基于STM控制的自动往返电动小汽车

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于STM控制的自动往返电动小汽车

————————————————————————————————作者:————————————————————————————————日期:

湖南科技大学信息与电气工程学院

《STM32控制自动往返小汽车》

设计报告

专业:电子信息工程

班级:二班

姓名:曾有根

学号:0904030218

指导教师:罗朝辉

自动往返电动小汽车

本设计民用STM32作为自动往返小汽车的检测和控制核心,辅以传感器、控制电路、显示电路等外围器件,构成了一个车载控制系统。路面黑线检测使用反射式红外传感器,利用PWM技术动态控制电动机的转速。基于这些完备而可靠的硬件设计,使用了一套独特的软件算法,实现了小车在限速和压线过程中的精确控制。电动小汽车能够根据题目要求在直线方向上完成调速、急刹车、停车、倒车返回等各种运动形式;这辆小车还可以自动记录、显示一次往返时间和行驶距离,并用蜂鸣器提示返回起点。另外,我们经过MATLAB仿真后,成功地实现了从最高速降至低速的平稳调速。

本系统主要采用模糊控制算法进行速度调节。通过模糊控制和PWM脉宽调制技术的结合,提高了对车位置控制精度,并且实现了恒速控制。

关键词:PWM,STM32F103,电机,传感器

前言

嵌入式技术依靠其体积小、成本低、功能强等特点,适应了智能化发展的最新要求。单片机作为控制系统的微处理器,在数据处理和代码存储等方面都已经无法满足系统的要求,ARM微处理器资源丰富,具有良好的通用性。Cortex-M3是ARM公司最新推出的第一款基于ARMv7体系的处理器内核。它主要针对MCU领域,在存储系统、中断系统、调试接口等方面做了较大的改进,有别于过去的ARM7处理器;Cortex-M3具有高性能、低功耗、极低成本、稳定等诸多优点,非常适合汽车电子、工业控制系统、医疗器械、玩具等领域。基于Cortex-M3内核的STM32系列处理器于2007年由ST公司率先推出,它集先进Cortex-M3内核结构、出众创新的外设、良好的功耗和低成本于一体,极大的满足自动控制系统设计要求。作为先进的32位通用微控制器的领跑者,STM32以其出众的性能、丰富且灵活的外设、很高的性价比以及令人意外的功耗水准,使其自面世以来得到众多设计者的青睐,众多行业领导者纷纷选用STM32作为新一代产品的平台。因此将STM32F103应用于智能小车的控制系统是一种较好的选择。

基于此,本文提出了一个比较合理的智能小车系统设计方案。整个小车系统以STM32F103芯片为控制核心,附以外围电路,利用红外探测器、触角传感器采集外界信息和检测障碍物;充分利用STM32F103的串口、并口资源和高速的

运算、处理能力,来实现小车自动识别路线按迹行走、躲避障碍物,并且通过LCD 显示器实时显示小车运动参数;配置STM32F103通用定时器为PWM 输出模式产生PWM 波,通过步进调节PWM 波占空比参数控制电机的转速。

第一章 系统方案论证与分析

根据题目中的设计要求,本系统主要由主控单片机模块、电源模块、电机驱动模块、黑线检测模块、测速模块以及液晶显示模块构成。本系统的方框图如下图所示:

1、 主控单片机

根据题目要求,控制器主要用于控制电机的运动,黑线的检测以及相关信息的显示。对于控制器的选择主要有以下两种方案:

方案一:采用51系列单片机作为控制器。51系列单片机应用广泛,技

术成熟,但是运行速度慢,内部资源较少,且只有2个定时计数器,不满足题目要求。

方案二:采用STM32作为控制器。基于Cortex- M3内核的STM32F10x 系列芯片是新型的32位嵌入式微处理器,其性能优良,移植性好,提高了对直流

STM L298电机驱动芯片 黑线检测模块

测速模块 电源模块

TFT 显示

电机的控制效率,并对控制系统进行模块化设计,有利于智能小车的功能扩展和升级。

综上,我们选用了方案一,采用了STM32,该单片机价格便宜,资源足够。

2、电动机驱动模块

方案一:

采用达林顿管阵列ULN2003驱动芯片。ULN2003是7通道高电压、大电流驱动器,并联端口可以加大输出电流,对直流电机具有良好驱动能力。但其结构决定驱动直流电机只能是单方向的,不能驱动直流电机反转,这与题目要求不符。方案二:

采用继电器对电动机的开或关进行控制,通过开关的切换对小车的速度进行调整。这个方案的优点是电路较为简单,缺点是继电器的响应时间慢、机械结构易损坏、寿命较短、可靠性不高。

方案三:

采用双H桥驱动芯片L298。其内部包含4通道逻辑驱动电路,可以方便的驱动两个直流电机,或一个两相步进电机。L298的逻辑电平与51单片机匹配,可以与其直接相连。控制芯片的驱动使能端就可以控制驱动电机的速度。L298对直流电机具有良好的驱动控制能力,故这里选择方案三。

3、路面黑线检测模块选择

方案一:

采用发光二极管与光敏电阻,利用光敏电阻的阻值变化来控制信号。由于外界光亮条件不定,一旦光线条件改变很可能造成误判和漏判;虽然采取超高亮发光管可以降低一定的干扰,但这用将增加额外的功率损耗。

方案二:

采用红外线控制的反射式红外对管。红外对管只对红外线具有较高灵敏度,从而避免了外界光线的干扰;跑道黑带能够吸收红外线,而白色跑道能够反射红外线,从而检测到跑道黑带。

方案选择:光敏电阻的易干扰性和红外对管的单一灵敏行决定方案二具有较好控制作用。

4、里程计算与计时模块选择

方案一:

采用霍尔传感器。该器件内部由三篇霍尔金属板组成,当磁铁正对金属板时,由于霍尔效应,金属板发生横向导通,发出低电平信号。因此可以在车轮上安装微型磁铁,而将霍尔传感器安装在固定轴上,通过对脉冲的计数进行车速测量。方案二:

采用检测黑线的方法,每经过一条黑线就增加相应的里程数,并通过定时器计时。

方案选择:

相比而言,方案二不需要另外的传感器,计算方便,定时器也很精确,故选择方案二。

图2.1 电机控制系统框图

由系统框图可看出,小车整个控制系统设计主要包括电机驱动、液晶显示、键盘扩展电路、触角传感电路、红外收发检测电路等模块。整个系统的硬件电路设计原理图见附录,下面分别介绍各部分模块的设计。

一、主要电路设计

1、STM32F103及外围电路设计

本设计采用STM32F103为主控芯片,则STM32F103芯片的最小系统设计如图1.2、1.3所示。

相关文档
最新文档