高分子材料科学基础-第四章

合集下载

10《材料科学基础》-第四章固体中原子及分子的运动01表象理论

10《材料科学基础》-第四章固体中原子及分子的运动01表象理论

若D与浓度无关,则: ∂ρ ∂ρ =D ∂t ∂x
2 2
对三维各向同性的情况:
∂ρ ∂ρ ∂ρ ∂ρ = D( + + ) ∂z ∂t ∂x ∂y
2 2 2 2 2 2
菲克定律描述了固体中存在浓度 梯度时发生的扩散,称为化学扩散 当扩散不依赖于浓度梯度,仅由 热振动而引起时,则称为自扩散
定义:自扩散系数 Ds= ∂ρ →0
4.2 扩散的热力学分析
4.2.1 扩散驱动力
菲克第一定律描述了物质从高浓度向低浓度扩散的现象, 菲克第一定律描述了物质从高浓度向低浓度扩散的现象, 扩 散的结果导致浓度梯度的减小,使成份趋于均匀。 散的结果导致浓度梯度的减小,使成份趋于均匀。
有些扩散是由低浓度处向高浓度处进行的, 有些扩散是由低浓度处向高浓度处进行的, 如固溶体中某些 偏聚,这种扩散被称为“上坡扩散” 偏聚,这种扩散被称为“上坡扩散”。
扩散是固体中原子迁移的唯一方式 物质的传输方式
气体: 扩散+对流
固体: 扩散
离 子 键
液体: + 扩散+对流
金属
陶瓷
高分子
扩散机制不同
本章内容
• 扩散的表象理论 • 扩散的原子机制 • 影响扩散的因素 • 陶瓷材料中扩散的主要特征 • 高分子材料中分子运动的规律
4. 1 表象理论
扩散(diffusion): 在一个相内因分子或原子的热激活运动导 致成分混合或均匀化的分子动力学过程
3.空位机制 . 晶体中存在着空位,空位的存在使原子迁移更容易。 晶体中存在着空位,空位的存在使原子迁移更容易。通过 空位,原子从晶格中一个位置迁移到另一个位置实现交换。 空位,原子从晶格中一个位置迁移到另一个位置实现交换。

第四章第一讲材料科学与工程基础(顾宜

第四章第一讲材料科学与工程基础(顾宜
弹性-不均匀塑性(屈服平台)-均匀塑性型
幻灯片20
(1)纯弹性型
A陶瓷、岩石、大多数玻璃
B高度交联的聚合物
C以及一些低温下的金属材料。
(2)弹性-均匀塑性型
A许多金属及合金、
B部分陶瓷
C非晶态高聚物。
(3)弹性-不均匀塑性型
A低温和高应变速率下的面心立方金属,
B某些含碳原子的体心立方铁合金
C以及铝合金低溶质固溶体。
K=σ/(ΔV/V)=6.89Mpa/[1-0.9883]=193.7Mpa
E=σ/ε=516.8Kpa/2.1%=24.6Mpa
ν=0.5(1-E/3K)=0.48
幻灯片36
金属晶体、离子晶体、共价晶体等的变形通常表现为普弹性,主要的特点是:
A应变在应力作用下瞬时产生,
B应力去除后瞬时消失,
C服从虎克定律。
比例极限
弹性变形时应力与应变严格成正比关系的上限应力
p = F p / S 0
条件比例极限
tan’/tan=150%
p50
代表材料对极微量塑性变形的抗力
切线
幻灯片45
(条件)弹性极限最大弹性变形时的应力值。
弹性比功弹性应变能密度。材料吸收变形功而又不发生
永久变形的能力W=/2=2/2E
残留变形时的应力
高分子材料通常表现为高弹性和粘弹性
幻灯片37
幻灯片38
2.有机聚合物的弹性、粘弹性
Elasticity and Visco-elasticity of Polymers
⑴高弹性,即橡胶弹性(rubberlike elasticity)
①弹性模量小、形变大。
A一般材料,如铜、钢等,形
变量最大为1左右,

高分子材料与应用各章习题总结

高分子材料与应用各章习题总结

高分子材料及应用各章试题总结第一章绪论1【单选题】材料研究的四要素是?∙A、合成/加工、结构/成分、性质、实用性能∙∙B、合成/加工、结构/成分、性质、使用性能∙∙C、分子结构、组分、性质、使用性能∙∙D、分子结构、组分、性质、实用性能∙我的答案:B2【多选题】未来新一代材料主要表现在哪些方面?∙A、既是结构材料又具有多种功能的材料∙∙B、具有感知、自我调节和反馈等能力的智能型材料∙∙C、制作和废弃过程中尽可能减少污染的绿色材料∙∙D、充分利用自然资源,能循环作用的可再生材料∙我的答案:ABCD3【判断题】材料的性能可分为两类,一种是材料本身所固有的称之为功能物性,另一种是通过外场刺激所转化的性能称为特征性能。

∙我的答案:∙4【判断题】材料的特征性能是指在一定条件下和一定限度内对材料施加某种作用时,通过材料将这种作用转换为另一种作用的性质。

例如许多材料具有把力、热、电、磁、光、声等物理量通过“物理效应”、“化学效应”、“生物效应”进行相互转换的特性。

∙我的答案:∙5【判断题】材料的功能物性是指材料本身所固有的性质,包括热学、电学、磁学、力学、光学等。

∙我的答案:6【简答题】材料科学的内容是什么?∙我的答案:一是从化学角度出发,研究材料的化学组成,健性,结构与性能的关系规律;二是从物理学角度出发,阐述材料的组成原子,分子及其运动状态与各种物性之间的关系。

在此基础上为材料的合成,加工工艺及应用提出科学依据。

∙7【简答题】材料的基本要素有哪些?∙我的答案:1,一定的组成和配比∙2,具有成型加工性∙3,具有一定的物理性质,并能够保持∙4,回收,和再生性∙5,具有经济价值∙8【简答题】材料科学的主要任务是什么?∙我的答案:就是以现代物理学,化学等基础学科理论为基础,从电子,原子,分子间结合力,晶体及非晶体结构,显微组织,结构缺陷等观点研究材料的各种性能,以及材料在制造和应用过程中的行为,了解结构-性能-应用之间的规律关系,提高现有材料的性能,发挥材料的潜力并探索和发展新型材料以满足工业,农业,生产,国防建设和现代技术发展对材料日益增长的需求。

聚合物的结构与

聚合物的结构与

105℃ 135℃
60—70% 薄膜(软性)
95%
瓶、管、棒 等(硬性)
高压聚乙烯(低密度聚乙烯),由于支化破坏了分子的规 整性,使其结晶度大大降低;低压聚乙烯(高密度聚乙烯) 是线型分子,易于结晶,故在密度、熔点、结晶度和硬度方 面都高于前者。见上表
橡胶的硫化与交联度影响
橡胶的硫化是使聚异戊二烯的分子之间产生硫桥
材料 科 学 基 础 第四章 聚合物的结构与性能
高聚物的特点(与小分子物质相比)
高分子是由很大数目(103——105 数量级)的结构单 元组成的,每一个结构单元相当于一个小分子
一般高分子的主链都有一定的内旋转自由能,可 以使主链弯曲而具有柔性
高分子结构具有不均一性 各结构单元间的相互作用对其聚集态结构和物理
共聚物结构中的序列问题
为描述共聚物的序列结构,常用的参数有各单体单 元的平均序列长度和嵌段数R。例如下面共聚物分 子:
A B AA BBB A BB AA BBBB AAA B 其中A单体9个,A序列为5段,B单体11个,B序列 为5段(短划表示序列)。 嵌段R的含义是指在100个单体单元中出现的各种嵌 段的总和。R与平均— — 序列长度— — 的关系是:
1. 分子主链全部由碳原子以共价键相联结的碳链高分子不 易水解;
2. 分子主链由两种或两种以上的原子以共价键联结的杂链 高分子带有极性,易水解、醇解或酸解;
元素高分子具有无机物的热稳定性及有机物的 弹性和塑性;
分子主链不是一条单链而是像“梯子”和“双 股螺线”那样的高分子链;
为防止链断裂从端基开始,有些高分子需要封 头,以提高耐热性。
支化对物理机械性能的影响有时相当显著: 支化程度越高,支链结构越复杂,影响高分子材 料的使用性能越大;支化点密度或两相临支化点 之间的链的平均分子量来表示支化的程度,称为 支化度。

材料科学基础上海交大第三版

材料科学基础上海交大第三版

材料科学基础上海交大第三版介绍材料科学是研究材料结构、组成、性能和制备方法的学科,具有重要的理论基础和实际应用。

本文将探讨《材料科学基础上海交大第三版》这本教材的内容和意义。

教材概述《材料科学基础上海交大第三版》是由上海交通大学材料科学与工程学院编写的教材。

该教材系统地介绍了材料科学的基本概念、原理和技术。

它以全面、详细和深入的方式讲解了各种材料的结构、性能、制备和应用。

该教材的第三版相对于前两版进行了进一步的修订和更新,新增了一些最新的科研成果和实践经验。

重要章节第一章:材料科学基础该章介绍了材料科学的基本概念、发展历史和研究方法。

它讲解了材料的分类、性能评价和性能调控等内容。

通过学习该章,读者可以对材料科学有一个整体的认识。

第二章:金属材料该章主要讲解了金属材料的结构和性能。

它详细介绍了金属晶体结构、缺陷和相变等基本概念,以及金属的力学、热学和电学性能。

同时,该章还介绍了金属材料的制备方法和应用领域。

第三章:陶瓷材料该章介绍了陶瓷材料的结构和性能。

它详细讲解了陶瓷的晶体结构、缺陷和相变等基本概念,以及陶瓷的力学、热学和电学性能。

此外,该章还介绍了陶瓷材料的制备方法和应用领域。

第四章:高分子材料该章主要介绍了高分子材料的结构和性能。

它详细阐述了高分子的聚合反应、分子构象和玻璃化转变等基本概念,以及高分子的力学、热学和电学性能。

同时,该章还介绍了高分子材料的制备方法和应用领域。

第五章:复合材料该章介绍了复合材料的结构和性能。

它详细讲解了复合材料的基体材料、增强材料和界面等基本概念,以及复合材料的力学、热学和电学性能。

此外,该章还介绍了复合材料的制备方法和应用领域。

重要实验实验一:金属的晶体结构研究该实验旨在通过实际操作,观察金属的晶体结构,并了解金属的晶体缺陷。

通过该实验,学生可以进一步理解金属的结构与性能之间的关系。

实验二:陶瓷材料的力学性能测定该实验旨在通过实验测定方法,了解陶瓷材料的力学性能。

材料科学基础(上海交大)_第4章解析

材料科学基础(上海交大)_第4章解析

学习方法指导
本章重点阐述了固体中物质扩散过程的规律及其应用, 内容较为抽象,理论性强,概念、公式多。根据这一特点, 在学习方法上应注意以下几点: 充分掌握相关公式建立的前提条件及推导过程,深入理 解公式及各参数的物理意义,掌握各公式的应用范围及必需 条件,切忌死记硬背。 从宏观规律和微观机理两方面深入理解扩散过程的本质, 掌握固体中原子(或分子)因热运动而迁移的规律及影响因 素,建立宏观规律与微观机理之间的有机联系。 学习时注意掌握以下主要内容:菲克第一,第二定律的 物理意义和各参数的量纲,能运用扩散定律求解较简单的扩 散问题;扩散驱动力及扩散机制:间隙扩散、置换扩散、空 位扩散;扩散系数、扩散激活能、影响扩散的因素。
4.0.1 扩散现象(Diffusion)
当外界提供能量时,固体金属中原子或分子偏离平衡 位置的周期性振动,作或长或短距离的跃迁的现象。 (原子或离子迁移的微观过程以及由此引起的宏观现象。) ( 热激活的原子通过自身的热振动克服束缚而迁移它处的 过程。)
扩散
半导体掺杂 固溶体的形成 离子晶体的导电 固相反应 相变 烧结 材料表面处理
©2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning™ is a trademark used herein under license.
Figure 4.3 The flux during diffusion is defined as the number of atoms passing through a plane of unit area per unit time
材料与化学化工学院
第四章 固体中原子及分子的运动—扩散

材料科学与工程基础第四章自测评题

材料科学与工程基础第四章自测评题

“材料科学与工程基础”第四章共20组选择题,约300个小题。

请按10个小题为一组进行抽样组合测评,正确率达到60%,方可进入下一组抽题测试。

另外请将页面设置为不能打印和下载。

选择题第一组1.材料的刚性越大,材料就越脆。

()BA. 正确;B.2.A.B.C.D.3.ABC4.A.B.C.5.A.B.C.6.DA. K=E /[3(1+2?)];B. E=2G (1-?);C. K=E /[3(1-?)];D. E=3K (1-2?);E. E=2G (1-2?)。

7.“Viscoelasticity”的意义是()BA 弹性;B粘弹性;C 粘性8、均弹性摸量的表达式是()AA、E=σ/εB、G=τ/rC、K=σ。

/(△V/V)9、金属、无机非金属和高分子材料的弹性摸量一般在以下数量级范围内( GPa)C10111314)BB. 错误第二组1、对各向同性材料,以下哪一种应变不属于应变的三种基本类型()CA. 简单拉伸;B. 简单剪切;C. 扭转;D. 均匀压缩2、对各向同性材料,以下哪三种应变属于应变的基本类型()A, B, DA. 简单拉伸;B. 简单剪切;C. 弯曲;D. 均匀压缩3、“Tension”的意义是()AA 拉伸;B 剪切;C 压缩4、“Compress”的意义是()CABC5AA.B.6、“ABC7、8、D. compression9、对各向同性材料,应变的三种基本类型是()AA tension, shear and compression;B tension, shear and torsional deformation;C. tension, shear and flexural deformation10、非金属态聚合物的三种力学状态是()AA、玻璃态、高弹态、粘流态。

B、固溶态、橡胶态、流动态。

C、玻璃态、高弹态、流动态。

11、玻璃化转变温度是橡胶使用的上限温度BA 正确B 错误12、玻璃化转变温度是非晶态塑料使用的下限温度BA 正确B13ABC1、2、3、“ABC4、()AA. 正确;B. 错误5、孪生是发生在金属晶体内整体的一个均匀切变过程。

上海交大-材料科学基础-第四章

上海交大-材料科学基础-第四章

在材料科学中多种过程与扩散有关
形成固溶体
半导体掺杂
如相变、固相反应、烧结工艺
渗碳和渗氮工艺
氧化过程
高温蠕变等
4.1 扩散的基本规律
▪ 微观角度,固体扩散由于彼此结构差异存在不同 ▪ 宏观角度,
大量扩散质点看作作无规布朗运动; 介质中质点的扩散均遵循相同的统计规律——著 名的菲克定律:描述浓度场下物质扩散的动力学方程 扩散过程与热传导过程的相似
4.2 扩散的微观理论 (一)扩散的布朗运动理论
菲克第一定律和菲克第二定律定量地描述了质点扩散 的宏观行为,然而菲克定律仅仅是一种现象的描述, 它将除浓度以外的所有影响扩散的因素都包括在扩散 系数当中,而又未能赋予其明确的物理意义。
宏观的扩散流是大量原子无数次微观过程的总和
1905年,爱因斯坦在研究大量质点作无规则布朗运 动的过程中,首先用统计学的方法得到扩散方程, 并使宏观扩散系数与扩散质点的微观运动得到联系。
(2)固体中原子或离子依一定方式所堆积成的结构有一定的对称性 和周期性,这也限制着质点每一步迁移的方向和自由行程迁移的自 由程则只相当于晶格常数大小,且质点扩散往往具有各向异性。
三、扩散的应用
原子或离子的扩散是众多工程材料如金属 材料、无机非金属材料、有机高分子等材料的制备、 使用中很多重要的物理、化学以及物理化学过程得 以实现的基础。因此,理解和掌握固体中扩散的基 本规律对认识材料的性质、制备和生产具有一定性 能的固体材料均有十分重大的意义。
2、恒定量扩散
扩散方程:
C t
D
2C x 2
边界条件为:
t 0, x 0, C 0
t 0, x 0, C M
t 0, C(x)dx M
把总质量M的扩散元素沉淀成非 常薄的薄层,夹在两个厚度为无 限的全同式样之间进行扩散

高分子物理(第四版)课后习题--名词解释

高分子物理(第四版)课后习题--名词解释
泊松比:泊松比是指材料在单向受拉或受压时,横向正应变与轴向正应变的绝对值的比值,也叫横向变形系数,它是反映材料横向变形的弹性常数。
柔量:一个弹性常数,它等于应变(或应变分量)对应力(或应力分量)之比。对一个完善的弹性材料来说,它是弹性模量的倒数,即材料每单位应力的变形率。
拉伸比:测试高分子材料的拉伸性能时,在规定的温度湿度和试验速率下,在试样上沿纵轴方向施加拉伸载荷使其破坏时的长度和试样长度的比值叫做拉伸比
分子构造 (Architecture):指聚合物分子的各种形状,一般高分子链的形状为线形,还有支化或交联结构的高分子链,支化高分子根据支链的长短可以分为短支链支化和长支链支化两种类型
共聚物的序列结构:是指共聚物根据单体的连接方式不同所形成的结构,共聚物的序列结构分为四类:无规共聚物、嵌段共聚物、交替共聚物、接枝共聚物
相图:也称相态图、相平衡状态图,是用来表示相平衡系统的组成与一些参数(如温度、压力)之间关系的一种统计平均分子量:许多高分子组成的聚合物具有分子量的分布,所谓聚合物的分子量仅为统计平均值。包括,数均分子量(按物质的量统计平均分子量),重均分子量(按质量的统计平均分子量),Z均分子量(按Z量的统计平均分子量),粘均分子量(用稀溶液粘度法测得的平均分子量)
相容性:是指共混物各组分彼此相互容纳,形成宏观均匀材料的能力
多组分聚合物:由两种或两种以上高分子材料构成的复合体系
自组装:是指基本结构单元(分子,纳米材料,微米或更大尺度的物质)自发形成有序结构的一种技术。
海-岛结构:两种高聚物相容性差,共混后形成非均相体系,分散相分散在连续相中,像小岛分散在海洋中一样,称为海岛结构
数均分子量:
重均分子量:
Z均分子量:
粘均分子量:
微分(与积分)分子量分布函数:聚合物中各分子量与具有该分子量的分子的数量或质量分数之间用微分(与积分)形式表达的函数关系。

高分子材料基础讲稿

高分子材料基础讲稿

第一章 材料科学概论
1.1 材料与材料科学 1.2 材料结构简述
高分子材料基础 第一、二章
5
1.1 材料与材料科学
1.1.1 材料及材料化过程(材料工艺过程)
材料——具有满足指定工作条件下使用要求的形态和物理性状的物 质称为材料。
材料总是和一定的用场相联系。材料可由一种物质或若干种物质构
成。同一种物质,由于制备方法或加工方法的不同,可成为用
金属材料 黑色金属——主要以铁—碳为基的合金,包括碳钢、合金钢、不锈钢、 铸铁。钢的性能主要由渗碳体的数量、尺寸、形状
及分布决定的。 有色金属——除铁之外的纯金属或以其为基的合金。
如铝合 金、铜合金、镁合金、钛合金等
无机材料——是由无机化合物构成的材料,其中包括如锗、硅、碳之类的单质所构成的料。 有机材料(高分子材料)——是由脂肪族和芳香族的C—C 共价键为基本结构的高分子构成的,
高分子材料基础 第一、二章
8
1.1.3 材料科学的范畴及任务
材料科学是一门以材料为研究对象,介于基础科学与应用科 学之间的应用基础科学。
其研究内容:
1、从化学的角度出发,研究材料的化学组成、键性、结构与性 能的关系规律;
2、从物理学角度出发,阐述材料的组成原子、分子及其运动状 态与各种物性之间的关系。
高分子材料基础 第一、二章
各向同性
(塑性变形较大,导热 率和热膨胀性较小)
13
1.3 材料性能的
材料的性能
特征性能
热学性能 力学性能 电学性能 磁学性能 光学性能 化学性能
功能物性
热-电转换性能 光-热转换性能 光-电转换性能 力-电转换性能 磁-光转换性能 电-光转换性能 声-光转换性能
高分子材料基础 第一、二章

材料科学基础第四章 高分子材料的结构

材料科学基础第四章 高分子材料的结构

贵州师范大学
化学与材料科学学院
高分子材料的发展
1)早期发展
第一次世界大战前后
• 酚醛树脂(1907)
• 异戊二烯(1909)
• 丁纳橡胶(1912)
• 醋酸纤维(1927) • 脲醛树脂(1929)
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学 食
化学与材料科学学院
• • • •
塑料大棚:丰富高寒地区的蔬菜品种 塑料地膜:保温保湿,增加粮食作物产量 塑料包装:日常食品的包装、储存、保鲜等 海水淡化:由芳香聚酰胺或醋酸纤维素制成的 反渗透中空纤维膜可以淡化海水,解决沿海地 区或岛屿的农田灌溉和生活用水问题。
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学
化学与材料科学学院
数均分子量
就是以数量为统计权重,或者说平均每个高分子链的质 量就是数均分子量。
重均分子量ห้องสมุดไป่ตู้
就是以重量为统计权重,或者说单位重量上平均到的分 子量。 式中,i=1~∞,Ni代表相对分子质量为Mi的分子在聚合 物中所占的分子分数
贵州师范大学
化学与材料科学学院
高分子材料的定义
• 高分子材料:以高分子化合物为主要组分, 与各种添加剂配合而形成的材料。 • 高分子化合物:由碳、氢、氧、硅、硫等元 素原子彼此以共价键结合形成相对分子量特 别大、具有重复结构单元的化合物。

第三版胡赓祥材料科学基础的知识点总结及课后答案

第三版胡赓祥材料科学基础的知识点总结及课后答案

第三版胡赓祥材料科学基础的知识点总结及课后答案第一章材料科学基础概念知识点总结1. 材料的定义与分类:材料是制造各种结构和器件的物质基础,可分为金属材料、无机非金属材料、有机高分子材料和复合材料等。

2. 材料的性能:包括力学性能、热性能、电性能、磁性能等,是评价材料性能好坏的重要指标。

3. 晶体结构:晶体是由原子、离子或分子按照一定的空间点阵排列成的周期性结构,常见的晶体结构有金属晶体、离子晶体、共价晶体和分子晶体等。

4. 材料的制备方法:包括合成、加工、处理等,如熔炼、铸造、轧制、挤压、拉伸、热处理、腐蚀等。

5. 材料的设计与性能调控:根据材料的使用性能要求,进行结构、组成和制备工艺的设计,以实现性能的优化。

课后答案1. 材料是什么?请举例说明。

答案:材料是制造各种结构和器件的物质基础,如钢铁、水泥、塑料、玻璃等。

2. 材料的性能有哪些?它们对材料的用途有何影响?答案:材料的性能包括力学性能、热性能、电性能、磁性能等,不同的性能影响材料在不同领域的应用。

例如,塑料的具有良好的柔韧性和耐腐蚀性,广泛应用于包装、建筑等领域;金属材料具有良好的导电性和导热性,广泛应用于电子、能源等领域。

3. 晶体结构有哪些类型?请简要介绍。

答案:晶体结构有金属晶体、离子晶体、共价晶体和分子晶体等类型。

金属晶体是由金属原子按照一定的空间点阵排列成的结构,具有较高的强度和韧性;离子晶体是由正负离子按照一定的空间点阵排列成的结构,具有较高的熔点和硬度;共价晶体是由共价键连接的原子按照一定的空间点阵排列成的结构,具有较高的硬度和脆性;分子晶体是由分子按照一定的空间点阵排列成的结构,具有较低的熔点和脆性。

4. 材料的制备方法有哪些?它们对材料性能有何影响?答案:材料的制备方法包括合成、加工、处理等,如熔炼、铸造、轧制、挤压、拉伸、热处理、腐蚀等。

不同的制备方法对材料的性能有不同的影响。

例如,熔炼法制备的金属材料具有较高的纯度和均匀性;热处理工艺可以改变金属材料的组织结构和性能,如提高硬度和强度等。

材料科学基础(中南大学)智慧树知到答案2024年中南大学

材料科学基础(中南大学)智慧树知到答案2024年中南大学

材料科学基础(中南大学)中南大学智慧树知到答案2024年第一章测试1.fcc可以看成是原子在密排面(111)面在空间的堆垛。

A:对 B:错答案:A2.已知Al为正三价,阿伏加德诺常数为6.02×1023,铝摩尔量为26.98,质量1g的Al中的价电子数量为( )。

A:6.69×10∧23 B:6.69×10∧22 C:6.02×10∧22 D:6.69×10∧21答案:B3.聚乙烯高分子材料中,C-H化学键结合属于()。

A:金属键 B:氢键 C:共价键 D:离子键答案:C4.化学键中,没有方向性也没有饱和性的为()。

A:离子键 B:共价键 C:金属键 D:氢键答案:C5.晶体的对称轴不存在()对称轴。

A:五次 B:六次 C:四次 D:三次答案:A6.晶面族是指一系列平面的晶面。

A:对 B:错答案:B7.一个晶胞内原子个数、配位数对于fcc是(),bcc是()。

A:4,8 B:2,8 C:4,12 D:2,12答案:BC8.bcc晶胞的密排面是(),密排方向分别是()。

A:{110} B:{111} C:<111> D:<110>答案:AC9.A:8.98 B:7.78 C:8.58 D:8.28答案:A10.晶带是与过某个晶向或与其平行的所有晶面,这个晶向称为晶带轴。

若晶带轴指数为[uvw],则[uvw]与晶带中的一个晶面(hkl)这两个指数之间点积,[uvw]·(hkl)等于()。

A:1 B:0.5 C:-1 D:0答案:D11.一个fcc晶胞的原子中的原子个数为()个。

A:4 B:6 C:8 D:2答案:A12.一个bcc晶胞中的原子个数为()个。

A:6 B:8 C:2 D:4答案:C13.铜和镍属于异质同构。

A:错 B:对答案:B14.间隙固溶体中间隙原子可以无限固溶得到固溶度为100%的无限固溶体。

A:对 B:错答案:B15.一个金属元素与一个非金属元素容易形成固溶体。

材料科学基础4 固体中原子及分子的运动

材料科学基础4 固体中原子及分子的运动
d越大则扩散越快稳态扩散下的菲克第一定律的应用稳态扩散下的菲克第一定律的应用扩散系数的测定扩散系数的测定其中一种方法可通过碳在fe中的扩散来测定纯fe的空心中的扩散来测定纯fe其中一种方法可通过碳在fe中的扩散来测定纯fe的空心园筒心部通渗碳气氛外部为脱碳气氛园筒心部通渗碳气氛外部为脱碳气氛在一定温度下经过一定时间后碳原子从内壁渗入外壁渗出
2
解微分方程 → 引入中间变量和误差函数 → 求通解(式 4.6) → 边界条件和初始条件 → 求特解(式4.7、4.8)
• 2.一端成分不受扩散影响的扩散体--表面热处理过程 。
相当于无限大情况下半边的扩散情况 求解方法同上,特解为(式4.9、4.10 简化式4.11) 初始条件: t=0时,x≥0, = 0 边界条件:t>0时,x=0, = s,x=∞, = o 可解得方程的解 = s [1-erf(x/(4Dt)1/2)]
工业生产中经常采用渗碳(Carburizing)的方法来提高钢铁零 件的表面硬度,所谓渗碳就是使碳原子由零件表面向内部扩 散,以提高钢的含碳量。含碳量越高,钢的硬度越高。
例:纯铁在气体渗碳介质中927℃渗碳,该温度下C在γ -Fe 中最大溶解度1.3%,求10h后纯铁内C%分布 解:纯铁表面很快达到饱和碳浓度为1.3%,为半无限大物体 中的扩散,故 927℃ 时 , 即 1200K , D≈1.5 ×10-7cm2/s , 渗 碳 10h , 即 3.6×104s, = s[1-erf(x/(4Dt)1/2] , 故C=Co[1-erf(6.8x)], (x/(4Dt)1/2=6.8x 若x=1.2mm=0.12cm, erf(6.8x)=erf(0.816)=0.7421 = s[1-erf(6.8x))=1.3%(1-0.7421)=0.32% 可计算出纯铁中离表面每隔任意x的C%

第四章材料电学性能材料科学基础

第四章材料电学性能材料科学基础

A:极板面积;l: 极板间距离
ε。真空电容率(或真空介电常数),8.85xl0-12 F/m
ε 介质的电容率(或介电常数)
把电介质引入真空电容器,引起极板上 电荷量增加,电容增大,这是由于在电 场作用下,电介质中的电荷发生了再分 布,靠近极板的介质表面上将产生表面 束缚电荷,结果使介质出现宏观的偶极 ,这一现象称为电介质的极化。 极化原因:
R = L/S = L/σS ⑵根据电导率对材料的分类
材料
表4-19材料的分类及其电导率
电阻率/Ω.m
电导率/S. m-1
超导体 导体 半导体 绝缘体
0 10-8-10-5 10-5-107 107-1020
∞ 105-108 10-7-105 10-20-10-7
金属和合金
各种材料在室温的电导率
qi ni i
i
qi ni i
i
qi是第i种载流子的荷电量,负电子、正空穴、 正负离子都可以是诱导电流的载流子。
该式反映电导率σ的微观本质,即宏观电导率σ 与微观载流子的浓度n,每一种载流子的电荷量q 以及每种载流子的迁移率μ的关系。
4-3-2 材料的结构与导电性
1、 材料的电子结构与导电性
根据电流 I = IV + IS (其中,IV为体积电流;IS为表面电流)得出 总电阻与体积电阻和表面电阻之间的关系:
1/R=1/RV+1/RS
2、 电导率(electrical conductivity)
(1)电导是指真实电荷在电场作用下在介质中的迁移, 它是衡量材料电导能力的表观物理量。
单位:S. m-1, 即:(Ω.m)-1
➢ 过渡金属 铁、镍、钴 铁(3S23P63d74S2):具有
未满的d层,过渡金属的d层能夺取较高的s带中的电子而使能量降低, 即d层和s层往往会产生能级交叉现象,故有导电性。

材料科学基础固体中原子及分子的运动

材料科学基础固体中原子及分子的运动

§ 4. 1 表象理论(Phenomenological laws)
扩散(diffusion): 在一个相内因分子或原子的热激活运动导 致成分混合或均匀化Fra bibliotek分子动力学过程。
当外界提供能量时,固体金属中原子或分子偏离平衡位置的周 期性振动,作或长或短距离的跃迁的现象。

加入染料
部分混合
时间
完全混合
碳的扩散方向 Fe-C合金
高碳含量区域
低碳含量区域
4.1.1 菲克第一定律(Fick’s first law)
稳态扩散 (d = 0)
dt
dx
1
2
(1>2)
J
=
d -D

dx
J
J: 扩散通量(mass flux), kg/(m2s) D: 扩散系数(diffusivity), m2/s : 质量浓度,kg/m3
• 描述非稳态扩散(non—steady state diffusion)。在扩 散过程中各处的浓度都随时间变化而变化,因而通过各 处的扩散流量不再相等而随距离和时间发生变化。
• 表达式: = (D )
t x x
• ※ 若D与浓度无关,则表达式: 4.3式(P130)
※ 三维扩散情况且D是各向同性,则表达式: 4.4式
解微分方程 → 引入中间变量和误差函数 → 求通解(式 4.6) → 边界条件和初始条件 → 求特解(式4.7、4.8)
• 2.一端成分不受扩散影响的扩散体--表面热处理过程 。 相当于无限大情况下半边的扩散情况
求解方法同上,特解为(式4.9、4.10 简化式4.11) 初始条件: t=0时,x≥0, = 0 边界条件:t>0时,x=0, = s,x=∞, = o 可解得方程的解 = s [1-erf(x/(4Dt)1/2)]
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
般是C11~C17的直链烷基,或是C3~C8烷基与苯基或萘基结合在一起 的疏水基。
z 阳离子型:通常是一些胺盐和季铵盐。 z 非离子型:聚乙烯醇,聚环氧乙烷等。
乳液聚合最常使用的是阴离子型乳化剂,而非离子型乳化剂一般用做 辅助乳化剂与阴离子型乳化剂配合使用以提高乳液的稳定性。
乳化剂的组成
例:硬脂酸钠(sodium stearate):C17H35COONa
浊点是非离子型乳化剂水溶液随温度升高开始分 相时的温度;在使用非离子型乳化剂时,聚合温度应 在其浊点以下。
4.5.3 乳液聚合机理
4.5.3.1 聚合前单体和乳化剂状态
z 大部分乳化剂形成胶束 胶束内增溶有一定量单体
直径约 4 ~5 n m, 数目为1017-1018个/ cm3
增溶胶束
z 大部分单体分散成液滴
PS
LDPE
工艺过程要点
第一阶段预聚合至10%的转化率,然后浇模分段升温,最 后脱模成板材或者型材。
第一阶段在80-85℃下预聚合,转化率控制在33-35%,然 后送入特殊聚合反应器内在100-220℃温度递增的条件下聚合, 最后熔体挤出造粒。
选用管式或釜式反应器进行连续聚合,控制单程转化率为 15-30%,然后熔体从气相中分离出来,挤出造粒,未反应单体 经精制后循环使用。
直径约 1000 n m, 数目为1010-1012个/ cm3
单体液滴是提供 单体的仓库
z 极少量单体和少量乳化剂以分子分散状态溶解在水中
乳化剂
单体
少量在水相中
大部分形成胶束
小部分增溶胶束内
部分吸附于单体液滴 大部分在单体液滴内
引发剂
大部分在水中
5
4.5.3.2 乳液聚合场所
引发剂溶于水,分解产生自由基,在何种场合引发聚合?
一个小液滴相当于本 体聚合的一个单元。
优 点:
z 体系粘度低,聚合热易扩散,聚合反应温度易控制, 聚合产物分子量分布窄;
z 产品分子量比溶液聚合高,杂质含量比乳液聚合少, 产品纯度高,透明性好。
z 聚合产物为固体珠状颗粒,后处理简单,易分离、干燥。
缺 点:
产品中含有少量分散剂残留物,影响性能。
悬浮单体液滴分散过程示意图
第四章
聚合方法
4.1 引 言
在聚合物的生产发展史上,自由基聚合占主 要地位,自由基聚合主要分为本体聚合、溶液 聚合、悬浮聚合、乳液聚合四种,其中有些方 法也可用于缩聚和离子聚合。
4.1.1 按单体在介质中的分散状态分类
本体聚合
溶液聚合 物 料 乳液聚合
悬浮聚合 本体聚合:单体本身加少量引发剂(甚至不加)的聚合。 溶液聚合:单体和引发剂溶于适当溶剂中的聚合。 悬浮聚合 :单体以液滴状悬浮于水中的聚合。 乳液聚合:单体在水中分散成乳液状态而进行的聚合。
两种成核过程的相对程度取决于单体的水溶性和乳化剂的浓度。 单体水溶性大及乳化剂浓度低,有利于均相成核,反之,则有利于胶 束成核。
4.5.3.4 聚合过程
根据聚合反应速率(或转化率)及体系中单体液滴、 乳胶粒、胶束数量的变化情况,可将乳液聚合分为三个 阶段 :
乳液聚合三个阶段的特点
乳胶粒数 单体液滴数 聚合反应速率
均匀; 4、强化聚合设备的传热; 5、采用紫外光或者辐射引发聚合,降低反应温度,利于热
的传递
工业上多采用分段聚合工艺
预聚合
在较低温度下预聚合,转化率控制在10%~30%,体 系粘度较低,散热较容易;
后聚合
更换聚合设备,分步提高聚合温度,使单体转化率 >90%。
本体聚合的工业实例
高聚物 PMMA
护技术,尽量减少洗釜次数或采用自动化洗釜。工厂中使用氯乙烯 检测器。
今后的发展趋势:
改进聚合釜的清洗方式和减轻粘釜作用。 (高压水冲、溶剂冲洗,釜壁涂不粘壁的物质,停止搅拌法等)
4.5 乳液聚合
4.5.1 简 介
单体在乳化剂的作用下并借助于机械搅拌,在分散介质
中分散断进料、连续出料的聚合。
半连续聚合
单体分批或连续加入反应器,其他组分一次加入。
4.2 本体聚合
不加其它介质,只有单体本身,在引发剂、热、 光等作用下进行的聚合反应。
基本组分
单体:包括气态、液态和固态单体; 引发剂:一般为油溶性; 助剂:色料、增塑剂、润滑剂等。
1
优 点:
溶剂对聚合物溶解性能和凝胶效应的影响
z 选用良溶剂时,为均相聚合,有可能消除凝胶效应,遵循正常 的自由基聚合动力学规律;
z 选用沉淀剂时,则凝胶效应显著,自动加速,分子量增大;
4.4 悬浮聚合
将不溶于水的单体以小液滴状悬浮在水中进行的 聚合,这是自由基聚合一种特有的聚合方法。
基本组分
单体、 引发剂 、水、分散剂
4.3 溶液聚合
将单体和引发剂溶于适当溶剂中,在溶液状态 下进行的聚合反应。
基本组分
单体、 引发剂 、溶剂
聚合场所
溶液内
优 点:
z 聚合热易扩散,聚合反应温度易控制; z 体系粘度低,自动加速作用不明显;反应物料易输送; z 体系中聚合物浓度低,向高分子的链转移生成支化或交
联产物较少,因而产物分子量易控制,分子量分布较窄;
缺 点:
z 单体浓度低,使聚合速率慢,设备生产能力及利用率低; z 易向溶剂链转移,使分子量偏低; z 溶剂分离回收费用高,设备利用率低。
2
选择溶剂时需考虑的两个问题
溶剂对聚合活性的影响
z 溶剂并非绝对惰性,对引发剂的诱导分解使引发效率降低; z 溶剂的加入降低了单体浓度[M],使聚合速率降低; z 链自由基向溶剂链转移的结果使分子量降低。
z 产品中留有乳化剂,影响纯度,且有损电性能。
4.5.2 乳化剂和乳化作用
4.5.2.1 定义
能使油水混合物变成乳状液的物质。通常是一些兼有 亲水的极性基团和疏水(亲油)的非极性基团的表面活性 剂。按其结构可分为三大类(按其亲水基类型):
z 阴离子型:亲水基团一般为-COONa, -SO4Na, - SO3Na等,亲油基一
反比。
悬浮聚合中水的作用
水是悬浮介质和传热介质。但是水中的杂质使得 聚合物带色,性能也下降,而且水中的氧对聚合反应 有阻聚作用,因此悬浮聚合中要使用去离子水。
3
工业实例
z 氯乙烯的悬浮聚合
问题:
¾ 利用温度控制分子量; ¾ 有自动加速现象,利用复合引发剂缩短聚合时间提高转化率; ¾ 安全问题,氯乙烯有毒,关键是防止泄漏,清洗反应釜时注意防
¾ 体系中含单体液滴和乳胶粒; ¾ 乳胶粒数〓 ,体积增大,
乳胶粒内单体浓度[M] 〓, vp 〓
由于乳化剂的存在而增大了难溶单体在水中溶解度的现象称为 “胶束增溶现象”
4.5.2.5 单体在溶有乳化剂的水中的存在状态
增 乳液聚合单体在纯粹的水介质中的溶解度很小,介质中 溶 加入乳化剂后,单体的溶解度有所增加,当乳化剂浓度超过 胶 CMC形成胶束后,小部分单体进入胶束的疏水内层,使胶束 束 体积增大;而大部分单体经搅拌,将分散成细小的液滴(液 滴的大小取决于搅拌强度,一般不小于1µm),液滴的周围 吸附了一层乳化剂分子,非极性基吸附在液滴表面,极性基 伸向水层,形成带电保护层,从而使乳液得以稳定。
□ ¾ 胶束内[M]很高,相当于本体单体浓度;且比表面积大,提供了自由
基扩散进入引发聚合的条件。
4.5.3.3 成核作用和机理
成核作用
生成聚合物乳胶粒的过程。
成核机理
聚合物粒子成核有两个过程,一是自由基由水相扩散进入胶束, 引发增长,这一过程称为胶束成核;另一过程是溶液聚合生成的短链 自由基在水相中沉淀下来,沉淀粒子吸附了乳化剂分子而稳定,紧接 着又扩散进入单体,形成和胶束成核过程同样的粒子,这个过程则称 为均相成核。
通常,乳液聚合体系中,胶束浓度为1017~1018个/cm3, 单体液滴数为1010~1012个/cm3 ,胶束总的表面积比单体液滴 大得多。
4.5.2.6 三相平衡点
离子型乳化剂处于分子溶解状态、胶束、凝胶三 相平衡时的温度。乳液聚合中使用的乳化剂,其三相 平衡点应在聚合温度以下。
三相平衡点是阴离子乳化剂性能指标的重要参数 之一;非离子型乳化剂无三相平衡点,只有浊点。
4.1.2 按相态分类
均相聚合
在聚合反应过程中,单体,引发剂和形成的聚合物均 能完全溶解在反应介质中,整个聚合体系始终为均相的 反应,如大多数本体聚合和溶液聚合。
非均相聚合
单体或聚合物不溶于介质,反应体系存在两相或多相, 如悬浮聚合和乳液聚合一般为非均相聚合。
4.1.3 从工程角度分类
间歇聚合
单体物料一次加入反应器,反应结束后一次出料。
亲油的非极性基团 亲水的极性基团
4.5.2.2 乳化作用
通过添加乳化剂使互不相溶的两相分散而形成稳定而难以分层的乳液.
乳化剂
互不相溶的两相
稳定而难以分层的乳液
z 分散作用:降低表面张力,便于单体分散成细小的液滴,即分散 单体;
z 稳定作用:在单体液滴表面形成保护层,防止凝聚,使乳液稳定;
z 增溶作用:当乳化剂浓度超过一定值时,就会形成胶束,胶束呈 球状或棒状,胶束中乳化剂分子的极性基团朝向水相,非极性基 团伸向胶束内部,能使单体微溶于胶束内。
50~150个分子),称为胶束;
形成胶束的最低乳化剂浓度, 称为临界胶束浓度(CMC),不 同乳化剂的CMC不同,愈小, 表示乳化能力愈强;
z 乳液聚合的乳化剂浓度比CMC高2~3个数量级;
z 胶束的数目和大小取决于乳化剂的量。乳化剂用量多, 胶束数目多而粒子小,即胶束的表面积随乳化剂用量 增加而增加。
在搅拌的剪切力作用下,单体液层分散成液滴。单体和 水界面间存在界面张力,界面张力越大,形成液滴也越大。 剪切力和界面张力对成滴作用影响相反在一定搅拌强度和界 面张力下,液滴通过一系列分散、合并过程,构成动平衡, 最后达到一定的平均细度。
相关文档
最新文档