range finderAbstractWith the rapid development of science and technology, ultrasound will be more widely applied in the range finder. Ultrasonic range finder as a new, very important and useful tool in every respect, there will be much room for development, it will be the direction of more high positioning precision to meet the growing needs of the community.Lot of information to understand the purpose and significance of the ultrasonic range finder research and development at home and abroad, the working principle and characteristics of the ultrasonic sensor, ultrasonic propagation velocity of the air to determine the conditions for use of transmission ultrasound and is reflected backwave time to measure the test distance to complete the ultrasonic range finder hardware and software design, hardware circuit includes a transmitter circuit and receiver circuit, the preamplifier circuit, comparison detection circuit, a short distance of the ultrasonic ranging.Keywords:Ultrasound,MCU,Ultrasonic sensors目录1 绪论 (1)1.1 课题研究目的意义 (1)1.2 国内外发展现状 (1)1.3 课题内容及预期目标 (5)1.4 论文结构安排 (5)2 超声波测距简介 (6)2.1 超声波和超声波传感器 (6)2.1.1 超声波 (6)2.1.2 超声波传感器结构 (8)2.1.3 超声波传感器的主要参数介绍及选择 (10)2.2 超声测距仪原理及测量方法 (11)2.3 超声波测距系统主要参数论述 (12)2.3.1 工作频率 (12)2.3.2 指向角介绍 (13)2.3.3 温度介绍 (13)2.3.4 发射脉冲宽度介绍 (13)3 超声测距仪硬件设计 (14)3.1 总体设计 (14)3.2 发射电路设计 (14)3.2.1 发射电路的方案论述 (14)3.2.2 发射电路 (15)3.2.3 分析计算 (16)3.3 接收电路设计 (17)3.3.1 前置放大电路 (17)3.3.3 比较检测电路 (21)3.4 显示电路 (21)3.5 超声波距离探测器总体电路 (21)3.5.1 超声测距仪设计具体细节 (22)3.5.2 总体电路设计 (23)4 超声测距仪软件设计 (24)4.1 软件设计原理及总体设计 (24)4.1.1 软件设计原理 (24)4.1.2 软件总体设计 (25)4.2 测距仪单片机主程序 (25)4.3 测距仪子程序 (27)4.3.1 超声波发射子程序 (27)4.3.2 距离计算 (28)4.3.3 比较程序 (30)4.3.4 乘法计算程序 (30)4.3.5 外部中断子程序 (31)4.3.6 定时器中断子程序 (32)附录超声测距仪设计电路图 (33)总结 (34)参考文献 (35)致谢 (37)1 绪论1.1 课题研究目的意义随着科学技术的快速发展,超声波将在传感器中的应用越来越广。
基于单片机的超声波测距仪设计
0 引言超声波的传播介质非常广泛,在气体、液体和固体中都可以传播,并且传播距离较远,传播速度恒定,能量消耗缓慢,不受电磁、光线、烟雾等的影响,有一定的环境适应能力,所以超声波常用来定位以及距离测量[1]。
像物位测量仪和测距仪等仪器一样,通过利用超声波来实现距离测算的机器还有很多。
超声波检测快速、方便、操作简单是超声波检测的一般优点,并且易于实时控制,在测量精度方面能达到工业实用的要求,性价比较高[2]。
超声波具有很好的指向性,同时可以在一定程度上避免对人体的危害,因此超声测距广泛应用于避障,倒车雷达,移动机器人定位,建筑施工工地等工业领域。
本文设计的超声波测距仪使用的核心微处理器是STC89C52,超声波在超声波trig端生成,为记录超声波发送到返回的时间,启动单片机的定时器。
遇到障碍物后,在介质中传输的超声波立刻折回,并经过回波超声波echo端接收,并立即停止计时。
经过计算芯片计算出障碍物与发射器之间的间隔,并通过液晶屏显示,在小于或超出设定范围时,由蜂鸣器报警。
系统采用单片机控制输入单片机的外部中断源,从超声波器件输出。
在通过发射超声波的触发端定时系统后,定时器在STC89C52里面立刻开启,超声波传输电路开始工作,为了记录超声波发射到返回的时间,利用定时器来计算,得到这个时间差后,通过公式计算出仪器到障碍物的距离,结果输入到液晶屏显示。
1 超声波测距原理1.1 超声波简介当物体振动,它们都会发出声响。
在物理学上,频率的定义为物体每一秒振动的次数,单位为赫兹。
超声波是高于两万赫兹的声波。
它可用于测量、清洁、电焊、砾石[4]。
据长久以来的研讨可看出,超声波在传播的途径中,被介质所包围,它振动的频率很大,超声波每一小部分包含的能量也很大[5,6]。
1.2 超声波测距原理超声波测距仪测量距离依照的是超声阻碍的特点。
超声波从超声发射器的发射端发射后,在空气中传播,而超声波在遇到障碍物后返回输入到接收端,并且定时器停止计时。
单片机 外文翻译 外文文献 英文文献 基于单片机的超声波测距系统的研究与设计
单片机外文翻译外文文献英文文献基于单片机的超声波测距系统的研究与设计附录附录A外文翻译the equivalent dc value. In the analysis of electronic circuits to be considered in a later course, both dc and ac sources of voltage will be applied to the same network. It will then be necessary to know or determine the dc (or average value) and ac components of the voltage or current in various parts of the system.EXAMPLE 13.13 Determine the average value of the waveforms of Fig. 13.37.FIG. 13.37Example 13.13.Solutions:a. By inspection, the area above the axis equals the area below over one cycle, resulting in an average value of zero volts.b. Using Eq.(13.26):as shown in Fig. 13.38.26In reality, the waveform of Fig. 13.37(b) is simply the square wave of Fig. 13.37(a) with a dc shift of 4 V; that is v2 =v1 + 4 VEXAMPLE 13.14 Find the average values of the following waveforms over one full cycle:a. Fig. 13.39.b. Fig. 13.40.27Solutions:We found the areas under the curves in the preceding example by using a simple geometric formula. If we should encounter a sine wave or any other unusual shape, however, we must find the area by some other means. We can obtain a good approximation of the area by attempting to reproduce the original wave shape using a number of small rectangles or other familiar shapes, the area of which we already know through simple geometric formulas. For example,the area of the positive (or negative) pulse of a sine wave is 2Am. Approximating this waveform by two triangles (Fig. 13.43), weobtain(using area1/2 base height for the area of a triangle) a rough idea of the actual area:A closer approximation might be a rectangle with two similar triangles(Fig. 13.44):28which is certainly close to the actual area. If an infinite number of forms were used, an exact answer of 2Am could be obtained. For irregular waveforms, this method can be especially useful if data such as the average value are desired. The procedure of calculus that gives the exact solution 2Am is known as integration. Integration is presented here only to make the method recognizable to the reader; it is not necessary to be proficient in its use to continue with this text. It is a useful mathematical tool, however,and should be learned. Finding the area under the positive pulse of a sine wave using integration, we havewhere ? is the sign of integration, 0 and p are the limits of integration, Am sin a is thefunction to be integrated, and da indicates that we are integrating with respect to a.Integrating, we obtainSince we know the area under the positive (or negative) pulse, we can easily determine the average value of the positive (or negative) region of a sine wave pulse by applying Eq. (13.26):For the waveform of Fig. 13.45,29EXAMPLE 13.15 Determine the average value of the sinusoidal waveform of Fig. 13.46.Solution: By inspection it is fairly obvious thatthe average value of a pure sinusoidal waveform over one full cycle is zero.EXAMPLE 13.16 Determine the average value of the waveform of Fig. 13.47.Solution: The peak-to-peak value of the sinusoidal function is16 mV +2 mV =18 mV. The peak amplitude of the sinusoidal waveform is, therefore, 18 mV/2 =9 mV. Counting down 9 mV from 2 mV(or 9 mV up from -16 mV) results in an average or dc level of -7 mV,as noted by the dashed line of Fig. 13.47.EXAMPLE 13.17 Determine the average value of the waveform of Fig. 13.48.Solution:30EXAMPLE 13.18 For the waveform of Fig. 13.49, determine whether the averagevalue is positive or negative, and determine its approximate value.Solution: From the appearance of the waveform, the average value is positive and in the vicinity of 2 mV. Occasionally, judgments of this type will have to be made. InstrumentationThe dc level or average value of any waveform can be found using a digital multimeter (DMM) or an oscilloscope. For purely dccircuits,simply set the DMM on dc, and readthe voltage or current levels.Oscilloscopes are limited to voltage levels using the sequence of steps listed below:1. First choose GND from the DC-GND-AC option list associated with each vertical channel. The GND option blocks any signal to which the oscilloscope probe may be connected from entering the oscilloscope and responds with just a horizontal line. Set the resulting line in the middle of the vertical axis on the horizontal axis, as shown in Fig. 13.50(a).2. Apply the oscilloscope probe to the voltage to be measured (ifnot already connected), and switch to the DC option. If a dc voltage is present, the horizontal line will shift up or down, as demonstrated in Fig. 13.50(b). Multiplying the shift by the vertical sensitivity will result in the dc voltage. An upward shift is a positive voltage (higher31potential at the red or positive lead of the oscilloscope), while a downward shift is a negative voltage (lower potential at the red or positive lead of the oscilloscope). In general,1. Using the GND option, reset the horizontal line to the middle of the screen.2. Switch to AC (all dc components of the signal to whichthe probe is connected will be blocked from entering the oscilloscope—only the alternating, or changing,components will be displayed).Note the location of some definitive point on the waveform, such as the bottom of the half-wave rectified waveform of Fig. 13.51(a); that is, note its position on the vertical scale. For the future, whenever youuse the AC option, keep in mind that the computer will distribute the waveform above and below the horizontal axis such that the average value is zero; that is, the area above the axis will equal the area below. 3. Then switch to DC (to permit both the dc and the ac components of the waveform to enter the oscilloscope), and note the shift in the chosen level of part 2, as shown in Fig. 13.51(b). Equation(13.29) can then be used to determine the dc or average value of the waveform. For the waveform of Fig. 13.51(b), the average value is aboutThe procedure outlined above can be applied to any alternating waveform such as the one in Fig. 13.49. In some cases the average valuemay require moving the starting position of the waveform under the AC option to a different region of the screen or choosing a higher voltage scale. DMMs can read the average or dc level of any waveform by simply choosing the appropriate scale.3213.7 EFFECTIVE (rms) VALUESThis section will begin to relate dc and ac quantities with respect to the power delivered to a load. It will help us determine the amplitude of a sinusoidal ac current required to deliver the same power as a particular dc current. The question frequently arises, How is it possible for a sinusoidal ac quantity to deliver a net power if, over a full cycle, the net current in any one direction is zero (average value 0)? It would almost appear that the power delivered during the positive portion of the sinusoidal waveform is withdrawn during the negative portion, and since the two are equal in magnitude, the net power delivered is zero. However, understand that irrespective of direction, currentof any magnitude through a resistor will deliver power to that resistor. In other words,during the positive or negative portions of a sinusoidal ac current, power is being delivered at eachinstant of time to the resistor. The power delivered at each instant will, of course, vary with the magnitude of the sinusoidal ac current, but there will be a net flow during either the positive or the negativepulses with a net flow over the full cycle. The net power flow will equal twice that delivered by either the positive or the negative regions of sinusoidal quantity. A fixed relationship between ac and dc voltages and currents can be derived from the experimental setup shown in Fig. 13.52. A resistor in a water bath is connected by switches to a dc and an ac supply. If switch 1 is closed, a dc current I, determined by the resistance R and battery voltage E, will be established through theresistor R. The temperature reached by the water is determined by the dc power dissipated in the form of heat by the resistor.If switch 2 is closed and switch 1 left open, the ac current through the resistor will have a peak value of Im. The temperature reached by the water is now determined by the ac power dissipated in the form of heat by the resistor. The ac input is varied until the temperature is the same as that reached with the dc input. When this is accomplished, the average electrical power delivered to the resistor R by the ac source is the same asthat delivered by the dc source. The power delivered by the ac supply at any instant of time is33The average power delivered by the ac source is just the first term, since the average value of a cosine wave is zero even though the wave may have twice the frequency of the original input current waveform. Equating the average power delivered by the ac generator to that delivered by the dc source,which, in words, states thatthe equivalent dc value of a sinusoidal current or voltage is 1/2 or 0.707 of itsmaximum value.The equivalent dc value is called the effective value of the sinusoidal quantity.In summary,As a simple numerical example, it would require an ac current with a peak value of 2 (10) 14.14 A to deliver the same power to the resistorin Fig. 13.52 as a dc current of 10 A. The effective value of any quantity plotted as a function of time can be found by using the following equation derived from the experiment just described:34which, in words, states that to find the effective value, the function i(t) must first besquared. After i(t) is squared, the area under the curve isfound by integration. It is then divided by T, the length of the cycle or the period of the waveform, to obtain the average or mean value of thesquared waveform. The final step is to take the square root of the meanvalue. This procedure gives us another designation forthe effectivevalue, the root-mean-square (rms) value. In fact, since therms term isthe most commonly used in the educational and industrial communities,it will used throughout this text. EXAMPLE 13.19 Find therms values of the sinusoidal waveform in each part of Fig. 13.53.Solution: For part (a), Irms 0.707(12 10 3 A) 8.484 mA.For part (b), againIrms 8.484 mA. Note that frequency did notchange the effective valuein (b) above compared to (a). For part (c),Vrms 0.707(169.73 V) 120 V, the same as available from a home outlet.EXAMPLE 13.20 The 120-V dc source of Fig. 13.54(a) delivers 3.6 W to the load. Determine the peak value of the applied voltage (Em) and the current (Im) if the acsource [Fig. 13.54(b)] is to deliver the same power to the load.35Solution:EXAMPLE 13.21 Find the effective or rms value of the waveform of Fig.13.55.Solution:36EXAMPLE 13.22 Calculate the rms value of the voltage of Fig. 13.57.Solution:EXAMPLE 13.23 Determine the average and rms values of the square wave of Fig. 13.59.37Solution: By inspection, the average value is zero.The waveforms appearing in these examples are the same as thoseused in the examples on the average value. It might prove interesting tocompare the rms and average values of these waveforms.The rms values of sinusoidal quantities such as voltage or currentwill be represented by E and I. These symbols are the same as thoseused for dc voltages and currents. To avoid confusion, the peak valueof a waveform will always have a subscript m associated with it: Imsin qt. Caution: When finding the rms value ofthe positive pulse of asine wave, note that the squared area is not simply (2Am)24A2m; itmust be found by a completely new integration. This will always bethe case for any waveform that is not rectangular.A uniquesituation arises if a waveform has both a dc and an ac componentthat may be due to a source such as the one in Fig. 13.61. Thecombination appears frequently in the analysis of electronic networkswhere both dc and ac levels are present in the same system.38The question arises, What is the rms value of the voltage vT? Onemight be tempted tosimply assume that it is the sum of the rms valuesof each component of the waveform; that is, VT rms 0.7071(1.5 V) 6 V 1.06 V 6 V 7.06 V. However, the rms value is actuallydetermined bywhich for the above example is39直流值相等。
52单片机超声波测距系统-30-外文献翻译
本科毕业设计(论文)外文翻译(附外文原文)学院:课题名称:超声波测距系统专业(方向):自动化(控制)班级:学生:指导教师:日期:2013年4月26日研究文章:超声波测距仪文件类型和数目:美国专利5442592摘要:提出了一种超声波测距仪来抵消的温度和湿度引起的变化,包括测量单元和参考标准。
每一个单元产生重复的一系列脉冲,每一次重复直接关系到发射机和接收机之间的距离。
脉冲串提供给各自的计数器,然后利用计数器所测得的数据进行距离的测量。
出版日期: 1995年8月15日主审查员:罗保.伊恩j.一、背景发明本发明涉及到仪器的测量距离,更特别是,这种仪器传送超声波于两点之间。
精密机器设备必须校准。
在过去,这已经可以利用卡钳,微米等工具来校准机械设备。
不过,使用这些工具都不能实现自动化。
据了解,该两点之间距离可以通过测量波在两点之间的传播时间来确定。
这样一个类型的波可以是是一种超声波,或声,或波。
当超声波传播于两点之间的时候,两个点之间的距离可以通过由超声波波速乘以超声波传播的时间,在合适的分离的两点。
因此,这是一个发明提供仪器利用超声波准确测量两点之间距离的方法。
当距离适当的两个点之间的介质是空气的时候,声速只取决于温度和空气相对湿度。
因此,这个发明的进一步目标是,目前的发明提供仪器的方法如所描述的一样是独立于温度和湿度的变化的。
二、综述发明前述的和额外的目标已经实现了根据这些原则的这项发明提供距离测量仪器,其中包括一个参考的单元和测量单元。
参考和测量单元是相同的,每个单元都包括了一个电声波的发射机和接收机。
参考单元的发射器和接收器之间的间隔是一个固定的参考距离,然而测量单元的发射机和接收机的间距才是我们所要测量的部分。
在每一个单元中,发射机和接收机都连接了一个反馈环路,以使发射机产生能由接收器接收的声波生脉冲,然后由接收机转换成一个电脉冲反馈到发射机,使产生一系列重复脉冲的结果。
脉冲重复率是成反比关系发射器和接收器之间的距离。
毕业设计论文 外文文献翻译 超声波测距 中英文对照
毕业设计论文外文文献翻译超声波测距中英文对照The Circuit Design of UltrasonicRanging System超声波测距系统的电路设计Ultrasonic Distance Meter超声波测距仪姓名:专业: 测控技术与仪器学号: 2007071071指导教师姓名,职称,:The Circuit Design of Ultrasonic Ranging SystemThis article described the three directions (before, left, right) ultrasonic ranging system is to understand the front of the robot, left and right environment to provide a movement away from the information. (Similar to GPS Positioning System)A principle of ultrasonic distance measurement1, the principle of piezoelectric ultrasonic generatorPiezoelectric ultrasonic generator is the use of piezoelectriccrystal resonators to work. Ultrasonic generator, the internal structure as shown in Figure 1, it has two piezoelectric chip and a resonance plate. When it's two plus pulse signal, the frequency equal to the intrinsic piezoelectric oscillation frequency chip, the chip will happen piezoelectric resonance, and promote the development of plate vibrationresonance, ultrasound is generated. Conversely, if the two are notinter-electrode voltage, when the board received ultrasonic resonance,it will be for vibration suppression of piezoelectric chip, the mechanical energy is converted to electrical signals, then it becomes the ultrasonic receiver.2, the principle of ultrasonic distance measurementUltrasonic transmitter in a direction to launch ultrasound, in the moment to launch the beginning of time at the same time, the spread of ultrasound in the air, obstacles on his way to return immediately, the ultrasonic reflected wave received by the receiver immediately stop the clock. Ultrasound in the air as the propagation velocity of 340m / s, according to the timer records the time t, we can calculate the distance between the launch distance barrier (s), that is: s = 340t / 2 Ultrasonic Ranging System for the Second Circuit DesignSystem is characterized by single-chip microcomputer to control the use of ultrasonic transmitter and ultrasonic receiver since the launch from time to time, single-chip selection of 8751, economic-to-use, and the chip has 4K of ROM, to facilitate programming. Circuit schematic diagram shown in Figure 2. Draw only the front range of the circuit wiring diagram, left and right in front of Ranging circuits and the same circuit, it is omitted.1,40 kHz ultrasonic pulse generated with the launchRanging system using the ultrasonic sensor of piezoelectric ceramic sensors UCM40, its operating voltage of the pulse signal is 40kHz, whichby the single-chip implementation of the following procedures to generate.puzel: mov 14h, # 12h; ultrasonic firing continued 200mshere: cpl p1.0; output 40kHz square wavenop;nop;nop;djnz 14h, here;retRanging in front of single-chip termination circuit P1.0 input port, single chip implementation of the above procedure, the P1.0 port in a40kHz pulse output signal, after amplification transistor T, the drive to launch the first ultrasonic UCM40T, issued 40kHz ultrasonic pulse, and the continued launch of 200ms. Ranging the right and the left side of the circuit, respectively, then input port P1.1 and P1.2, the working principle and circuit in front of the same location.2, reception and processing of ultrasonicUsed to receive the first launch of the first pair UCM40R, the ultrasonic pulse modulation signal into an alternating voltage, the op-amp amplification IC1A and after polarization IC1B to IC2. IC2 is locked loop with audio decoder chip LM567, internal voltage-controlledoscillator center frequency of f0 = 1/1.1R8C3, capacitor C4 determine their target bandwidth. R8-conditioning in the launch of the carrier frequency on the LM567 input signal is greater than 25mV, the outputfrom the high jump 8 feet into a low-level, as interrupt request signals to the single-chip processing.Ranging in front of single-chip termination circuit output port INT0 interrupt the highest priority, right or left location of the output circuit with output gate IC3A access INT1 port single-chip, whilesingle-chip P1.3 and P1. 4 received input IC3A, interrupted by the process to identify the source of inquiry to deal with, interruptpriority level for the first left right after. Part of the source codeis as follows:receive1: push pswpush accclr ex1; related external interrupt 1jnb p1.1, right; P1.1 pin to 0, ranging from right to interrupt service routine circuitjnb p1.2, left; P1.2 pin to 0, to the left ranging circuit interrupt service routinereturn: SETB EX1; open external interrupt 1pop accpop pswretiright: ...; right location entrance circuit interrupt serviceroutineAjmp Returnleft: ...; left Ranging entrance circuit interrupt service routineAjmp Return4, the calculation of ultrasonic propagation timeWhen you start firing at the same time start the single-chipcircuitry within the timer T0, the use of timer counting function records the time and the launch of ultrasonic reflected wave received time. When you receive the ultrasonic reflected wave, the receivercircuit outputs a negative jump in the end of INT0 or INT1 interrupt request generates a signal, single-chip microcomputer in response to external interrupt request, the implementation of the external interrupt service subroutine, read the time difference, calculating the distance . Some of its source code is as follows:RECEIVE0: PUSH PSWPUSH ACCCLR EX0; related external interrupt 0MOV R7, TH0; read the time valueMOV R6, TL0?CLR CMOV A, R6SUBB A, # 0BBH; calculate the time differenceMOV 31H, A; storage resultsMOV A, R7SUBB A, # 3CHMOV 30H, ASETB EX0; open external interrupt 0POP ACCPOP PSWRETIFourth, the ultrasonic ranging system software designSoftware is divided into two parts, the main program and interrupt service routine, shown in Figure 3 (a) (b) (c) below. Completion of the work of the main program is initialized, each sequence of ultrasonic transmitting and receiving control.Interrupt service routines from time to time to complete three ofthe rotation direction of ultrasonic launch, the main external interrupt service subroutine to read the value of completion time, distance calculation, the results of the output and so on.V. CONCLUSIONSRequired measuring range of 30cm ~ 200cm objects inside the plane to do a number of measurements found that the maximum error is 0.5cm, and good reproducibility. Single-chip design can be seen on the ultrasonic ranging system has a hardware structure is simple, reliable, small features such as measurement error. Therefore, it can be used not only for mobile robot can be used in other detection systems.Thoughts: As for why the receiver do not have the transistoramplifier circuit, because the magnification well, CX20106 integrated amplifier, but also with automatic gain control level, magnification to 76dB, the center frequency is 38k to 40k, is exactly resonant ultrasonic sensors frequency.超声波测距系统的电路设计本文所介绍的三方向(前、左、右)超声波测距系统,就是为机器人了解其前方、左侧和右侧的环境而提供一个运动距离信息。
基于单片机超声波测距系统的设计
基于单片机超声波测距系统的设计
摘要
本设计采用以AT89C51单片机为核心的低成本、高精度、微型化数字显示超声波测距仪的硬件电路和软件设计,由AT89C51控制定时器产生超声波脉冲并计时,计算超声波自发射至接收的往返时间,从而得到实测距离。
论文概述了超声波检测的发展及基本原理,介绍超声传感器的工作机理及特性,对影响测距系统的一些主要参数进行了讨论
At the core of the design using AT89C51 low-cost, high accuracy, Micro figures show that the ultrasonic range finder hardware and software design ,AT89C51 controls timers to produce the ultrasonic wave pulse and time,count the time of ultrasonic wave spontaneous emission to receive round-trip,thus obtains the measured distance.this paper summarizes the development and basic principle of the ultraonic testing,the working mechanism and characteristics of the ultrasonic sensors。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中英文翻译课题:基于单片机的超声波测距系统的设计专业电气工程及其自动化学生姓名孙旺班级M电气112学号**********指导教师吴冬春专业系主任顾春雷撰写日期2015年3月13日电气工程学院外文原文Ultrasonic ranging system designPublication title: Sensor Review. Bradford: 1993. Vol. 13 ABSTRACT:Ultrasonic ranging technology has wide using worth in many fields,such as the industrial locale,vehicle navigation and sonar engineering.Now it has been used in level measurement,self-guided autonomous vehicles, fieldwork robots automotive navigation,air and underwater target detection,identification,location and so on.So there is an important practicing meaning to learn the ranging theory and ways deeply. To improve the precision of the ultrasonic ranging system in hand,satisfy the request of the engineering personnel for the ranging precision,the bound and the usage,a portable ultrasonic ranging system based on the single chip processor was developed.Keywords:Ultrasound r,Ranging System,Single Chip Processor1.IntroductiveWith the development of science and technology, the improvement of people's standard of living, speeding up the development and construction of the city. urban drainage system have greatly developed their situation is constantly improving. However, due to historical reasons many unpredictable factors in the synthesis of her time, the city drainage system. In particular drainage system often lags behind urban construction. Therefore, there are often good building excavation has been building facilities to upgrade the drainage system phenomenon. It brought to the city sewage, and it is clear to the city sewage and drainage culvert in the sewage treatment system. comfort is very important to people's lives. Mobile robots designed to clear the drainage culvert and the automatic control system Free sewage culvert clear guarantee robot, the robot is designed to clear the culvert sewage to the core. Control System is the core component of the development of ultrasonic range finder. Therefore, it is very important to design a good ultrasonic range finder.2. A principle of ultrasonic distance measurement2.1 The principle of piezoelectric ultrasonic generatorPiezoelectric ultrasonic generator is the use of piezoelectric crystal resonators to work. Ultrasonic generator, the internal structure as shown, it has two piezoelectric chip and aresonance plate. When it's two plus pulse signal, the frequency equal to the intrinsic piezoelectric oscillation frequency chip, the chip will happen piezoelectric resonance, and promote the development of plate vibration resonance, ultrasound is generated. Conversely, if the two are not inter-electrode voltage, when the board received ultrasonic resonance, it will be for vibration suppression of piezoelectric chip, the mechanical energy is converted to electrical signals, then it becomes the ultrasonic receiver.The traditional way to determine the moment of the echo's arrival is based on thresholding the received signal with a fixed reference. The threshold is chosen well above the noise level, whereas the moment of arrival of an echo is defined as the first moment the echo signal surpasses that threshold. The intensity of an echo reflecting from an object strongly depends on the object's nature, size and distance from the sensor. Further, the time interval from the echo's starting point to the moment when it surpasses the threshold changes with the intensity of the echo. As a consequence, a considerable error may occur Even two echoes with different intensities arriving exactly at the same time will surpass the threshold at different moments. The stronger one will surpass the threshold earlier than the weaker, so it will be considered as belonging to a nearer object.2.2The principle of ultrasonic distance measurementUltrasonic transmitter in a direction to launch ultrasound, in the moment to launch the beginning of time at the same time, the spread of ultrasound in the air, obstacles on his way to return immediately, the ultrasonic reflected wave received by the receiver immediately stop the clock. Ultrasound in the air as the propagation velocity of 340m / s, according to the timer records the time t, we can calculate the distance between the launch distance barrier (s), that is: s = 340t / 23.Ultrasonic Ranging System for the Second Circuit DesignSystem is characterized by single-chip microcomputer to control the use of ultrasonic transmitter and ultrasonic receiver since the launch from time to time, single-chip selection of 8751, economic-to-use, and the chip has 4K of ROM, to facilitate programming. Circuit schematic diagram shown in Figure 2.Figure 1 circuit principle diagram3.1 40 kHz ultrasonic pulse generated with the launchRanging system using the ultrasonic sensor of piezoelectric ceramic sensors UCM40, its operating voltage of the pulse signal is 40kHz, which by the single-chip implementation of the following procedures to generate.puzel: mov 14h, # 12h; ultrasonic firing continued 200mshere: cpl p1.0; output 40kHz square wavenop;nop;nop;djnz 14h, here;retRanging in front of single-chip termination circuit P1.0 input port, single chip implementation of the above procedure, the P1.0 port in a 40kHz pulse output signal, after amplification transistor T, the drive to launch the first ultrasonic UCM40T, issued 40kHz ultrasonic pulse, and the continued launch of 200ms. Ranging the right and the left side of the circuit, respectively, then input port P1.1 and P1.2, the working principle and circuit in front of the same location.3.2 Reception and processing of ultrasonicUsed to receive the first launch of the first pair UCM40R, the ultrasonic pulse modulation signal into an alternating voltage, the op-amp amplification IC1A and after polarization IC1B to IC2. IC2 is locked loop with audio decoder chip LM567, internal voltage-controlled oscillator center frequency of f0 = 1/1.1R8C3, capacitor C4 determine their target bandwidth. R8-conditioning in the launch of the carrier frequency on the LM567 input signal is greater than 25mV, the output from the high jump 8 feet into a low-level, as interrupt request signals to the single-chip processing.Ranging in front of single-chip termination circuit output port INT0 interrupt the highest priority, right or left location of the output circuit with output gate IC3A access INT1 port single-chip, while single-chip P1.3 and P1. 4 received input IC3A, interrupted by the process to identify the source of inquiry to deal with, interrupt priority level for the first left right after. Part of the source code is as follows:receive1: push pswpush accclr ex1; related external interrupt 1jnb p1.1, right; P1.1 pin to 0, ranging from right to interrupt service routine circuitjnb p1.2, left; P1.2 pin to 0, to the left ranging circuit interrupt service routinereturn: SETB EX1; open external interrupt 1pop accpop pswretiright: ...; right location entrance circuit interrupt service routineAjmp Returnleft: ...; left Ranging entrance circuit interrupt service routineAjmp Return3.3 The calculation of ultrasonic propagation timeWhen you start firing at the same time start the single-chip circuitry within the timer T0, the use of timer counting function records the time and the launch of ultrasonic reflected wave received time. When you receive the ultrasonic reflected wave, the receiver circuit outputs a negative jump in the end of INT0 or INT1 interrupt request generates a signal, single-chip microcomputer in response to external interrupt request, the implementation of the external interrupt service subroutine, read the time difference, calculating the distance . Some of its source code is as follows:RECEIVE0: PUSH PSWPUSH ACCCLR EX0; related external interrupt 0MOV R7, TH0; read the time valueMOV R6, TL0CLR CMOV A, R6SUBB A, # 0BBH; calculate the time differenceMOV 31H, A; storage resultsMOV A, R7SUBB A, # 3CHMOV 30H, ASETB EX0; open external interrupt 0POP ACCPOP PSWRETIFor a flat target, a distance measurement consists of two phases: a coarse measurement and. a fine measurement:Step 1: Transmission of one pulse train to produce a simple ultrasonic wave.Step 2: Changing the gain of both echo amplifiers according to equation , until the echo is detected.Step 3: Detection of the amplitudes and zero-crossing times of both echoes.Step 4: Setting the gains of both echo amplifiers to normalize the output at, say 3 volts.Setting the period of the next pulses according to the : period of echoes. Setting the time window according to the data of step 2.Step 5: Sending two pulse trains to produce an interfered wave. Testing the zero-crossing times and amplitudes of the echoes. If phase inversion occurs in the echo, determine to otherwise calculate to by interpolation using the amplitudes near the trough.Derive t sub m1 and t sub m2 .Step 6: Calculation of the distance y using equation .4. The ultrasonic ranging system software designSoftware is divided into two parts, the main program and interrupt service routine. Completion of the work of the main program is initialized, each sequence of ultrasonic transmitting and receiving control.Interrupt service routines from time to time to complete three of the rotation direction of ultrasonic launch, the main external interrupt service subroutine to read the value of completion time, distance calculation, the results of the output and so on.5. ConclusionsRequired measuring range of 30cm ~ 200cm objects inside the plane to do a number of measurements found that the maximum error is 0.5cm, and good reproducibility. Single-chip design can be seen on the ultrasonic ranging system has a hardware structure is simple, reliable, small features such as measurement error. Therefore, it can be used not only for mobile robot can be used in other detection systems.Thoughts: As for why the receiver do not have the transistor amplifier circuit, because the magnification well, integrated amplifier, but also with automatic gain control level, magnification to 76dB, the center frequency is 38k to 40k, is exactly resonant ultrasonic sensors frequencyREFERENCES1. Fox, J.D., Khuri-Yakub, B.T. and Kino, G.S., "High Frequency Acoustic Wave Measurement in Air", in Proceedings of IEEE 1983 Ultrasonic Symposium, October 31-2 November, 1983, Atlanta, GA, pp. 581-4.2. Martin Abreu, J.M., Ceres, R. and Freire, T., "Ultrasonic Ranging: Envelope Analysis Gives Improved Accuracy", Sensor Review, Vol. 12 No. 1, 1992, pp. 17-21.3. Parrilla, M., Anaya, J.J. and Fritsch, C., "Digital Signal Processing Techniques for High Accuracy Ultrasonic Range Measurements", IEEE Transactions: Instrumentation and Measurement, Vol. 40 No. 4, August 1991, pp. 759-63.4. Canali, C., Cicco, G.D., Mortem, B., Prudenziati, M., and Taron, A., "A Temperature Compensated Ultrasonic Sensor Operating in Air for Distance and Proximity Measurement", IEEE Transaction on Industry Electronics, Vol. IE-29 No. 4, 1982, pp. 336-41.5. Martin, J.M., Ceres, R., Calderon, L and Freire, T., "Ultrasonic Ranging Gets Thermal Correction", Sensor Review, Vol. 9 No. 3, 1989, pp. 153-5.外文译文超声波测距仪系统设计摘要:超声测距技术在工业现场、车辆导航、水声工程等领域都具有广泛的应用价值,目前已应用于物位测量、机器人自动导航以及空气中与水下的目标探测、识别、定位等场合。