二项分布均值的方差的证明

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

X~b(n,p),其中n≥1,0

P{X=k}=C(n,k)*p^k*(1-p)^(n-k),k=0,1,...,n.

EX=np,DX=np(1-p).

最简单的证明方法是:X可以分解成n个相互独立的,都服从以p为参数的(0-1)分布的随机变量之和:

X=X1+X2+...+Xn,Xi~b(1,p),i=1,2,...,n.

P{Xi=0}=1-p,P(Xi=1)=p.

EXi=0*(1-p)+1*p=p,

E(Xi^2)=0^2*(1-p)+1^2*p=p,

DXi=E(Xi^2)-(EXi)^2=p-p^2=p(1-p).

EX=EX1+EX2+...+EXn=np,

DX=DX1+DX2+...+DXn=np(1-p).

相关文档
最新文档