(结构分析的有限元法课件)第四章平面问题
合集下载
有限元分析及应用课件

参数设置
设置材料属性、单元类型等参数。
求解过程
刚度矩阵组装
根据每个小单元的刚度,组装成全局的刚度矩阵。
载荷向量构建
根据每个节点的外载荷,构建全局的载荷向量。
求解线性方程组
使用求解器(如雅可比法、高斯消元法等)求解线性方程组,得到节点的位移。
后处理
01
结果输出
将计算结果以图形、表格等形式输 出,便于观察和分析。
有限元分析广泛应用于工程领域,如结构力学、流体动力学、电磁场等领域,用于预测和优化结构的 性能。
有限元分析的基本原理
离散化
将连续的求解域离散化为有限 个小的单元,每个单元具有特
定的形状和属性。
数学建模
根据物理问题的性质,建立每 个单元的数学模型,包括节点 力和位移的关系、能量平衡等。
求解方程
通过建立和求解线性或非线性 方程组,得到每个节点的位移 和应力分布。
PART 05
有限元分析的工程应用实 例
桥梁结构分析
总结词
桥梁结构分析是有限元分析的重要应用之一,通过模拟桥梁在不同载荷下的响应,评估 其安全性和稳定性。
详细描述
桥梁结构分析主要关注桥梁在不同载荷(如车辆、风、地震等)下的应力、应变和位移 分布。通过有限元模型,工程师可以预测桥梁在不同工况下的行为,从而优化设计或进
刚性问题
刚性问题是有限元分析中的一种 特殊问题,主要表现在模型中某 些部分刚度过大,导致分析结果 失真
刚性问题通常出现在大变形或冲 击等动态分析中,由于模型中某 些部分刚度过高,导致变形量被 忽略或被放大。这可能导致分析 结果与实际情况严重不符。
解决方案:为避免刚性问题,可 以采用多种方法进行优化,如采 用更合适的材料模型、调整模型 中的参数设置、采用更精细的网 格等。同时,可以采用多种方法 对分析结果进行验证和校核,以 确保其准确性。
设置材料属性、单元类型等参数。
求解过程
刚度矩阵组装
根据每个小单元的刚度,组装成全局的刚度矩阵。
载荷向量构建
根据每个节点的外载荷,构建全局的载荷向量。
求解线性方程组
使用求解器(如雅可比法、高斯消元法等)求解线性方程组,得到节点的位移。
后处理
01
结果输出
将计算结果以图形、表格等形式输 出,便于观察和分析。
有限元分析广泛应用于工程领域,如结构力学、流体动力学、电磁场等领域,用于预测和优化结构的 性能。
有限元分析的基本原理
离散化
将连续的求解域离散化为有限 个小的单元,每个单元具有特
定的形状和属性。
数学建模
根据物理问题的性质,建立每 个单元的数学模型,包括节点 力和位移的关系、能量平衡等。
求解方程
通过建立和求解线性或非线性 方程组,得到每个节点的位移 和应力分布。
PART 05
有限元分析的工程应用实 例
桥梁结构分析
总结词
桥梁结构分析是有限元分析的重要应用之一,通过模拟桥梁在不同载荷下的响应,评估 其安全性和稳定性。
详细描述
桥梁结构分析主要关注桥梁在不同载荷(如车辆、风、地震等)下的应力、应变和位移 分布。通过有限元模型,工程师可以预测桥梁在不同工况下的行为,从而优化设计或进
刚性问题
刚性问题是有限元分析中的一种 特殊问题,主要表现在模型中某 些部分刚度过大,导致分析结果 失真
刚性问题通常出现在大变形或冲 击等动态分析中,由于模型中某 些部分刚度过高,导致变形量被 忽略或被放大。这可能导致分析 结果与实际情况严重不符。
解决方案:为避免刚性问题,可 以采用多种方法进行优化,如采 用更合适的材料模型、调整模型 中的参数设置、采用更精细的网 格等。同时,可以采用多种方法 对分析结果进行验证和校核,以 确保其准确性。
有限元经典PPT第4章

Pii Kiiui
Ki1u1 Ki2u2 Kiiui K u i,i1 i1
ui
n
Kiiui Kiiui
Kiju j
4.1.2 平面应力问题有限元的基本思想和瑞雷-里兹法
v3 f3y
3
u3
f3x
f1y v1 u1
1 f1x
v2 f2y u2
2 f2x
给定一个三角形单元和作用在角点上 的六个力,要求得六个角点的位移。 或者是要求三角形角点发生指定的位 移,在三角形三个角点如何加力?
很显然,问题的精确解很困难。采用 瑞雷-里兹法求近似式解
e号单元的三个节点I,j,k的力对应的 力的平衡方程是第2i-1,2i;2j-1,2j;2k1,2k个平衡方程
e号单元的三个节点I,j,k的位移是第 2i-1,2i;2j-1,2j;2k-1,2k个未知数
弹性模量:E 横截面积:A
1
1 L
2
2L
3
局部系单元刚度阵:
k
1
EA L
1 -1
-1
1
2 集成总刚:
0 1
解得:
ux uy
L EA
3.8284L
EA
i
j
第一类位移条件:
Ki1u1 Ki2u2 Kiiui Ki1ui1
ui 0
令: Kij 0 i j
m
vi 0
Kii 1
um 0
Pi 0
ui 0
第二类位移条件:um um
大数
充大数法: Kii Kii
第一步:求转换矩阵
k2
EA 1 2L -1
-1
1
P
cos 0
T sin
有限元分析——平面问题

Re=
NT
s
Pstds
江西五十铃发动机有限公司
技术中心 12 /33
4、整体分析 整体刚度矩阵 整体刚度矩阵组装的基本步骤:
先求出各个单元的单元刚度矩阵; 将单元刚度矩阵中的每个子块放在整体刚度矩阵中的对应位置上,得到单 元的扩大刚度矩阵; 将全部单元的扩大矩阵相加得到整体刚度矩阵。
不失一般性,仅考虑模型中有四个单元,如图所示,四个单元的整体节点位 移列阵为
τZX z= + t/2 =0
因板很薄,载荷又不沿厚度变化,应力沿板 的厚度方向是连续分布的,可以认为,在整
Z
个板内各点都有
σZ=0 τYZ=0 τZX=0
O
tX
图1 平面应力问题
根据剪应力的互等性、物理方程,可得描述平面应力问题的八个独立的基本变量 为
江西五十铃发动机有限公司
技术中心 4 /33
σ=[σX σY τXY]T ε=[εX εY γXY]T
x2 y2 ɑ1= x 3 y 3
1 y2 b1=- 1 y 3
1 c1= 1
x2 x3
(1,2,3)
上式表示下标轮换,即1 2,2 3,3 1同时更换。
江西五十铃发动机有限公司
技术中心 9 /33
重写位移函数,并以节点位移的形式进行表达,有
uv((xx,,yy))N(x,y)qe
其中形函数矩阵为
Y
江西五十铃发动机有限公司
图2 平面应变问题
技术中心 5 /33
根据几何方程、物理方程可得,描述平面应变问题的独立变量也是八个,且与 平面应力问题的一样。只是弹性矩阵变为
1
D=
E1
1 1 2 1
1
弹性力学与有限元分析-第四章 平面问题有限元分析及程序设计

有限单元法及程序设计
第四章 平面问题有限元分析及程序设计
§4.1 平面问题单元离散 §4.2 平面问题单元位移模式 §4.3 平面问题单元分析 §4.4 平面问题整体分析 §4.5 平面问题有限元程序设计
有限元网格划分的基本原则
• 网格数目 • 网格疏密 • 单元阶次 • 网格质量 • 网格分界面和分界点 • 位移协调性 • 网格布局 • 结点和单元编号 • 网格自动剖分
f
y
面力
f
f y
xy
xy
基本量和方程的矩阵表示
位移
d
u
v
物理方程 简写为
x y
xy
E
1 2
1
0
1
0
0 0
x y
1
xy
2
D
§4.2 单元位移模式
几何方程:
ux
v y
xvuyT
只要知道了单元的位移函数,就可由几何方程求出应变,再由物理 方程就可求出应力。
(1)位移模式必须能够反映单元的刚体位移; (2)位移模式必须能够反映单元的常应变;
必要条件
(3)位移模式尽可能反映位移的连续性;
u12x3y12x5 23y5 23y v4 5x6y46y5 23x5 23x
u0 1
v0 4
5 3
2
刚体平动
刚体转动
充分条件
u
v
u0 v0
y x
作业: P141 6-1
u12x3y N iuiNjujN m um
其中, N i 、N j 、N m 是系数,是 x、 y 的线性函数;
可以求得:
N i a i b ix ciy2A (i, j, m )
第四章 平面问题有限元分析及程序设计
§4.1 平面问题单元离散 §4.2 平面问题单元位移模式 §4.3 平面问题单元分析 §4.4 平面问题整体分析 §4.5 平面问题有限元程序设计
有限元网格划分的基本原则
• 网格数目 • 网格疏密 • 单元阶次 • 网格质量 • 网格分界面和分界点 • 位移协调性 • 网格布局 • 结点和单元编号 • 网格自动剖分
f
y
面力
f
f y
xy
xy
基本量和方程的矩阵表示
位移
d
u
v
物理方程 简写为
x y
xy
E
1 2
1
0
1
0
0 0
x y
1
xy
2
D
§4.2 单元位移模式
几何方程:
ux
v y
xvuyT
只要知道了单元的位移函数,就可由几何方程求出应变,再由物理 方程就可求出应力。
(1)位移模式必须能够反映单元的刚体位移; (2)位移模式必须能够反映单元的常应变;
必要条件
(3)位移模式尽可能反映位移的连续性;
u12x3y12x5 23y5 23y v4 5x6y46y5 23x5 23x
u0 1
v0 4
5 3
2
刚体平动
刚体转动
充分条件
u
v
u0 v0
y x
作业: P141 6-1
u12x3y N iuiNjujN m um
其中, N i 、N j 、N m 是系数,是 x、 y 的线性函数;
可以求得:
N i a i b ix ciy2A (i, j, m )
平面单元的有限元法

u
1
5
3
2
y
2x
3
5
2
y
则单元刚体位移为
v
4
5
2
3
x
6
y
3
2
5
u
1
5
3
2
y
v
4
5
2
3
x
记为
u v
1 4
0 y 0x
显然,位移函数包含 了单元的刚体位移 (平动和转动)
u v
j j
um
vm
[I]是单位矩阵,
[N]称为形函数矩阵,
Ni只与单元节点坐标有关,称为 单元的形状函数
4-2 平面问题的常应变(三角形)单元
据弹性力学几何方程得单元的应变分量
u
x y
xy
x
4-1 有限单元法的计算步骤
弹性力学平面问题的有限单元法包括五个主要步骤: 1、所分析问题的数学建模 2、离散化 3、单元分
析 4、整体分析与求解 5、结果分析
图 3-1
4-2 平面问题的常应变(三角形)单元
有限单元法的基础是用所谓有限个单元的集合 体来代替原来的连续体,因而必须将连续体简化为 由有限个单元组成的离散体。对于平面问题,最简 单,因而最常用的单元是三角形单元。因平面问题 的变形主要为平面变形,故平面上所有的节点都可 视为平面铰,即每个节点有两个自由度。单元与单 元在节点处用铰相连,作用在连续体荷载也移置到 节点上,成为节点荷载。如节点位移或其某一分量 可以不计之处,就在该节点上安置一个铰支座或相 应的连杆支座。如图3-1
有限元分析及应用第四章

则称ϕ1、ϕ2Lϕ n 线性相关;
(ii) 若 c1ϕ1 + c2ϕ 2 + L + cnϕ n ≡ 0
仅当
c1
才成立,则称
ϕ=1c、2
=L= ϕ2Lϕ
cn
n
≡0
线性无关。
(2) 线性空间的维数
若线性空间E满足
(i)任意 n+1 个元素一定线性相关。
(ii)存在着 n 个线性无关的元素。
则称线性空间E的维数为 n。
a ⋅ b = a ⋅ b ⋅ cosα ≤ a ⋅ b
上式为 Euclid 空间的三角不等式,此式仅是 Schwarz 不等式的一个特例。 5、收敛性与完备性 (1)收敛性
∀ 点列{xn } ∈E(赋范线性空间),若存在
lim xn − x0 = 0
n →∞
则,x0 称为点列{xn }的强极限,读作:{xn }强收敛于 x0 ,注意模的定义不同收敛的涵
c1ϕ1 + c2ϕ 2
c1ϕ1′ + c2ϕ 2′
第 1 页 共 17 页
有限元分析与应用
霍战鹏
也在(a, b)上连续。所有函数本身及一阶导数都在(a, b)上连续的函数组成一种线性空
间,记作 C1[a, b]。 例4 Rn n 维欧氏空间是线性空间,R2(二维平面), R3(三维空间)是 n 维欧氏空
形的项点为结点,以结点处的函数值对单元内的位移场进行分片线性插值。根据第 3-4 节的
分析可知,对于这样定义的函数 u(x,y)在Ω上连续,且积分
y
∫∫ ∫∫ ∫∫ Ω
u 2dxdy
、
Ω
∂u ∂x
2 dxdy
、
Ω
有限元法基础ppt课件

有限单元法
一、数值模拟方法概述 二、有限单元法简介 三、有限单元法分析步骤 四、利用有限元软件进行工程分析
一、数值模拟方法概述
工程技术领域中的许多力学问题和场问题,如固 体力学中的位移场、应力场分析、电磁学中的电磁 分析、振动特性分析、热力学中的温度场分析,流 体力学中的流场分析等,都可以归结为在给定边界 条件下求解其控制方程的问题。
结构矩阵分析方法认为:整体结构可以看作是由有限 个力学小单元相互连接而组成的集合体,每个单元的 力学特征可以看作建筑物的砖瓦,装配在一起就能提 供整体结构的力学特性。
结构矩阵分析方法分析的结构本身都明显地由杆件组 成,杆件的特征可通过经典的位移法分析建立。
虽然矩阵位移法整个分析方法和步骤都与有限单元法 相似,也是用矩阵来表达、用计算机来求解,但是它 与目前广泛应用的有限单元法是有本质区别的。
❖ 国际上早在20世纪50年代末、60年代初就投入大量的人力和 物力开发具有强大功能的有限元分析程序。其中最为著名的是 由美国国家宇航局(NASA)在1965年委托美国计算科学公司 和贝尔航空系统公司开发的NASTRAN有限元分析系统。该系 统发展至今已有几十个版本,是目前世界上规模最大、功能最 强的有限元分析系统。
有限元法
既可以分析杆系结构,又分析非杆系的连续 体结构。
三、有限单元法简介
有限单元法的常用术语:
有限元模型 是真实系统理想化的数学抽象。
定义
真实系统
有限元模型
自由度(DOFs- degree of freedoms)
自由度(DOFs) 用于描述一个物理场的响应特性。
UY ROTY
ROTZ UZ
UX ROTX
目前在工程技术领域内常用的数值模拟方法有: 1、有限单元法FEM( Finite Element Method) 2、边界元法BEM(Boundary Element Method ) 3、有限差分法FDM( Finite Difference Method 4、离散单元法DEM(Discrete Element Method) 其中有限单元法是最具实用性和应用最广泛的。
有限元分析第四章

19
4)形函数的性质
形函数是有限单元法中的一个重要函数,它具 有以下性质: 性质1 形函数Ni在节点i上的值等于1,在其它节点 上的值等于0。对于本单元,有
20
Ni ( xi , yi ) 1 Ni ( x j , y j ) 0 Ni ( xm , ym ) 0
(i、j、m)
利用 N i 1 (ai bi x ci y )和ai、bi、ci公式证明 2A
对于一个具体问题进行分析,不管采用什么样的单元, 分析过程与思路是一样的,所不同的只是各种单元的位移模 式和单元刚度矩阵不一样,其他的包括整体刚度矩阵的组装 过程都完全一样,所以我们仅仅对矩形单元位移模式的求取 和单元刚度矩阵的求解加以介绍。
4.7 收敛准则
可以证明,对于一个给定的位移模式,其刚度系统的数 值要比精确值大。所以,在给定载荷的作用下,有限元计算 模型的变形要比实际结构的变形小。因而,当单元网格分得 越来越细时,位移的近似解将由下方收敛于精确解,即得到 真实解的下界。 为了保证解答的收敛性,要求选取的位移模式必须满足 以下三个条件: 1)位移模式必须包含单元的刚体位移 也就是说,当节点位移是某个刚体位移所引起时,弹 性体内将不会产生应变。所以位移模式不但要具有描述单元 本身形变的能力,而且还要具有描述由其他变形而通过节点 位移引起单元刚体位移的能力。例如,三角形三节点位移模 式中,常数项就是用于提供刚体位移的。
Ni(x、y)
1 i(xi,yi) x xi
x xi N i ( x, y ) 1 x j xi
N m ( x, y ) 0
证
N
y j (xj,yj)
m (xm,ym)
xj
x
N i ( x, y )
4.5.14.5平面问题有限元分析步骤及计算实例

K
88
K 12 11 K21 1
K 12 31
K41 2
K22 1 K32 1
K 12 33
K43 2
K
44
2
由于[Krs]=[Ksr]T,又单元1和单元2的节点号按1、2、
3对应3、4、1,则可得:
K11 1
K33 2
3E 16
3 0
0 1
K21 1 K43 2
K12 1
3E 8
3 1 0
0 0 1
3 1 1
1 3 1
0 0 1
013
q/E 0
q/E 0
3E 8
8q
0 /(3E) 0
0 q1
0
0
单元应力可看作是单元形心处的应力值。
7)引入约束条件,修改刚度方程并求解
根据约束条件:u1 =v1=0;v2=0;u4=0和等效节点力列
阵:F 0 0 0 0 0 q / 2 0 q / 2T
五. 边界条件的处理及整体刚度矩阵的修正 整体刚度矩阵的奇异性可以通过引入边界约束条件来排除弹性体的
刚体位移,以达到求解的目的。
(两种)方法 “化1置0法”
“乘大数法”
⑴修改后的总刚为非奇异,对应的总体平衡方程可求解; ⑵如果已知位移不等于0,采用第二种方法,固定约束用 第一种方法。 ※求解可以采用解方程组的任何一种方法。(高斯消去法 常用),可借用一些计算机软件:如Matlab,Excel等。
所以 q / E0 0 1/ 3 0 1/ 3 1 0 1T
习题和思考题
• 4.1三角形常应变单元的特点? • 4.2平面问题有限元法的基本思想和解题步骤。 • 4.3简述形函数的概念和性质。 • 4.4平面问题整体刚度矩阵的推导过程。 • 4.5矩形单元的特点? • 4.6有限元方法解的收敛准则。
有限元方法课件 第四章 平面三角形单元

第四章 平面三角形单元
第四章 平面三角形单元
§4–1 有限元法的基本思想 §4–2 三角形常应变单元 §4–3 形函数的性质 §4–4 刚度矩阵 §4–5 等效节点力载荷列阵 §4–6 有限元分析的实施步骤 §4–7 计算实例
§4-1 有限元法的基本思想
一、有限元法的基本思想 假想的把一连续体分割成数目有限的小体(单元),
vi (Vi )
i ui (Ui )
m
um (Um )
o
x
图4-2 平面三角形单元
将 (d) 式代入 (b) 式的第一式,经整理后得到
u 1 2ai源自bi x ci yuiaj
bjx cj y
uj
am bm x cm yum
(e)
其中 同理可得
ai
xj xm
yj ym
x j ym xm y j
这样,位移模式 (e) 和 (f) 就可以写为
u Ni ui N j u j N mum v Nivi N jv j Nmvm
(4-11)
也可写成矩阵形式
f
u v
Ni I
NjI
NmI e N e
(4-12)
式中 I是二阶单位矩阵;Ni 、Nj 、Nm 是坐标的函数, 它们反映了单元的位移状态,所以一般称之为形状函数,简 称形函数。矩阵 [N] 叫做形函数矩阵。三节点三角形单元的 形函数是坐标的线性函数。单元中任一条直线发生位移后仍 为一条直线,即只要两单元在公共节点处保持位移相等。则 公共边线变形后仍为密合。
f N e
(4-1)
f ——单元内任一点的位移列阵; e——单元的结点位移列阵;
N ——单元的形函数矩阵;(它的元素是任一点位置坐
第四章 平面三角形单元
§4–1 有限元法的基本思想 §4–2 三角形常应变单元 §4–3 形函数的性质 §4–4 刚度矩阵 §4–5 等效节点力载荷列阵 §4–6 有限元分析的实施步骤 §4–7 计算实例
§4-1 有限元法的基本思想
一、有限元法的基本思想 假想的把一连续体分割成数目有限的小体(单元),
vi (Vi )
i ui (Ui )
m
um (Um )
o
x
图4-2 平面三角形单元
将 (d) 式代入 (b) 式的第一式,经整理后得到
u 1 2ai源自bi x ci yuiaj
bjx cj y
uj
am bm x cm yum
(e)
其中 同理可得
ai
xj xm
yj ym
x j ym xm y j
这样,位移模式 (e) 和 (f) 就可以写为
u Ni ui N j u j N mum v Nivi N jv j Nmvm
(4-11)
也可写成矩阵形式
f
u v
Ni I
NjI
NmI e N e
(4-12)
式中 I是二阶单位矩阵;Ni 、Nj 、Nm 是坐标的函数, 它们反映了单元的位移状态,所以一般称之为形状函数,简 称形函数。矩阵 [N] 叫做形函数矩阵。三节点三角形单元的 形函数是坐标的线性函数。单元中任一条直线发生位移后仍 为一条直线,即只要两单元在公共节点处保持位移相等。则 公共边线变形后仍为密合。
f N e
(4-1)
f ——单元内任一点的位移列阵; e——单元的结点位移列阵;
N ——单元的形函数矩阵;(它的元素是任一点位置坐
平面问题的有限元分析

4.1 三角形常应变单元
(1)单元特性分析 1)用面积坐标建立单元位移场——面积坐标的定义
Ai Apjm Aj Apmi Ak Apij
恒等关系:
A Ai Aj Am Aijm
P点位置可由3个比值来确定:
p(Li , Lj , Lm )
其中面积坐标:
Li Ai / A Lj Aj / A Lm Am / A
4):单元推导。 对单元构造一个适合的近似解,即推导有限单元的列式,其中
包括选择合理的单元坐标系,建立单元试函数,以某种方法给出单元 各状态变量的离散关系,从而形成单元矩阵(结构力学中称刚度阵或 柔度阵)。
对工程应用而言,重要的是应注意每一种单元的解题性能与约
束。 5)总装集成。 将单元总装形成离散域的总矩阵方程(联合方程组),反映对近似
0
Nm
Ni
I22
单元内任意一点的位移可由节点位移表示为:
N j I22
d
u
v
Nδe
e ui vi u j v j um
Nm I22
T
vm
4.1 三角形常应变单元
(1)单元特性分析
2)单元应变和单元应力
d
u
v
Nδe
代入
ε
x y
u / x v / y
xy
u / y v / x
其中
K rs
BrT DBshA
Eh
4(1 2 ) A
brbs
1
2
crcs
crbs
1
2
brcs
brcs
1
2
crbs
crcs
1
2
brbs
4.1 三角形常应变单元
有限元分析课件

02
1960年, R.W. Clough在他的名为“The finite element in plane stress analysis”的论文中首次提出了有限元(Finite Element)这一术语
03
从固体力学的角度来看,桁架结构与分割成有限个分区后的连续体在结构上存在相似性。
数学家们则发展了微分方程的近似解法,包括有限差分方法,变分原理和加权余量法。 在1963年前后,经过J. F. Besseling, R.J. Melosh, R.E. Jones, R.H. Gallaher, T.H.H. Pian(卞学磺)等许多人的工作,认识到有限单元法就是变分原理中Ritz近似法的一种变形,发展了用各种不同变分原理导出的有限元计算公式。
有限单元法的数学基础(2)
1965年和(张佑启)发现只要能写成变分形式的所有场问题,都可以用与固体力学有限单元法的相同步骤求解。
1969年和指出可以用加权余量法特别是Galerkin法,导出标准的有限元过程来求解非结构问题。
02
01
陈伯屏(结构矩阵方法) 钱令希(余能原理) 钱伟长(广义变分原理) 胡海昌(广义变分原理) 冯康(有限单元法理论) 20世纪60年代初期,冯康等人在大型水坝应力计算的基础上,独立于西方创造了有限元方法并最早奠定其理论基础。--《数学辞海》第四卷
应力
内力
把外载荷集中到节点上 把第i单元和第i+1单元重量的一半,集中到第i+1结点上
01
对于第i+1结点,由力的平衡方程可得:
02
令
建立结点的力平衡方程
根据约束条件,
01
对于第n+1个结点,第n个单元的内力与 第n+1个结点上的外载荷平衡,
有限元分析第4章 平面问题有限单元法1

1
6
P
3
4 5
4
2
位移协调条件:各单元共享节点的位移相等 节点平衡条件:各节点单元内力与节点外力构成平衡力系
最终数学模型: K Q
基本概念
单元(element) 节点 (node)
回顾
单元节点位移 (node displacement)
单元节点内力 (node force)
单元刚度矩阵 (element stiffness matrix)
e
bx u by v
d
S
e p
px u py v dS
代入
u v
N
e
{} [B]{ }e
{ } [S]{ }e
得
内力虚功=
e x x y y xy xy d
T d
cj
y)v j
(am
bmx
cm y)vm ]
二、平面问题三角形单元分析
三角形单元形函数
形函数
u x,
y
1 2A
[(ai
bi x
ci
y)ui
(a j
bj x
cj
y)u j
(am
bm x
cm
y)um ]
v x,
y
1 2A
[(ai
bi x
ci
y)vi
(a j
插值系数的确定:待定系数法
ui a1 a2 xi a3 yi u j a1 a2 x j a3 y j um a1 a2 xm a3 ym
6
P
3
4 5
4
2
位移协调条件:各单元共享节点的位移相等 节点平衡条件:各节点单元内力与节点外力构成平衡力系
最终数学模型: K Q
基本概念
单元(element) 节点 (node)
回顾
单元节点位移 (node displacement)
单元节点内力 (node force)
单元刚度矩阵 (element stiffness matrix)
e
bx u by v
d
S
e p
px u py v dS
代入
u v
N
e
{} [B]{ }e
{ } [S]{ }e
得
内力虚功=
e x x y y xy xy d
T d
cj
y)v j
(am
bmx
cm y)vm ]
二、平面问题三角形单元分析
三角形单元形函数
形函数
u x,
y
1 2A
[(ai
bi x
ci
y)ui
(a j
bj x
cj
y)u j
(am
bm x
cm
y)um ]
v x,
y
1 2A
[(ai
bi x
ci
y)vi
(a j
插值系数的确定:待定系数法
ui a1 a2 xi a3 yi u j a1 a2 x j a3 y j um a1 a2 xm a3 ym
有限元法PPT课件

重工业
Motorola– Drop Test Fujitsu-Computers Intel –Chip Integrity
电子
Baxter - Equipment J&J – Stents Medtronic - Pacemakers
医疗
Principia-spain Arup-U.K. T.Y. Lin - Bridge
有限元法
左图所示,为分析齿轮上一个齿内的应力分布,可分析图中所示的一个平面截面内位移分布.作为近似解,可以先求出图中各三角形顶点的位移.这里的 三角形就是单元,其顶点就是节点。
从物理角度理解, 可把一个连续的齿形截面单元之间在节点处以铰链相链接,由单元组合而成的结构近似代替原连续结构,在一定的约束条件下,在给定的载荷作用下,就可以求出各节点的位移,进而求出应力.
一.Abaqus公司简介
公司
’00 ’01 ’02 ’03 ’04 ‘05 ’06 ‘07
18%
18%
20%
SIMULIA公司(原ABAQUS公司)成立于1978年,全球超过600名员工,100% 专注于有限元分析领域。 全球28个办事处和9个代表处 业务迅速稳定增长,是当前有限元软件行业中唯一保持两位数增长率的公司。 2005年5月ABAQUS加入DS集团,将共同成为全球PLM的领导者
Where :
Displacement interpolation functions (位移插值函数)
13.3 Approximating Functions for Two-Dimensional Linear Triangular Elements (二维线性三角形单元的近似函数)
node (节点)
element(单元)
Motorola– Drop Test Fujitsu-Computers Intel –Chip Integrity
电子
Baxter - Equipment J&J – Stents Medtronic - Pacemakers
医疗
Principia-spain Arup-U.K. T.Y. Lin - Bridge
有限元法
左图所示,为分析齿轮上一个齿内的应力分布,可分析图中所示的一个平面截面内位移分布.作为近似解,可以先求出图中各三角形顶点的位移.这里的 三角形就是单元,其顶点就是节点。
从物理角度理解, 可把一个连续的齿形截面单元之间在节点处以铰链相链接,由单元组合而成的结构近似代替原连续结构,在一定的约束条件下,在给定的载荷作用下,就可以求出各节点的位移,进而求出应力.
一.Abaqus公司简介
公司
’00 ’01 ’02 ’03 ’04 ‘05 ’06 ‘07
18%
18%
20%
SIMULIA公司(原ABAQUS公司)成立于1978年,全球超过600名员工,100% 专注于有限元分析领域。 全球28个办事处和9个代表处 业务迅速稳定增长,是当前有限元软件行业中唯一保持两位数增长率的公司。 2005年5月ABAQUS加入DS集团,将共同成为全球PLM的领导者
Where :
Displacement interpolation functions (位移插值函数)
13.3 Approximating Functions for Two-Dimensional Linear Triangular Elements (二维线性三角形单元的近似函数)
node (节点)
element(单元)
有限单元法原理及应用简明教程ppt课件

(a) 瞬变结构
(b) 分离体分析
(c) 平衡状态分析
图2-32 瞬变结构
24
第二章 结构几何构造分析
(2) 两刚片规则 两刚片用三根既不完全平行也不交于同一点的链杆 相联,所得结构是几何不变结构。
(a) 铰与链杆连接两刚片 (b) 三链杆连接两刚片 图2-33 两刚片连接规则
25
第二章 结构几何构造分析
章
生刚体位移时,称之为几何不变结构或几何稳定结构,
节
反之则称为几何可变结构或几何不稳定结构。几何可
目 录
变结构不能承受和传递载荷。对结构进行几何构造分
析也是能够对工程结构作有限单元法分析的必要条件。
11
第二章 结构几何构造分析
(a) 结构本身可变 (b) 缺少必要的约束条件 (c) 约束汇交于一点 图2-1 几何可变结构
节
何不变结构上,由增加二元体而发展的结构,是一个
目
几何不变结构。铰接三角形是最简单的几何不变结构。
录
图2-31 铰接三角形
23
第二章 结构几何构造分析
结构的特征是:当它受载荷作用时会产生微小的 位移, 但位移一旦发生后, 即转变成一几何不变结 构,但结构的内力可能为无限大值或不定值,这样的 结构称为瞬变结构。显然,瞬变结构在工程结构设计 中应尽量避免。
(5) 约束处理,求解系统方程
(6) 其它参数计算
4
第一章 概述
图1-2 工程问题有限单元法分析流程
5
第一章 概述
1.3 工程实例
返 回 章 节 目 录
(a) 铲运机举升工况测试
(b) 铲运机工作装置插入工况有限元分析
图1-3 WJD-1.5型电动铲运机
第4章 平面问题的有限元法-3刚度矩阵

二、整体刚度矩阵
讨论了单元的力学特性之后,就可转入结构的整体分析
。假设弹性体被划分为N个单元和n个节点,对每个单元 按前述方法进行分析计算,便可得到N组形如(4-25)
式的方程。将这些方程集合起来,就可得到表征整个弹 性体的平衡关系式。
1
i
j
m
n
1
外力在虚位移上所做的虚功
V
F1
* 1
F2
* 2
F3
* 3
* T
F
单位体积内的虚应变能
x
* x
y
* y
z
* z
xy
* xy
yz
* yz
zx
* zx
*
T
整个物体的的虚应变能
U * T dxdydz
e
ui
vi
u j
v j
um
T
vm
且假设单元内各点的虚位移为{f *},并具有与真实位移
相同的位移模式。
故有
f N e
(c)
参照(4-13)式,单元内的虚应变{ *}为
B e
(d)
于是,作用在单元体上的外力在虚位移上所做的功可写为
br cs
1
2
cr bs
cr cs
1
2
brb s
( r = i、j、m;s = i、j、m ) (4-28)
第4章 平面问题的有限元法-2形函数

(h)
利用形函数的这一性质可以证明,相邻单元的位移分 利用形函数的这一性质可以证明, 别进行线性插值之后,在其公共边上将是连续的。 别进行线性插值之后,在其公共边上将是连续的。
y m
例如,对图4-3所示的单元 ijm 和ijn ,具有公共边ij。 由(4-23)式可知,在ij边上
o
i j n
图4-3
N i ( x , y) + N j ( x , y) + N m ( x , y) 1 ai + bi x + ci y + a j + b j x + c j y + a m + bm x + cm y 2∆ 1 = (ai + a m + am ) + bi + b j + bm x + ci + c j + cm y 2∆ =1 =
(
)
1 b j cm − bm c j = ( x − xi ) 2∆ cm
(h)
故有
从上式计算的过程?
x − xi N j ( x, y) = x j − xi
(g)
另外,由(4-22)可以求得
x − xi N i ( x, y) = 1 − N j − N m = 1 − x j − xi
[
]
{σ } = [D]{ε }
平面应力问题
µ
1− µ
µ
1 0
0 0 1− µ 2
µ
1− µ 1
0 0 1 − 2µ 2(1 − µ ) 0
应变矩阵为常量,单元内应力也是常数,相邻单 元的应变与应力将产生突变,但位移确是连续的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
v2 1 a i b ix c iyv ia j b jx cjyvj a m b m x c m yv m
N iv i N jvj N m v m
矩阵形式表示
ui
vi
u
u v
Ni
0
0 Ni
Nj 0
0 Nj
Nm 0
0 Nm
uvjj
Nδe
Ni NiI2 (i, j, m )
yi yj
12
uuij
ym 3 um
1u i xi yi
12 uj xj yj u m xm ym
11u i yi
22 1uj yj 1u m ym
11xi u i
32 1xj uj 1xm u m
式中
1 xi yi 2 1 x j y j
1 xm ym
121uuij
xi xj
yi yj
21(aiui ajuj amum)
um xm ym
a ix x m j
yj ym
ajx x m i
ym yi
a mx xij
yi yj
a i x j y m x m y j a j x m y i x i y ma m x i y j x j y i a ixjymxm yj (i,j,m )
u x v y
xy
u y v x
u xN xi ui N xj uj N xmum
ui
ε
1 2
b0i ci
0 ci bi
bj 0 cj
0 cj bj
bm 0 cm
0
vi
cm bm
u v
j j
um
Bδe
vm
B
Bi
Bj
Bm
B是常数矩阵
单元应力 σDδB eSδe
N i(xm ,ym )2 1 (a ib ixm ciym )0
p F1 F2 F3
图 4-3 悬臂梁的离散化
单元结点力和结点位移
δ e δ T i δ T j δ T m T u i v i u j v j u m v m T
δi ui vi T (i, j,m) y
vj (Fyi)
j
uj (Fxj)
vm (Fym)
m
um (Fxm)
余子式。根据行列式的性质,行列式的任一行(列)的元素与
其相应的代数余子式的乘积之和等于行列式的值,而任一行
(列)的元素与其它行(列)元素的代数余子式乘积之和等于
零.
形函数的性质1
1 xi yi
2 1 xj yj
N i(xi,yi)2 1 (aibixiciyi)1
1 xm ym
1 N i(xj,yj)2 (a ib ixjciyj)0
1
2 211
ui uj
1 um
yi yj
21(biui bjuj bmum)
ym
b i1 1y ym j bj1 1y y m i b m1 1y yij
b i y j y m b j y m y i b m y i y j
bi yjym (i,j,m)
1
3
11
2
xi xj
ui 1
uj 2(ciui cjuj cmum)
u12x3y
21(aiui ajuj amum)(biui bjuj bmum)x(ciui cjuj cmum)y
21aibixciyuiajbjxcjyujambmxcmyum
用结点位移表示的单元位移
u 2 1 a i b i x c iy u i a j b j x c jy u j a m b m x c m y u m
vi (Fyi)
ui (Fxi) i
x
图 4-4 一个典型的三角形单元
位移模式
u12x3y v45x6y
代入结点坐标和结点位移
ui 12xi 3yi uj 12xj 3yj um12xm3ym
vi 45xi 6yi vj 45xj 6yj vm45xm6ym
确定待定常数
1 xi 1 xj 1 xm
S D [ B i B j B m ] [ S i S j S m ]
形函数的性质和面积坐标
我们在讨论常应变三角形单元时,曾提出形函数
Ni
1 2
ai
bi x ci y
(i, j, m)
(4.26)
由式(4.12)可知,常数 a i 、a j 、am 、bi 、b j 、bm 、ci 、c j 和 cm 依次是行列式 2 的第一列、第二列和第三列各元素的代数
um
vm
NNi Nj Nm
单元间位移的连续
根据式(4.11)和(4.13),在单元的边 界上位移是线性变化的,两个相邻的单 元在其公共结点上具有相同的结点位移, 因而在他们的公共边界上,两个单元将 具有相同的位移,也就是说所选的位移 函数保证了相邻单元之间位移的连续性。
单元的应变与B矩阵
ε
xy
1 xm um
1 ci 1
xj xm
1 cj 1
xm xi
1 cm1
xi xj
c i ( x j x m ) c j ( x m x i ) c m ( x i x j )
ci (xjxm ) (i,j,m )
121(aiui ajuj amum) 221(biui bjuj bmum) 321(ciui cjuj cmum)
第四章 平面问题
有限元早期的研究是从弹性力学的平面问 题开始的,对平面问题的研究使有限元的研究 对象从离散体向连续体迈出了关键性的一步。
两类平面问题
1、平面应力问题
z
z xz yz 0
z 0
x y
弹性矩阵
平面应力:
1 0
D1E2 1
0
0 0 (1) 2
平面应变:
1
0
D(1)E (12)
ai x j ym xm y j bi y j ym ci (x j xm )
(i, j,m)
表示成形函数的形式 uN iuiN jujN m um
形函数的定义 Ni 21ai bixciy (i, j,m)
另外三个系数 4 5 6
421(aivi ajvj amvm) 521(bivi bjvj bmvm) 621(civi cjvj cmvm)
010源自0 (12) 2三角形单元
有限单元法应用于结构分析时,第一步就是把结构离散。对于平面问题,结构离散化不象杆 系结构那样直接。我们可以采用很多种单元形式进行离散,但其中 3 结点的三角形单元是最早提 出的,并且至今仍广泛应用的单元。图 4-3 为一个离散化的例子,一个受载的悬臂梁和用三角形 单元离散化的模型。外载荷通过一定的规则移至结点上。这样就得到了有限元法的计算模型。
N iv i N jvj N m v m
矩阵形式表示
ui
vi
u
u v
Ni
0
0 Ni
Nj 0
0 Nj
Nm 0
0 Nm
uvjj
Nδe
Ni NiI2 (i, j, m )
yi yj
12
uuij
ym 3 um
1u i xi yi
12 uj xj yj u m xm ym
11u i yi
22 1uj yj 1u m ym
11xi u i
32 1xj uj 1xm u m
式中
1 xi yi 2 1 x j y j
1 xm ym
121uuij
xi xj
yi yj
21(aiui ajuj amum)
um xm ym
a ix x m j
yj ym
ajx x m i
ym yi
a mx xij
yi yj
a i x j y m x m y j a j x m y i x i y ma m x i y j x j y i a ixjymxm yj (i,j,m )
u x v y
xy
u y v x
u xN xi ui N xj uj N xmum
ui
ε
1 2
b0i ci
0 ci bi
bj 0 cj
0 cj bj
bm 0 cm
0
vi
cm bm
u v
j j
um
Bδe
vm
B
Bi
Bj
Bm
B是常数矩阵
单元应力 σDδB eSδe
N i(xm ,ym )2 1 (a ib ixm ciym )0
p F1 F2 F3
图 4-3 悬臂梁的离散化
单元结点力和结点位移
δ e δ T i δ T j δ T m T u i v i u j v j u m v m T
δi ui vi T (i, j,m) y
vj (Fyi)
j
uj (Fxj)
vm (Fym)
m
um (Fxm)
余子式。根据行列式的性质,行列式的任一行(列)的元素与
其相应的代数余子式的乘积之和等于行列式的值,而任一行
(列)的元素与其它行(列)元素的代数余子式乘积之和等于
零.
形函数的性质1
1 xi yi
2 1 xj yj
N i(xi,yi)2 1 (aibixiciyi)1
1 xm ym
1 N i(xj,yj)2 (a ib ixjciyj)0
1
2 211
ui uj
1 um
yi yj
21(biui bjuj bmum)
ym
b i1 1y ym j bj1 1y y m i b m1 1y yij
b i y j y m b j y m y i b m y i y j
bi yjym (i,j,m)
1
3
11
2
xi xj
ui 1
uj 2(ciui cjuj cmum)
u12x3y
21(aiui ajuj amum)(biui bjuj bmum)x(ciui cjuj cmum)y
21aibixciyuiajbjxcjyujambmxcmyum
用结点位移表示的单元位移
u 2 1 a i b i x c iy u i a j b j x c jy u j a m b m x c m y u m
vi (Fyi)
ui (Fxi) i
x
图 4-4 一个典型的三角形单元
位移模式
u12x3y v45x6y
代入结点坐标和结点位移
ui 12xi 3yi uj 12xj 3yj um12xm3ym
vi 45xi 6yi vj 45xj 6yj vm45xm6ym
确定待定常数
1 xi 1 xj 1 xm
S D [ B i B j B m ] [ S i S j S m ]
形函数的性质和面积坐标
我们在讨论常应变三角形单元时,曾提出形函数
Ni
1 2
ai
bi x ci y
(i, j, m)
(4.26)
由式(4.12)可知,常数 a i 、a j 、am 、bi 、b j 、bm 、ci 、c j 和 cm 依次是行列式 2 的第一列、第二列和第三列各元素的代数
um
vm
NNi Nj Nm
单元间位移的连续
根据式(4.11)和(4.13),在单元的边 界上位移是线性变化的,两个相邻的单 元在其公共结点上具有相同的结点位移, 因而在他们的公共边界上,两个单元将 具有相同的位移,也就是说所选的位移 函数保证了相邻单元之间位移的连续性。
单元的应变与B矩阵
ε
xy
1 xm um
1 ci 1
xj xm
1 cj 1
xm xi
1 cm1
xi xj
c i ( x j x m ) c j ( x m x i ) c m ( x i x j )
ci (xjxm ) (i,j,m )
121(aiui ajuj amum) 221(biui bjuj bmum) 321(ciui cjuj cmum)
第四章 平面问题
有限元早期的研究是从弹性力学的平面问 题开始的,对平面问题的研究使有限元的研究 对象从离散体向连续体迈出了关键性的一步。
两类平面问题
1、平面应力问题
z
z xz yz 0
z 0
x y
弹性矩阵
平面应力:
1 0
D1E2 1
0
0 0 (1) 2
平面应变:
1
0
D(1)E (12)
ai x j ym xm y j bi y j ym ci (x j xm )
(i, j,m)
表示成形函数的形式 uN iuiN jujN m um
形函数的定义 Ni 21ai bixciy (i, j,m)
另外三个系数 4 5 6
421(aivi ajvj amvm) 521(bivi bjvj bmvm) 621(civi cjvj cmvm)
010源自0 (12) 2三角形单元
有限单元法应用于结构分析时,第一步就是把结构离散。对于平面问题,结构离散化不象杆 系结构那样直接。我们可以采用很多种单元形式进行离散,但其中 3 结点的三角形单元是最早提 出的,并且至今仍广泛应用的单元。图 4-3 为一个离散化的例子,一个受载的悬臂梁和用三角形 单元离散化的模型。外载荷通过一定的规则移至结点上。这样就得到了有限元法的计算模型。