高中数学必修一说课稿

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修一说课稿
篇一:人教版高中数学必修1部分说课稿
目录
集合的含义与表示................................................................................................... (1)
《函数及其表示》说课稿 (3)
函数的单调性................................................................................................... . (5)
函数的奇偶性(说课稿)............................................................................................. . (8)
指数函数................................................................................................... (10)
对数函数说课
稿................................................................................................. (13)
《幂函数》说课稿................................................................................................... . (15)
方程根与函数的零点说课稿 (18)
集合的含义与表示
一.教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,
一方面,许多重要的数学分支,都建立在集合理论的基础上。

另一方面,集合
论及其所反映的数学思想,在越来越广泛的领域种得到应用。

二.目标分析:
教学重点.难点
重点:集合的含义与表示方法.难点:表示法的恰当选择. 教学目标
l.知识与技能
(1)通过实例,了解集合的含义,体会元素与集合的属于关系;
(2)知道常用数集及其专用记号;(3)了解集合中元素的确定
性.互异性.无序性;
(4)会用集合语言表示有关数学对象;
2. 过程与方法
(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.
(2)让学生归纳整理本节所学知识.
3. 情感.态度与价值观
使学生感受到学习集合的必要性,增强学习的积极性.
三. 教法分析
1. 教学方法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.
2. 教学手段:在教学中使用投影仪来辅助教学.
四.过程分析
(一)创设情景,揭示课题
1.教师首先提出问题:(1)介绍自己的家庭、原来就读的学校、现在的班级。

(2)问题:像“家庭”、“学校”、“班级”等,有什么共同特征?引导学生互相交流. 与此同时,教师对学生的活动给予评价.
2.活动:(1)列举生活中的集合的例子;(2)分析、概括各实例的共同特征
由此引出这节要学的内容。

设计意图:既激发了学生浓厚的学习兴趣,又为新知作好铺垫
(二)研探新知,建构概念
1.教师利用多媒体设备向学生投影出下面7个实例:(1)1—20以内的所有质数;(2)我国古代的四大发明;(3)所有的安理会常任理事国;(4)所有的正方形;
(5)海南省在2004年9月之前建成的所有立交桥;
(6)到一个角的两边距离相等的所有的点;
(7)国兴中学2004年9月入学的高一学生的全体.
2.教师组织学生分组讨论:这7个实例的共同特征是什么?
3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出7个实例的特征,并给出集合的含义.一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.
4.教师指出:集合常用大写字母A,B,C,D,?表示,元素常用小写字母a,b,c,d?表示.
设计意图:通过实例让学生感受集合的概念,激发学习的兴趣,培养学生乐于求索的精神
(三)质疑答辩,发展思维
1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成
两个集合的元素是一样的,我们就称这两个集合相等.
2.教师组织引导学生思考以下问题:
判断以下元素的全体是否组成集合,并说明理由:
(1)大于3小于11的偶数;(2)我国的小河流. 让学生充分发表自己的建解.
3. 让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价.
4.教师提出问题,让学生思考
b是(1)如果用A表示高—(3)班全体学生组成的集合,用a 表示高一(3)班的一位同学,
高一(4)班的一位同学,那么a,b与集合A分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于. 如果a是集合A的元素,就说a属于集合A,记作a?A.
如果a不是集合A的元素,就说a不属于集合A,记作a?A.
(2)如果用A表示“所有的安理会常任理事国”组成的集合,则中国.日本与集合A的关系分别是什么?请用数学符号分别表示.
(3)让学生完成教材第6页练习第1题.
5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题1.1A组第1题.
6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题:
(1)要表示一个集合共有几种方式?
(2)试比较自然语言.列举法和描述法在表示集合时,各自的特点?适用的对象是什么?
(3)如何根据问题选择适当的集合表示法?
使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。

设计意图:明确集合元素的三大特性,使学生弄清楚三种表示方式的优缺点,从而突破难点。

(四)巩固深化,反馈矫正
教师投影学习:
(1)用自然语言描述集合{1,3,5,7,9};(2)用例举法表示集合A?{x?N|1?x?8}
(3)试选择适当的方法表示下列集合:教材第6页练习第2题.
设计意图:使学生及时巩固所学新知,体会三种表示方式存在的必要性和适用对象
(五)归纳小结,布置作业
小结:在师生互动中,让学生了解或体会下例问题:1.本节课我们学习了哪些知识内容? 2.你认为学习集合有什么意义?
3.选择集合的表示法时应注意些什么?
设计意图:通过回顾,对概念的发生与发展过程有清晰的认识,回顾集合元素的三大特性及集合的三种表示方式。

作业:1.课后书面作业:第13页习题1.1A组第4题. 2. 元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种
呢?如何表示?请同学们通过预习教材.
五.板书分析
PPT集合的含义与表示定义例 1 集合×××××××××××××× ×××××××元素×××××××
×××××××例2
元素与集合的关系×××××××
××××××× ×××××××
作业××××××××××××××
《函数及其表示》说课稿
尊敬的各位专家、评委:
下午好!
我的抽签序号是____,今天我说课的课题是人教A版必修1第一章第二节《函数及其表示》.
我尝试利用新课标的理念来指导教学,对于本节课,我将以“教什么,怎么教,为什么这样教”为思路,从教材分析、目标分析、教法学法分析、教学过程分析和评价分析五个方
面来谈谈我对教材的理解和教学的设计,敬请各位专家、评委批评指正。

一、教材分析
(一)地位与作用
函数是中学数学中最重要的基本概念之一,函数的学习大致可分为三个阶段:第一阶段在义务教育阶段,学习了函数的描述性概念,接触了正比例函数,凡比例函数,一次函数,二次函数等;本章学习的函数的概念、基本性质与后续将要学习的基本初等函数(i)和(iI)是函数学习的第二阶段,是对函数概念的再认识阶段;第三阶段在选修系列得导数及其应用的学习,使函数学习的进一步深化和提高。

因此函数及其表述这一节在高中数学中,起着承上启下的作用,函数的思想贯穿高中数学的始终,学好这章不仅在知识方面,更重要的是在函数的思想、方法方面,将会让学生在今后的学习、工作和生活中受益无穷。

本小节介绍了函数概念,及表示方法.我将本小节分为两课时,第一课时完成函数概念的教学,第二课时完成函数图象的教学。

这里我主要谈谈函数概念的教学。

函数的概念部分用三个实际例子设计数学情境,让学生探寻变量和变量的对应关系,结合初中学习的函数理论,在集合论的基础上,促使学生建构出函数的概念,体验结合旧知识,探索新知识,研究新问题的快乐。

(二)学情分析
(1)在初中,学生已经学习过函数的概念,并且知道函数是变量之间的相互依赖关系.
(2)学生思维活泼,积极性高,已初步形成对数学问题的合作探究能力。

(3)学生层次参次不齐,个体差异比较明显。

二、目标分析
根据《函数的概念》在教材内容中的地位与作用,结合学情分析,本节课教学应实现如下教学目标:
(一)教学目标
(1)知识与技能
1进一步体会函数是描述变量之间的依赖关系的重要数学模型,○能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用
2了解构成函数的要素,○理解函数定义域和值域的概念,并会求一些简单函数的定义域。

③由实际问题出发,培养学生探索知识和抽象概括知识等方面的能力。

(2)过程与方法
引导学生观察,探寻变量和变量的对应关系,通过归纳、抽象、概括,自主建构函数概念;体验结合旧知识探索新知识,研究新问题的快乐
(3)情感态度与价值观
通过对函数概念形成的探究过程培养学生发现问题,探索问题,不断超越的创新品质
(二)重点难点
重点:体会函数是描述变量之间的依赖关系的重要数学模型,正确理解函数的概念难点:函数概念及符号y=f(x)的理解
三、教法、学法分析
(一)教法
在本课的教学过程中采用设问、引导、启发、发现的方法,并灵活应用多媒体手段,以学生为主体,创设和谐、愉悦互动的环境,组织学生自主、合作的探究活动,引导学生探索新知识。

(二)学法
首先,学生通过研究教师在课堂上提供的实例和提出的问题,展开分析和讨论,发表个人的见解,接下来采用学生评价学生的方法提炼问题的中心思想。

其次,学生通过对新旧两种函数定义的对比,在集合论的观点下初步建构出函数的概念。

最后,学生在理解函数概念的基础上,建构出函数的定义(来自: 博威范文网:高中数学必修一说课稿)域、值域的概念,并初步掌握它们的求法。

四、教学过程分析
(一)教学过程设计
(1)创设情境,提出问题。

引入课本的三个具体实例,引发学生的探索
对于例1:可以分别让学生计算t=1,2,5,10时,炮弹距离地面多高,同时关注t和h的变化范围,引导学生体会有解析式刻画变量之间的对应关系,启发学生用集合与对应的语言描述函数关系:
对于例2:可以让学生观察图像,找出臭氧空洞面积最大的年份或者臭氧空洞面积大约为2000万平方千米所对应的年份,引导学生体会图像对刻画变量之间的对应关系,并关注t和s的范围。

启发学生再次利用集合与对应的语言描述函数关系:
对于例3:恩格尔系数与时间之间的关系是否和前两个例题的两个变量之间的关系相似?如何用集合和对应的语言进行描述
(2)引导探究,建构概念。

(1)进一步提问:“你觉得这三个问题有没有共同的特点呢?”由于这个问题比较开放,所以学生,容易形成数学以外的或者不在本课研究范围的观点。

首先采用小组合作探究的形式获得共识,并由各小组派代表发表探究成果,接着再让其它学生根据老师的叙述,评论、提炼出重点。

作为教学的引导者,我需要及时对学生的解答进行指引。

最终得出函数的概念
(2)教师概括总结学生的探究成果,形成函数概念,并进一步解释函数概念
I、函数的三要素
Ii函数富豪的内涵
为深化学生对函数概念的理解,还可以用函数概念解析已经学过的一次函数,二次函数,妇女比例函数等,可以设计如下表格
函数一次函数二次函数反比例函数
对应关系
定义域
值域
由学生填写
(3)自我尝试,初步应用。

例1、判断下列图像是否为函数图像。

考察学生对函数定义的理解
例2、采用课本例1,并增加一问若f(x)=-1,求x
目的是引导学生探究求函数定义域的基本方法;对于用解析式表示的函数会用解析式求
函数值或有函数值求子变量的值,进一步体会函数级号的含义,区分f(-1),f(a),f(x)例3.采用课本例2
目的:通过判断函数的相等认识到函数的整体性,并指出在三要素中,由于值域是由定义域和对应法则决定的,所以
只要两个函数的定义域和对应关系相同,两个函数就相等;进一步加深函数概念的理解
(4)当堂训练,巩固深化。

通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对知识识的再次深化。

采用课后练习1、2、3
(5)小结归纳,回顾反思。

小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。

我设计了三个问题:(1)通过本节课的学习,你学到了哪些知识?(2)通过本节课的学习,你最大的体验是什么?(3)通过本节课的学习,你掌握了哪些技能?
(二)作业设计
作业分为必做题和选做题,必做题对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与,注重知识的延伸与连贯,强调学以致用。

通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成.
我设计了以下作业:
(1)必做题:课后习题A 1(2,3),2、5、6
(2)选做题:课后习题B 1、2
(三)板书设计
板书要基本体现整堂课的内容与方法,体现课堂进程,能简明扼要反映知识结构及其相互联系;能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。

五、评价分析
学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价。

我采用及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对本节是否有一个完整的集训,并进行及时的调整和补充。

以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。

谢谢!
函数的单调性我说课的题目是《函数的单调性》,我将从四个方面来阐述我对这节课的设计.
一、教材分析
函数的单调性是函数的重要性质.从知识的网络结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研
究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用.函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用.
根据函数单调性在整个教材内容中的地位与作用,本节课教学应实现如下教学目标:知识与技能使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;
过程与方法引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.
篇二:高中数学必修一说课稿
《函数的单调性》说课稿
各位专家,评委:
大家好! 我是x号考生陈光倩。

我说课的内容是普通高中课程标准试验教科书数学必修1
第一章第三节第一课时《函数的单调性》,下面我将从教材分析、教学目标、教学方法、,教学过程、学习评价五个方面向大家介绍我对本节课的理解与设计,不妥之处,敬请指教。

一, 教材分析
教材分析主要体现在以下三个方面:
其一,.教材的地位和作用。

首先,学生在初中学习了一次
函数、二次函数、反比例函数图象,对增减性有一个初步的感性认识。

本节课进一步学习函数单调性的严格定义,从数和形两个方面理解单调性的概念。

而在高三利用导数为工具研究函数的单调性。

所以本节课的学习,既是初中学习的延续和深化,又为高二、三学习不等式、极限、导数等其它数学知识的学习奠定基础,也是解决数学问题的常用工具,也是培养学生逻辑推理能力和渗透数形结合思想的重要素材。

因此本节课具有相当重要的地位和作用。

其二,教学目标。

新课改的精神在于以学生发展为本,能力培养为重。

根据数学课程标准的课程目标、课程要求以及本节课的内容和结构。

我确定如下教学目标:
1.使学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断,证明函数单调性的方法.
2.通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察,归纳,抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.
3.通过知识的探究过程培养学生细心观察,认真分析,严谨论证的良好思维习惯;让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程.
其三,教学重点与难点。

教学重点,教学重在教学过程,学生在探索的活动过程中,能够主动认知,建构创造力使学生潜力得到充分发挥。

所以我认为本节课的教学重点为函数
单调性的概念,判断、证明函数的单调性。

对单调性直观感性的认识上升到理性的高度, 这种由形到数的翻译,从直观到抽象的转变对高一的学生来说比较困难.其次,单调性的证明是学生在函数学习中首次接触到的代数论证内容,而学生在代数方面的推理论证能力是比较薄弱的.因此我认为本节课的叫教学难点难点是引导学生归纳并抽象出函数单调性的定义以及根据定义证明函数的单调性.。

二、教法与学法分析:
教学方法,根据教学内容, 教学目标和学生的认知水平, 主要采取教师启发讲授,学生探究学习的教学方法,并充分利用现代教学手段。

教学过程中,根据教材提供的线索,安排适当的教学情境,让学生展示相应的数学思维过程,使学生有机会经历数学概念抽象的各个阶段,引导学生独立自主地开展思维活动,深入探究。

学法指导,新课改将以学生发展为本,把学生的主动权还给学生,倡导积极主动、用于探索的方式。

因此,本节课主要采用动手实践、自主探索、合作交流的学习方法。

通过让学生动手做一做、画一画,让学生主动获得知识,从而创造性地解决问题,最终形成概念,获得方法,培养能力。

三教学过程的设计
为达到本节课的教学目标,突出重点,突破难点,我把教学过程设计为四个阶段:创设情境,引入课题;归纳探索,形成概念;
掌握证法,适当延展;归纳小结,提高认识.具体过程如下: (一)创设情境,引入课题
概念的形成主要依靠对感性材料的抽象概括, 只有学生对学习对象有了丰富具体经验以后,才能使学生对学习对象进行主动的,充分的理解,因此在本阶段的教学中,我从具体材料——有关奥运会天气的例子,引入函数的单调性。

使学生体会到研究函数单调性的必要性,同时激发学生的学习兴趣和主动探究的精神。

在课前,我给学生布置了两个任务:
(1) 由于某种原因,2008 年北京奥运会开幕式时间由原定的7 月25 日推迟到8 月8 日,请查阅资料说明做出这个决定的主要原因.
(2) 通过查阅历史资料研究北京奥运会开幕式当天气温变化情况.
课上通过交流,可以了解到开幕式推迟主要是天气的原因,北京的天气到8 月中旬,平均气温,平均降雨量和平均降雨天数等均开始下降,比较适宜大型国际体育赛事.
课上我引导学生观察2008 年8 月8 日的气温变化曲线图,引导学生体会在某些时段温度升高,某些时段温度降低.
然后,我指出生活中我们关心很多数据的变化,并让学生举出一些实际例子(如燃油价格等). 随后进一步引导学生归纳:所有这些数据的变化,用函数观点看,其实就是随着自变量的
变化,函数值是变大还是变小.
(二)归纳探索,形成概念
在本阶段的教学中, 为使学生充分感受数学概念的发生与发展过程和数形结合的数学思想,经历观察、归纳、抽象的探究过程,加深对函数单调性的本质认识,我设计了三个环节,引导学生分别完成对单调性定义的三次认识.
1. 借助图象,直观感知
本环节的教学主要是从学生的已有认知出发, 即从学生熟悉的常见函数的图象出发,直观感知函数的单调性,完成对函数单调性定义的第一次认识.
在本环节的教学中,我主要设计了两个问题:
问题1:分别作出函数y?x?2,y??x?2,y?x2以及y?
变量变化时,函数值有什么变化规律?
在学生画图的基础上,引导学生观察图象,获得信息:第一个图象从左向右逐渐上升,y 随x 的增大而增大;第二个图象从左向右逐渐下降,y 随x 的增大而减小.然后让学生明确,对于自变量变化时,函数值具有这两种变化规律的函数,我们分别称为增函数和减函数. 而后两个函数图象的上升与下降要分段说明, 通过讨论使学生明确函数的单调性是对定义域内某个区间而言的,是函数的局部性质.
对于概念教学,若学生能用自己的语言来表述概念的相关属性,则能更好的理解和掌握概念,因此我设计了问题
问题2:能否根据自己的理解说说什么是增函数,减函数?
教学中,我引导学生用自己的语言描述增函数的定义:
如果函数f(x)在某个区间上的图象从左向右逐渐上升,或者如果函数f(x)在某个区间上随自变量x 的增大,y 也越来越大,我们说函数f(x)在该区间上为增函数.
然后让学生类比描述减函数的定义.至此,学生对函数单调性就有了一个直观、描述性的认识.
2. 探究规律,理性认识
在此环节中,我设计了两个问题,通过对两个问题的研究,交流,讨论,将函数的单调性研究从研究函数图象过渡到研究函数的解析式, 使学生对单调性的认识由感性认识上升到理性认识的高度,使学生完成对概念的第二次认识
问题1:下图是函数y?x?2
x(x?0) y 的图象,能说出这个函数分别在哪个区间为增函1x的图像,并且观察自
数和减函数吗? 函数和减函数吗?
对于问题1,学生的困难是难以确定分界点的确切位置. 通过讨论, 使学生感受到用函数图象判断函数单调性虽然比较直观, 但有时不够精确,需要结合解析式进行严密化,精确化的研究,使学生体会到用数量大小关系严格表述函数单调性的必要性, 从而将函数的单调性研究,从研究函数图象过渡到研究函数的解析式.。

相关文档
最新文档