第三代半导体面
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三代半导体面-SiC(碳化硅)器件及其应用
在半导体工业中,人们习惯地把锗(Ge)、硅(Si)为代表的元素半导体材料称为第一代半导体材料,把砷化镓(GaAs)、磷化铟(InP)为代表的化合物半导体材料称为第二代半导体材料,而把碳化硅(SiC)、氮化镓(GaN)为代表的化合物半导体材料称为第三代半导体材料,由于SiC和GaN材料的禁带宽度较Si、GaAs等材料更宽,因而它们一般具有高的击穿电场、高的热导率、高的电子饱和速率及更高的抗辐射能力,因而更适合于制作高温、高频及大功率器件,故称这类材料为
宽禁带半导体材料,也称高温半导体材料。它们在微电子和光电子领域中具有十分广阔的应用潜在优势, 宽禁带半导体材料(Eg大于或等于3.2ev)被称为第三代半导体材料。主要包括金刚石、SiC、GaN等。
和第一代、第二代半导体材料相比,第三代半导体材料具有禁带宽度大,电子漂移饱和速度高、介电常
数小、导电性能好的特点,其本身具有的优越性质及其在微波功率器件领域应用中潜在的巨大前景,非
常适用于制作抗辐射、高频、大功率和高密度集成的电子器件。
作为一种新型的半导体材料,SiC以其优良的物理化学特性和电特性成为制造短波长光电子器件、高
温器件、抗辐照器件和大功率/高额电子器件最重要的半导体材料.特别是在极端条件和恶劣条件下应用时,SiC器件的特性远远超过了Si器件和GaAs器件.因此,SiC器件和各类传感器已逐步成为关键器件之一,发挥着越来超重要的作用.
从20世纪80年代起,特别是1989年第一种SiC衬底圆片进入市场以来,SiC器件和电路获得了快速的发展.在某些领域,如发光二极管、高频大功率和高电压器件等,SiC器件已经得到较广泛的商业应用.发
展迅速.经过近10年的发展,目前SiC器件工艺已经可以制造商用器件.以Cree为代表的一批公司已经开始提供SiC器件的商业产品.国内的研究所和高校在SiC材料生长和器件制造工艺方面也取得厂可喜的成果.虽然SiC材料具有非常优越的物理化学特性,而且SiC器件工艺也不断成熟,然而目前SiC器件和电路的性能不够优越.除了SiC材料和器件工艺需要不断提高外.更多的努力应该放在如何通过优化S5C
器件结构或者提出新型的器件结构以发挥SiC材料的优势方面.
1 SiC分立器件的研究现状
目前.SiC器件的研究主要以分立器件为主.对于每一种器件结构,共最初的研究部是将相应的Si或者G aAs器件结构简单地移植到SiC上,而没有进行器件结构的优化.由于SiC的本征氧化层和Si相同,均为SiO2,这意味着大多数Si器件特别是M帕型器件都能够在SiC上制造出来.尽管只是简单的移植,可是得到的一些器件已经获得了令人满意的结果,而且部分器件已经进入厂市场. S
iC光电器件,尤其是蓝光发光二极管在20世纪90年代初期已经进入市场,它是第一种大批量商业生产的SiC器件.日前高电压SiC肖特基二极管、SiC射频功率晶体管以及SiC MOSFET和MESFET等也已经有商业产品.当然所有这些SiC产品的性能还远没有发挥SiC材料的超强特性,更强功能和性能的SiC器件还有待研究与开发.这种简单的移植往往不能完全发挥SiC材料的优势.即使在SiC器件的一些优势领域.最初制造出来的SiC器件有些还不能和相应的Si或者CaAs器件的性能相比.
为了能够更好地将SiC材料特性的优势转化为SiC器件的优势,目前正在研究如何对器件的制造工艺与器件结构进行优化或者开发新结构和新工艺以提高SiC器件的功能和性能.
1.1 SiC肖特基二极管
肖特基二极管在高速集成电路、微波技术等许多领域有重要的应用.由于肖特基二极管的制造工艺相对比较简单,所以对SiC肖特基二极管的研究较为成熟.普渡大学最近制造出了阻断电压高达4.9kV的4H-Si C肖特基二极管,特征导通电阻为43mΩ?c㎡,这是目前SiC肖特基二极管的最高水平.
通常限制肖特基二极管阻断电压的主要因素是金—半肖特基接触边沿处的电场集中.所以提高肖特基二极管阻断电压的主要方法就是采用不同的边沿阻断结构以减弱边沿处的电场集中.最常采用的边沿阻断结构有3种:深槽阻断、介质阻断和pn结阻断.普放大学采用的方法是硼注入pn结阻断结构,所选用的肖特基接触金属有Ni,Ti.2000年4月Cree和Kansai联合研制出一只击穿电压高达12.3kV的SiC整流器,主要采用了新的外延工艺和改进的器件设计.该器件具有很低的导通电阻,正向导通电压只有4.9 V ,电
流密度高,可以达到100A/c㎡,是同类Si器件的5倍多.
1.2 SiC功率器件
由于SIC的击穿电场强度大约为Si的8倍.所以SiC功率器件的特征导通电阻可以做得小到相应Si器件的1/400.常见的功率器件有功率MOSFET、IGBT以及多种MOS控制闸流管等.为了提高器件阻断电压和降低导通电阻,许多优化的器件结构已经被使用.表1给出了已报道的最好的SiC功率MOSFET器件的性能数据Si功率MOSFET的功率优值的理论极限大约为5MW/㎡.除了横向DM0SFET因为特征导通电阻较高而使
得优值较小外,其他SiC功率器件的功率优值均大于Si功率MOSFET器件的理论极限,特别是普渡大学制
造的UMOS累积型FET的大功率优值是Si极限值的25倍.
1.3 SiC开关器件
到目前为止,SzC开关器件,无论是MOSFETs还是半导体闸流管,通常都是采用纵向器件结构,用衬底作
为阴极.关态时,电压被一个反偏的pn结阻断.为了获得更高阻断电压,该pn的一边即“漂移区”很厚,而且掺杂浓度要低,所以纵向SiC功率开关器件的阻断电压主要依赖于漂移区的掺杂浓度和厚度.漂移区
厚度一定时,不管掺杂浓度如何,总存在一个最大可能的阻断电压.然而至今,所能获得的SiC外延层的
厚度最大只有10μm这就决定了最大可能的阻断电压大约为1600V.有效克服这一限制的方法就是改变器
件的结构,即采用横向器件结构.普渡大学已经采用横向器件结构制造出了横向DMOSFETs.首先在绝缘4 H—SiC讨底上外延n型SiC,然后在外延层上制造器件.显然,横向器件结构的最大阻断电压不受外延层
厚度的限制,采用这种结构已经制造出了阻断电压高达2.6kV的LDMOSFETs.然而目前的横向LDMOSFET
的特征导通电阻还比较高,这主要是因为当用横向结构代替纵向结构时.所需的器件面积将会增大.如果
能够把减小表面电场概念和器件设计结合起来,那么导通电阻能够做得比相应的纵向器件还低.
1.4 SiC微波S件
SiC的高饱和漂移速度、高击穿场强和高热导率特性使得SiC成为1--10GHz范围的大功率微波放大器的理想材料.短沟道SiC MESFETs的特征频率已经达到22GHz.最高指荡频率f可以达到50GHz.静电感应晶体管(SITs)在600MHz时功率可以达到470W(功率密度为1.36W/mm),3GHz时功率为38W(1.2W/mm).由于SiC的热导率很高(GaAs的]0倍,GaN的3倍),工作产生的热量可以很快地从衬底散发.通过改进器件结构,SiC SITs的特征频率目前可以达到7GHz.最近普渡大学在半绝缘4H—SiC上制造出了一种亚微米T型栅MESFETs,饱和漏电流为350mA/mm,跨导为20m5/mm,漏击穿电压为120V,最大可获得的射频功率密
度为3.2W/mm.
1. 5 SiC器件的高温特性
SiC器件在300°C以上高温条件下的工作特性也被大量研究, NASA制造的6H—SiC掩埋栅JE2T在600°C高温下表现出很好的低泄漏开关特性.然而,该器件在此高温下只工作了30个小时,器件发生了很小的退化,退化原因是接触金屑的氧化.但是当SiC器件在惰性气体环境中工作,在600°C高温下寿命要长得多.只要改善工艺控制的精确性并解决好接触金属和封装问题,SiC器件的高温寿命就会大大提高.
2 SiC集成电路的研究现状
与S1C分立器件追求高电压、大功率、高频以及高温特性不同,SiC集成电路的研究目标主要是获得高温
数字电路,用于智能功率ICs的控制电路.由于SiC集成电路工作对内部电场很低,所以微管缺陷的影响
将大大减弱,这可以从第一片单片SiC集成运算放大器芯片得到验证,实际成品宰远远高于微管缺陷所决
定的成品率,因此,基于SiC的成品率模型与Si和CaAs材料是明显不同的.该芯片是基于耗尽型NMOSFE T技术.主要是因为反型沟道SiC MOSFETs的有效载流子迁移率太低.为了提高Sic的表面迁移率,就需
要对SiC的热氧化工艺进行改进与优化.
美国普渡大学在SiC集成电路方面做了大量工作.1992年研制成功厂基于反型沟道6H—SiC NMOSFETs单
片数字集成电路.该芯片包含与非门、或非门、同或门、二进制计数器和半加器电路,在25°C到300°C 的温度范围内均可正常工作.1995年采用钒注入隔离技术制造出第一个SiC平面MESFET Ics通过精确控
制钒的注入量,可以获得绝缘SiC.
在数字逻辑电路中,CMOS电路比NMOS电路具有更大的吸引力.1996年9月制造出第一片6H—SiC CMOS数字集成电路.该器件使用了注入n阶和淀积氧化层,但是由于其他的工艺问题,该芯片中PMOSFETs的阂值