初中数学中考知识点汇总
中考数学知识点归纳
中考数学知识点归纳中考数学是初中数学教育的重要组成部分,涵盖了多个知识点,主要包括代数、几何、统计与概率等。
以下是中考数学的知识点归纳:代数部分:1. 数与式:包括有理数、实数的概念,数轴的表示方法,以及代数式的运算法则。
2. 方程与不等式:一元一次方程的解法,一元二次方程的解法,不等式的解集表示,以及不等式的应用。
3. 函数:函数的概念,自变量与因变量的关系,一次函数、二次函数和反比例函数的图象与性质。
4. 指数与对数:指数运算法则,对数运算法则,以及指数函数和对数函数的图象与性质。
几何部分:1. 图形的性质:点、线、面的基本性质,直线、射线、线段的区别和联系。
2. 角与三角形:角的分类,三角形的内角和定理,特殊三角形的性质(等边、等腰、直角三角形)。
3. 四边形:平行四边形、矩形、菱形、正方形的性质和判定。
4. 圆:圆的性质,切线的性质,圆周角定理,弧长和扇形面积的计算。
5. 相似与全等:图形的相似和全等的判定方法,以及相似三角形的性质。
统计与概率部分:1. 数据的收集与处理:数据的收集方法,数据的整理与描述,包括条形图、折线图、饼图等。
2. 统计量:平均数、中位数、众数、方差、标准差等统计量的概念和计算方法。
3. 概率:事件的分类,概率的计算方法,包括古典概型和几何概型。
解题技巧与策略:1. 审题:仔细阅读题目,理解题目要求。
2. 画图:对于几何问题,画图可以帮助直观理解问题。
3. 列式:对于代数问题,列出相应的方程或不等式。
4. 检查:解题后要检查答案是否合理,是否符合题目要求。
结束语:中考数学的知识点广泛,需要同学们在平时的学习中不断积累和巩固。
通过系统地复习和练习,掌握解题技巧,提高解题能力,相信每位同学都能在中考中取得优异的成绩。
中考数学复习知识点归纳总结7篇
中考数学复习知识点归纳总结7篇篇1一、数与代数(一)数的认识1. 自然数的认识:自然数是指用以计量事物的件数或表示事物次序的数。
即用数码0,1,2,3,4……所表示的数。
中考中可能会涉及自然数的连续性及自然数的个数等问题。
复习时需要注意对自然数概念的理解及运用。
2. 整数的认识:整数包括正整数、零和负整数。
在中考复习中,需要掌握整数的性质、运算规则以及与分数的区别等知识点。
(二)代数式与方程1. 代数式的认识:代数式是由数字、字母和数学符号组成的一种数学表达式。
在中考复习中,需要掌握代数式的简化、代入计算等知识点。
同时还需要加强对代数式在实际问题中应用的能力培养。
如与面积计算、路程问题等结合出题的情况很常见。
例如“给出多边形的一条边长为a米,与其相邻的两边之差的代数式是:______________”。
因此类题目较为灵活,需要考生具备一定的数学思维和解题技巧。
(三)数的运算与性质篇2一、数与代数(一)数的认识1. 自然数的认识:自然数是指用以计量事物的件数或表示事物次序的数。
即用数码0,1,2,3,4……所表示的数。
2. 整数的认识:整数是自然数中的一部分,包括正整数和负整数。
它们在日常生活中的应用非常广泛。
3. 小数、分数与百分数的认识:熟练掌握小数、分数与百分数的概念及其相互转化,对于数学计算和应用题的解答至关重要。
(二)代数知识1. 代数式的认识与运算:掌握代数式的概念、性质及运算规则,能够熟练进行代数式的化简、求值等。
2. 方程与不等式的应用:掌握一元一次方程、不等式及其解法,能够灵活运用方程与不等式解决实际问题。
二、几何知识(一)平面几何1. 图形的认识:熟练掌握各种基本图形的性质、分类及相互之间的关系。
2. 图形的测量:掌握各种图形的周长、面积等测量方法,能够熟练计算图形的面积和周长。
3. 图形的变换:了解图形的平移、旋转、翻折等变换方式,掌握其性质和应用。
(二)立体几何1. 长方体与正方体的认识:掌握长方体与正方体的性质、体积和表面积的计算方法。
中考数学必考知识点大全
中考数学必考知识点大全1.整数的加减乘除运算:掌握整数的加减乘除运算法则,包括加法、减法、乘法和除法。
2.分数的加减乘除运算:掌握分数的加减乘除运算法则,包括分数的加法、减法、乘法和除法。
3.百分数的计算:掌握百分数的计算方法,包括百分数的转化和百分数之间的比较。
4.小数的加减乘除运算:掌握小数的加减乘除运算法则,包括小数的加法、减法、乘法和除法。
5.整式的加减乘除运算:掌握整式的加减乘除运算法则,包括整式的加法、减法、乘法和除法。
6.一元一次方程与一元一次不等式:掌握一元一次方程和一元一次不等式的解法和问题的应用。
7.二次根式:掌握二次根式的定义和性质,包括二次根式的化简和运算。
8.平方根与立方根:掌握平方根和立方根的计算方法和性质,包括平方根和立方根的开放计算和化简。
9.平面图形的面积和周长:掌握各种平面图形的面积和周长的计算方法,包括矩形、正方形、三角形、梯形、圆等。
10.空间图形的体积和表面积:掌握各种空间图形的体积和表面积的计算方法,包括长方体、正方体、三棱锥、四棱锥、棱柱、棱台、球等。
11.初等概率与统计:掌握初等概率和统计的基本概念和计算方法,包括样本空间、事件、概率、频率、直方图等。
12.等比数列与等差数列:掌握等比数列和等差数列的定义和性质,包括等比数列和等差数列的通项公式和求和公式。
13.直角三角形的性质与应用:掌握直角三角形的性质和定理,包括勾股定理、正弦定理、余弦定理等。
14.平行线与相交线:掌握平行线和相交线的基本性质和判定方法,包括平行线的性质、相交线的性质和相交线的角度关系。
15.二次函数与二次方程:掌握二次函数和二次方程的定义和性质,包括二次函数的图像、二次方程的解法和二次函数和二次方程在实际问题中的应用。
中考数学的所有知识点归纳
中考数学的所有知识点归纳中考数学是初中阶段数学学习的重要总结,它涵盖了多个数学领域的知识点。
以下是中考数学所有知识点的归纳:一、数与代数1. 数的认识:包括自然数、整数、有理数、无理数、实数等。
2. 数的运算:四则运算、乘方、开方、绝对值、倒数等。
3. 代数式:代数式的基本运算、同类项、合并同类项、代数式的化简等。
4. 方程与不等式:一元一次方程、一元二次方程、不等式、方程组的解法等。
5. 函数:函数的概念、性质、图象、一次函数、二次函数等。
二、几何1. 平面图形:线段、角、三角形、四边形、圆等基本图形的性质。
2. 图形的变换:平移、旋转、反射等。
3. 相似与全等:相似三角形、全等三角形的判定与性质。
4. 圆的性质:圆周角、切线、弧长、扇形面积等。
5. 立体几何:立体图形的表面积、体积计算。
三、统计与概率1. 数据的收集与处理:数据的收集、整理、描述。
2. 统计图:条形统计图、折线统计图、饼图等。
3. 平均数、中位数、众数:计算方法及其意义。
4. 方差:衡量数据的离散程度。
5. 概率:事件的概率、概率的计算方法。
四、综合应用1. 数学建模:将实际问题转化为数学问题进行求解。
2. 问题解决:运用数学知识解决实际问题。
3. 创新思维:培养创新思维,解决新颖的数学问题。
结束语中考数学的知识点广泛,要求学生具备扎实的数学基础和灵活的解题能力。
通过系统地复习和练习,学生可以更好地掌握数学知识,为中考做好充分的准备。
希望以上的归纳能够帮助学生更好地理解和复习中考数学的知识点。
2024初中数学知识点中考总复习总结归纳
2024初中数学知识点中考总复习总结归纳一、整数和分数运算1.整数的四则运算:加法、减法、乘法、除法2.分数的四则运算:分数的加减法、乘法、除法3.整数与分数的混合运算:转化为同种形式进行运算二、多项式的运算1.单项式与多项式的加减法:同类项的合并2.多项式的乘法:使用分配律展开式相乘,并合并同类项3.多项式的除法:使用长除法进行整除或整除后的简化三、方程与不等式1.一元一次方程:基本概念、解方程的基本方法(逆运算、倒数、代入等)2.一元一次方程的应用:问题转化为方程、代入解的检验等3.一元二次方程的解:配方法、求根公式4.一元二次方程的应用:问题转化为方程、代入解的检验等5.一元一次不等式:基本概念、解不等式的基本方法(逆运算、倒数、代入等)6.一元一次不等式的应用:问题转化为不等式、代入解的检验等四、数形结合与图形的性质1.平面图形的拓展:几何图形的基本概念、性质和判定方法(例如多边形、平行四边形、正方形等)2.三角形与四边形的面积:基本公式的推导和应用3.三角形的相似与全等:判断相似与全等的条件及应用4.圆的性质与关系:圆心角、弧长、扇形和面积的计算5.空间几何体的计算:体积和表面积的计算五、几何与运动的关系1.几何与坐标系:点的坐标及其在平面直角坐标系中的性质2.直线与圆的方程:点斜式、斜截式和截距式的互相转换及应用3.运动方程:速度、时间、距离之间的关系及其应用六、数据与概率1.数据的整理与处理:频数、频率、中位数、众数、范围等的计算和应用2.统计图的绘制与分析:条形图、折线图、扇形图等的绘制和分析3.概率的计算:事件的排列组合、概率的计算公式以上是2024初中数学中考的一些重要知识点的总结归纳,希望对您的复习有帮助。
初三数学知识点总结梳理
初三数学知识点总结梳理第一章:有理数与实数1. 整数的概念与性质- 整数的定义及其表示方法- 整数的比较、运算规则和性质- 整数的绝对值及其性质- 整数的约数与倍数- 整数的倒数的概念与性质2. 有理数的概念与性质- 有理数的定义及其表示方法- 有理数的比较、运算规则和性质- 有理数的绝对值及其性质- 有理数的相反数和倒数的概念与性质- 有理数的大小关系3. 实数的概念与性质- 实数的定义与分类- 实数的基本性质- 实数的大小关系- 实数的逼近性质第二章:代数式与方程式1. 代数式的概念与性质- 代数式的定义与表示方法- 同类项与同类项合并- 代数式的化简与展开2. 方程式的概念与性质- 方程式的定义与性质- 一元一次方程的解的存在与唯一性- 一元一次方程的变形与解法- 一元一次方程组的概念与解法- 一元二次方程的求解与判别式3. 不等式的概念与性质- 不等式的定义与性质- 不等式的解集的表示- 一元一次不等式与一元一次方程的联系与比较- 一元一次不等式组的概念与解法第三章:平面图形与空间图形1. 平面图形的概念与性质- 点、线、面的定义与性质- 角的定义、性质及其分类- 平行线与垂直线的判定条件- 三角形的定义及其分类- 三角形的内角和及其应用- 三角形的相似与全等的概念与判定条件2. 空间图形的概念与性质- 四面体、正四面体、正六面体的定义与性质- 柱、锥棱的定义与性质- 平面与空间图形的相交关系3. 图形的投影与观察- 立体图形的投影与观察方法- 投影的性质与应用- 平行线与投影的关系第四章:初等几何与解析几何1. 初等几何的基本概念与定理- 点、线、面、角的定义与性质- 垂线、平分线、中位线的概念与性质- 垂直、平行、全等三角形的判定条件- 三角形内角和的计算方法- 直角三角形、等腰三角形、等边三角形的定理2. 解析几何的基本概念与方法- 点、坐标系的定义与性质- 坐标的运算法则与性质- 直线、圆的方程与性质- 直线的稳定与相关性质- 圆的位置关系与性质3. 二次函数的概念与性质- 二次函数的定义与表示方法- 二次函数的图像与性质- 二次函数的最值与零点的求解方法- 二次函数与方程、不等式、直线的关系与应用第五章:数与变量1. 整式的概念与性质- 整式的定义与运算规则- 整式的因式分解与乘法公式- 整式的化简- 整式的值与单位问题2. 分式的概念与性质- 分式的定义与基本运算规则- 分式的化简与恒等式- 分式的值与解3. 幂与根的概念与性质- 幂的定义与运算规则- 根的定义与运算规则- 幂与根的化简- 幂与根的近似计算与应用。
初中中考数学必考知识点
初中中考数学必考知识点
一、整数与有理数
1. 整数的概念及性质
2. 整数的加减乘除运算法则
3. 整数的混合运算
4. 有理数的概念及性质
5. 有理数的加减乘除运算法则
6. 有理数的比较大小
7. 有理数的混合运算
二、代数与方程
1. 代数式的概念及运算法则
2. 一元一次方程的概念及解法
3. 一元一次方程组的概念及解法
4. 二元一次方程组的概念及解法
5. 带有绝对值符号的方程及不等式
三、几何与图形
1. 角的概念及种类
2. 一次构图问题
3. 二次构图问题
4. 三角形的性质及分类
5. 直角三角形与勾股定理
6. 平面镶嵌问题
四、数据与统计
1. 平均数、中位数和众数的概念及计算方法
2. 折线图的绘制与解读
3. 条形统计图、饼图和表格的制作与分析
五、函数与图像
1. 函数的概念及表示方法
2. 一次函数与二次函数的性质
3. 函数图象的绘制及分析
六、概率与统计
1. 概率的基本概念及计算方法
2. 抽样调查与统计的基本方法
3. 事件的概念及概率的运算规则
七、空间与变换
1. 空间图形的展开与剖视图的绘制
2. 刚体变换的概念及性质
以上是初中中考数学中的必考知识点,掌握了这些知识,就能对数学考试有一个较为全面的准备。
希望同学们能够认真学习,掌握这些知识,并在考试中取得优异的成绩!。
中考数学复习知识点归纳总结6篇
中考数学复习知识点归纳总结6篇篇1一、数与代数1. 数的基本概念:整数、分数、小数、百分数、比例、方程等。
2. 数的运算:加减乘除四则运算,乘方、开方运算,分数运算,小数运算等。
3. 代数表达式:用字母表示数,表达数量关系和变化规律。
4. 方程与不等式:解一元一次方程,解一元一次不等式,理解函数的概念。
二、几何与图形1. 几何概念:点、线、面、体,角、度数,平行、垂直等基本几何概念。
2. 图形与变换:平移、旋转、对称等图形变换,相似图形,全等图形。
3. 面积与体积:计算平面图形的面积,计算立体图形的体积。
4. 解析几何:理解直线的方程,理解圆及其方程。
三、函数与图像1. 函数的概念:理解变量间的关系,用解析式表示函数关系。
2. 函数的运算:函数的加减法,函数的乘法,复合函数。
3. 函数的图像:理解函数的图像及其变换,根据图像理解函数的性质。
4. 反函数与对称函数:理解反函数的概念,理解对称函数的概念。
四、数据与概率1. 数据收集与整理:理解数据收集的方法,会用统计图表表示数据。
2. 数据的计算:平均数、中位数、众数等统计量的计算,方差和标准差的计算。
3. 概率的概念:理解概率的基本概念,会计算事件的概率。
4. 概率的应用:理解概率在生活中的应用,会解决与概率相关的问题。
五、综合与实践1. 图形的变换与对称:运用几何知识解决实际问题,理解图形的变换和对称。
2. 函数的实际应用:理解函数在实际问题中的应用,如利润、成本等问题。
3. 数据的分析与决策:运用统计知识解决实际问题,理解数据的分析与决策。
4. 课题学习与研究性学习:理解课题学习与研究性学习的意义和方法。
在中考数学复习过程中,我们需要对以上知识点进行全面的梳理和总结,形成系统的知识框架。
同时,我们需要关注考试动态和命题趋势,结合历年真题进行有针对性的练习和巩固。
此外,我们还要注重解题技巧和策略的学习和应用,提高解题效率和准确性。
希望同学们能够认真复习备考,取得优异的成绩!篇2一、数与代数(一)数的认识复习要点:整数、小数、分数、百分数的认识及其关系,数的运算规则和运算性质。
2024中考数学知识点总结
2024中考数学知识点总结一、数与式1. 数的分类与立法运算- 自然数、整数、有理数、无理数的概念及相互关系。
- 自然数、整数、有理数的加减法、乘除法的规则。
- 无理数的定义及有理数与无理数的运算。
2. 数的积、商和负数- 实数的积的符号规定及实数的乘法运算律。
- 正数和负数的乘法及除法。
- 负数的概念及运算。
3. 数轴及整式的定义和四则运算- 数轴的概念与表示法。
- 整数的概念及整式的定义。
- 整式的加减法和乘法。
4. 一元一次整式方程- 整式方程的概念和解一元一次整式方程的方法。
- 一元一次整式方程的实际应用。
二、图形与运算1. 基本图形、圆与弦- 正方形、长方形、平行四边形、等腰三角形、直角三角形、等边三角形等基本图形的性质与判断。
- 圆的概念、圆心角、弧与弧长的关系。
2. 平移、旋转与镜像- 平面上的平移、旋转和镜像的概念及判断。
- 图形的平移、旋转和镜像的性质及判断。
3. 直线、角、三角- 直线的概念及判断。
- 角的概念、相邻角、对顶角、对角线等性质及判断。
- 三角形的分类、判断和性质。
4. 相交线与平行线- 平行线与相交线的性质及判断。
- 平行线与平行线的性质及判断。
5. 不等式、区间与正数幂- 不等式的概念及解不等式的方法。
- 区间的概念及判断。
- 正数指数与幂以及具体问题的表示与计算。
三、函数与图像1. 函数的概念与运算- 函数的定义及函数与方程的关系。
- 函数的运算规则。
- 函数的自变量与因变量的关系。
2. 一次函数和二次函数- 一次函数的定义、图象及特征。
- 一次函数的性质及应用。
- 二次函数的定义、图象及特征。
3. 方程与函数- 方程与函数的关系及解方程的基本思路。
- 一次方程、二次方程的定义、方法及应用。
4. 极大极小值- 极大极小值的概念、条件。
- 一元二次函数的极大极小值的应用。
5. 图像的平移与缩放- 图像平移的概念、规律及图示。
- 图像缩放的概念、规律及图示。
6. 函数的定义域和值域- 函数定义域的概念及计算。
中考数学知识点总结初中
中考数学知识点总结初中一、数与代数1. 整数和有理数- 整数的概念:正整数、零、负整数及其运算(加、减、乘、除)。
- 有理数的概念:整数和分数统称为有理数,包括正有理数、零、负有理数。
- 有理数的运算:加法、减法、乘法、除法、乘方、开方。
2. 代数表达式- 单项式:数字与字母的积,只含有一个项。
- 多项式:由若干个单项式相加或相减组成的代数式。
- 同类项:所含字母相同,且相同字母的指数也相同的项。
- 合并同类项:将多项式中的同类项相加或相减。
3. 等式与不等式- 等式的性质:等式两边同时加上或减去同一个数,等式仍然成立。
- 不等式的性质:不等式两边同时加上或减去同一个数,不等号方向不变。
- 解一元一次方程:通过移项、合并同类项、系数化为1求解。
- 解一元一次不等式:依据不等式的性质进行求解。
4. 函数- 函数的概念:描述变量间依赖关系的数学表达式。
- 函数的表示:用x和y表示自变量和因变量,f(x)表示函数关系。
- 线性函数:形如y=kx+b的函数,其中k和b是常数。
- 反比例函数:形如y=k/x的函数,k为常数。
5. 应用题- 列方程解应用题:根据题意建立等式关系,求解未知数。
- 列不等式解应用题:根据题意建立不等式关系,求解满足条件的取值范围。
二、几何1. 平面图形- 点、线、面的概念:点无大小,线有长度无宽度,面有长度和宽度。
- 角的概念:两条射线的夹角,包括邻角、对顶角、同位角等。
- 三角形:分类(锐角三角形、直角三角形、钝角三角形)、性质、内角和定理。
- 四边形:分类(平行四边形、矩形、菱形、正方形)、性质、对角线关系。
2. 圆- 圆的概念:平面上所有与给定点(圆心)距离相等的点的集合。
- 圆的性质:半径、直径、弦、弧、切线、圆周角等。
- 圆的计算:圆的周长、面积公式。
3. 几何变换- 平移:图形沿直线移动,大小和形状不变。
- 旋转:图形绕一点转动一定角度,大小和形状不变。
- 轴对称:图形关于某条直线对称,称为轴对称图形。
中考初中数学知识点大全(详细、全面)
中考初中数学知识点大全(详细、全面)第一章 实数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数 2、无理数在理解无理数时,要抓住“无限不循环”这一实质,归纳起来有四类: (1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o等考点二、实数的倒数、相反数和绝对值 (3分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根 (3—10分)1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±”。
2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0) 0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
初中中考常考数学知识点归纳总结(8篇)
初中中考常考数学知识点归纳总结(8篇)掌握中考常考数学知识点是我们提高成绩的关键!在平时的学习中,不管我们学什么,都需要掌握一些知识点,知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。
下面是小编给大家整理的初中中考常考数学知识点归纳总结,仅供参考希望能帮助到大家。
初中中考常考数学知识点归纳总结篇11.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
整式和分式统称为有理式。
2.整式和分式含有加、减、乘、除、乘方运算的代数式叫做有理式。
没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。
有除法运算并且除式中含有字母的有理式叫做分式。
3.单项式与多项式没有加减运算的整式叫做单项式(数字与字母的积—包括单独的一个数或字母)。
几个单项式的和,叫做多项式。
说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。
②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。
划分代数式类别时,是从外形来看。
如=x,=│x│等。
4.系数与指数区别与联系:①从位置上看;②从表示的意义上看;5.同类项及其合并条件:①字母相同;②相同字母的指数相同合并依据:乘法分配律6.根式表示方根的代数式叫做根式。
含有关于字母开方运算的代数式叫做无理式。
注意:①从外形上判断;②区别:是根式,但不是无理式(是无理数)。
7.算术平方根⑴正数a的正的'平方根([a≥0—与“平方根”的区别]);⑵算术平方根与绝对值①联系:都是非负数,=│a│②区别:│a│中,a为一切实数;中,a为非负数。
8.同类二次根式、最简二次根式、分母有理化化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。
满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。
把分母中的根号划去叫做分母有理化。
中考初中数学知识点总结
中考初中数学知识点总结初中数学是学生在中学阶段接触的数学基础知识的重要部分,它为高中及以后的数学学习打下坚实的基础。
中考数学主要考察学生对初中数学知识点的掌握程度和运用能力。
以下是中考数学的主要知识点总结:# 1. 数与代数- 有理数:包括整数、分数、小数等有理数的认识、比较大小、四则运算及其运算律。
- 整式与分式:涉及整式的加减乘除、乘方、因式分解;分式的加减乘除运算和分式方程的解法。
- 方程与不等式:一元一次方程、二元一次方程组的解法;一元一次不等式和一元一次不等式组的解集求解。
- 函数:函数的概念、性质、图象,重点是一次函数、二次函数和反比例函数的解析式、图象和性质。
# 2. 几何- 图形初步:点、线、面、体的基本概念;直线、射线、线段;角的概念及其分类。
- 三角形:三角形的分类、性质;全等三角形的判定与性质;等腰三角形和等边三角形的性质;三角形的面积计算。
- 四边形:四边形的分类与性质;平行四边形、矩形、菱形、正方形的性质和判定;梯形的性质和中位线定理。
- 圆:圆的基本性质;圆的面积和周长;扇形、弧长、圆锥的侧面积和全面积的计算;切线的性质和判定。
- 相似与全等:图形的相似;相似三角形的判定和性质;全等三角形的判定和性质。
# 3. 统计与概率- 统计:数据的收集、整理、描述和分析;平均数、中位数、众数的概念和计算;频率分布表和直方图的绘制与解读。
- 概率:随机事件的概率;概率的计算方法;用树状图或列表法解决简单的概率问题。
# 4. 解题方法与技巧- 列方程解应用题:根据问题情境列出方程或方程组,解决实际问题。
- 图形的变换:图形的平移、旋转、对称等变换及其在解题中的应用。
- 证明方法:合情推理与演绎推理;证明全等三角形和相似三角形的基本方法。
- 综合应用:将所学知识综合运用,解决较为复杂的数学问题。
# 5. 考试技巧- 时间管理:合理分配答题时间,确保每题都有足够的时间思考和解答。
- 审题:仔细阅读题目,准确把握题目要求,避免因误解题意而失分。
数学中考知识点归纳2024
数学中考知识点归纳2024一、数与代数。
(一)有理数。
1. 有理数的概念。
- 整数和分数统称为有理数。
整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。
- 能准确区分有理数和无理数,无理数是无限不循环小数,如π、√(2)等。
2. 有理数的运算。
- 加法:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数。
- 减法:减去一个数,等于加上这个数的相反数。
- 乘法:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘都得0;几个不为0的数相乘,负因数的个数为偶数时,积为正,负因数的个数为奇数时,积为负。
- 除法:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数都得0。
- 乘方:求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。
a^n中,a 叫做底数,n叫做指数。
正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。
- 运算顺序:先算乘方,再算乘除,最后算加减;有括号的先算括号里面的。
(二)实数。
1. 平方根、算术平方根、立方根。
- 平方根:如果x^2 = a(a≥slant0),那么x叫做a的平方根,记作x=±√(a)。
- 算术平方根:正数a的正的平方根叫做a的算术平方根,记作√(a),0的算术平方根是0。
- 立方根:如果x^3 = a,那么x叫做a的立方根,记作x = sqrt[3]{a}。
2. 实数的大小比较。
- 正数大于0,0大于负数,正数大于负数。
- 两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小。
- 还可以通过数轴比较实数大小,数轴上右边的数总比左边的数大。
(三)代数式。
1. 代数式的概念。
- 用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式。
中考初中数学知识点大全(详细、全面)
中考初中数学知识点大全(详细、全面)中考初中数学知识点大全(详细.全面)第一章实数考点一.实数的概念及分类(3分)1.实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2.无理数在理解无理数时,要抓住“无限不循环”这一实质,归纳起来有四类:(1)开方开不尽的数,如等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o等考点二.实数的倒数.相反数和绝对值(3分)1.相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=10分)1.平方根如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a的平方根记做“”。
2.算术平方根正数a的正的平方根叫做a的算术平方根,记作“”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
(0);注意的双重非负性: -(0时,方程有两个不相等的实数根;(2)当△=0时,方程有两个相等的实数根;(3)当△0 b>0 y 0 x 图像经过一.二.三象限,y随x的增大而增大。
b 0 0 x 图像经过一.二.四象限,y随x的增大而减小 b0时,图像经过第一.三象限,y随x的增大而增大;(2)当k0时,y随x的增大而增大;(2)当k0 k0时,函数图像的两个分支分别在第一.三象限。
在每一象限内,y 随x 的增大而减小。
①x的取值范围是x0, y的取值范围是y0;②当k0 a时,y随x的增大而增大,简记左减右增;(4)抛物线有最低点,当x=时,y有最小值,(1)抛物线开口向下,并向下无限延伸;(2)对称轴是x= ,顶点坐标是(,);(3)在对称轴的左侧,即当x时,y随x的增大而减小,简记左增右减;(4)抛物线有最高点,当x=时,y有最大值,2.二次函数中,的含义:表示开口方向:>0时,抛物线开口向上 0时,图像与x轴有两个交点;当=0时,图像与x轴有一个交点;当<0时,图像与x轴没有交点。
初中数学知识点整理大全中考数学所有知识点总结
初中数学知识点整理大全中考数学所有知识点总结一、整数与有理数1.整数的概念与运算2.整数的加法与减法3.整数的乘法与除法4.整数的混合运算5.有理数的概念与运算6.有理数的加法与减法7.有理数的乘法与除法8.有理数的混合运算二、比例与消费税1.比例的概念与性质2.比例的等价性质3.比例的四则运算4.比例与图形5.比与比例6.相似形与比例7.比例的应用8.消费税的概念与计算三、代数基础1.代数式的概念与运算2.代数式的加减法与混合运算3.同类项与合并同类项4.代数式的乘法与乘法公式5.代数式的除法与除法公式6.代数式的开方与乘方7.代数方程的概念与解法8.代数方程的应用四、图形的认识1.平面图形的基本概念2.三角形的分类与性质3.三角形的周长与面积4.四边形的分类与性质5.矩形、正方形与平行四边形6.五边形、六边形与圆7.图形的变换8.图形的相似与全等五、分数与百分数1.分数的意义与表示2.分数的化简与约分3.分数的加法与减法4.分数的乘法与除法5.分数与整数的混合运算6.分数与小数的相互转换7.百分数的概念与表示8.百分数的相互转化与运算六、数据的分析1.统计图的认识与应用2.统计图的制作与解读3.数据的集中趋势与分散程度4.数据的描摹与预测5.概率的概念与计算6.概率的实际应用7.信息的收集与处理8.统计的思想与方法七、线性方程组1.一元一次方程和一元一次不等式2.一元一次方程和一元一次不等式的应用3.线性方程组的概念与解法4.线性方程组的应用5.二元一次方程组与不等式组的概念与解法6.二元一次方程组与不等式组的应用7.二元一次方程组与不等式组的图像与性质8.多个线性方程组与不等式组的解法和应用八、几何运动与不等式1.坐标系与平面直角坐标系2.二次函数与直线3.不等式的解法与应用4.不等式系统的解法与应用5.几何运动的基本概念与性质6.几何运动的应用7.速度与加速度8.解直线方程与几何运动的应用九、角与三角函数1.角的概念与度量2.角的几何关系3.角的平分线与垂直线4.角的合角与差角5.三角函数的概念与计算6.三角函数的应用7.三角恒等变换与证明8.三角函数的图象与性质十、平面向量与解析几何1.平面向量的概念与运算2.平面向量的线性运算3.平面向量的共线与垂直4.平面向量的坐标表示与加法5.平面向量与三角形的关系6.平面向量与中点、向量积7.解析几何基础知识8.解析几何的应用。
初三数学必考知识点汇总
初三数学必考知识点汇总一、一元二次方程。
1. 定义。
- 只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程。
一般形式为ax^2+bx + c=0(a≠0),其中ax^2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
2. 解法。
- 直接开平方法:对于方程x^2=k(k≥0),解得x=±√(k)。
例如方程(x - 3)^2=4,则x - 3=±2,解得x = 1或x = 5。
- 配方法:将一元二次方程通过配方转化为(x + m)^2=n(n≥0)的形式再求解。
例如对于方程x^2+6x - 1 = 0,配方得(x + 3)^2=10,解得x=-3±√(10)。
- 公式法:对于一元二次方程ax^2+bx + c = 0(a≠0),其求根公式为x=frac{-b±√(b^2)-4ac}{2a}。
例如方程2x^2-3x - 1 = 0,其中a = 2,b=-3,c=-1,代入公式可得x=(3±√(9 + 8))/(4)=(3±√(17))/(4)。
- 因式分解法:将方程化为两个一次因式乘积等于0的形式,即(mx +n)(px+q)=0,则mx + n = 0或px + q = 0。
例如方程x^2-3x + 2 = 0,因式分解为(x - 1)(x - 2)=0,解得x = 1或x = 2。
3. 根的判别式。
- 对于一元二次方程ax^2+bx + c = 0(a≠0),其判别式Δ=b^2-4ac。
- 当Δ>0时,方程有两个不相等的实数根;当Δ = 0时,方程有两个相等的实数根;当Δ<0时,方程没有实数根。
例如方程x^2-2x + 1 = 0,Δ=(-2)^2-4×1×1 = 0,方程有两个相等的实数根x = 1。
4. 根与系数的关系(韦达定理)- 对于一元二次方程ax^2+bx + c = 0(a≠0),设其两根为x_1,x_2,则x_1+x_2=-(b)/(a),x_1x_2=(c)/(a)。
初三数学常考知识点
初三数学常考知识点一、实数与代数1.有理数:整数、分数、相反数、绝对值、有理数的乘方、平方根、算术平方根等。
2.实数:实数的定义、实数的分类、实数的性质、实数的运算等。
3.代数式:代数式的定义、代数式的分类、代数式的运算等。
4.一元一次方程:一元一次方程的定义、一元一次方程的解法、一元一次方程的应用等。
5.不等式:不等式的定义、不等式的性质、不等式的解法、不等式的应用等。
6.二元一次方程组:二元一次方程组的定义、二元一次方程组的解法、二元一次方程组的应用等。
7.点、线、面:点的定义、线的定义、面的定义、点、线、面的关系等。
8.平面几何基本概念:邻补角、对顶角、同位角、内错角、同旁内角、平行线、相交线、垂直、平行的性质等。
9.三角形:三角形的定义、三角形的分类、三角形的性质、三角形的判定、三角形的计算等。
10.四边形:四边形的定义、四边形的分类、四边形的性质、四边形的判定、四边形的计算等。
11.圆:圆的定义、圆的性质、圆的方程、圆的计算、扇形、弧、弦等。
12.空间几何:长方体、正方体、球、棱柱、棱锥等空间几何图形的性质、计算和应用。
13.一次函数:一次函数的定义、一次函数的图像、一次函数的性质、一次函数的应用等。
14.二次函数:二次函数的定义、二次函数的图像、二次函数的性质、二次函数的应用等。
15.反比例函数:反比例函数的定义、反比例函数的图像、反比例函数的性质、反比例函数的应用等。
16.函数图像:函数图像的性质、函数图像的变换、函数图像的分析等。
四、统计与概率1.统计:统计的基本概念、统计的运算、数据的收集与处理、图表的制作等。
2.概率:概率的基本概念、概率的计算、概率的应用等。
五、解决问题的方法1.方程思想:列方程、求解方程、检验解等。
2.函数思想:建立函数关系、求解函数问题等。
3.几何思想:利用几何性质、定理解决问题等。
4.数形结合思想:利用数形结合的方法解决问题等。
以上是初三数学常考的知识点,希望对你有所帮助。
中考数学知识点总结(完整版)
中考数学知识点总结(完整版)中考数学知识点总结一、整数及其运算1. 整数的概念:包括正整数、负整数和零。
2. 整数的比较:根据绝对值的大小进行比较,绝对值越大的整数越小。
3. 整数的加法和减法:- 同号相加,取相同符号,数值相加;- 异号相加,取绝对值较大的符号,数值取较大的减去较小的;- 整数减法可以转换为加法运算。
二、分数及其运算1. 分数的概念:由分子和分母组成,表示部分与整体的比例关系。
2. 分数的比较:可以先通分,再比较分子的大小。
3. 分数的加法和减法:- 分母相同,分子相加或相减;- 分母不同,先通分,再进行加减运算。
4. 分数的乘法和除法:- 分子相乘,分母相乘;- 除法转换为乘法,将除数倒数乘以被除数。
三、代数式及其运算1. 代数式的概念:由数字、字母和算符组成,可表示一个或多个数的和、差、积、商。
2. 代数式的加法和减法:将同类项相加或相减,并合并同类项。
3. 代数式的乘法:使用分配律,将每一项与其他项相乘。
4. 代数式的除法:将除法转换为乘法,将除数的倒数乘以被除数。
四、方程与方程组1. 方程的概念:由等号连接的两个代数式构成,表示两个量相等的关系。
2. 解一元一次方程:通过逆运算,使得未知数单独在一边,求出未知数的值。
3. 解一元一次不等式:通过运算规则,求出不等式的解集。
4. 方程组的概念:由多个方程组成,表示多个变量之间的关系。
5. 解二元一次方程组:通过消元法或代入法,求出方程组的解。
五、几何图形与计算1. 平面图形:包括点、线、线段、射线、角、三角形、四边形等。
2. 空间图形:包括立体图形如球体、长方体、正方体等。
3. 相似与全等:相似图形的对应边比值相等,全等图形各边和角相等。
4. 长度、面积、体积的计算公式:根据几何图形的特点,计算对应的量。
六、统计与概率1. 统计图表的读取与分析:理解直方图、折线图、饼图等的含义。
2. 平均数的计算:包括算术平均数、加权平均数等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
┗→菱形──↑
⑷对角线的纽带作用:
3.对称图形
⑴轴对称(定义及性质);⑵中心对称(定义及性质)
4.有关定理:①平行线等分线段定理及其推论1、2
②三角形、梯形的中位线定理
③平行线间的距离处处相等。(如,找下图中面积相等的三角形)
5.重要辅助线:①常连结四边形的对角线;②梯形中常“平移一腰”、“平移对角线”、“作高”、“连结顶点和对腰中点并延长与底边相交”转化为三角形。
二、计算方法
1.样本平均数:⑴ ;⑵若 , ,…, ,则 (a—常数, , ,…, 接近较整的常数a);⑶加权平均数: ;⑷平均数是刻划数据的集中趋势(集中位置)的特征数。通常用样本平均数去估计总体平均数,样本容量越大,估计越准确。
2.样本方差:⑴ ;⑵若 , ,…, ,则 (a—接近 、 、…、 的平均数的较“整”的常数);若 、 、…、 较“小”较“整”,则 ;⑶样本方差是刻划数据的离散程度(波动大小)的特征数,当样本容量较大时,样本方差非常接近总体方差,通常用样本方差去估计总体方差。
8.因式分解:⑴定义;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法;E.求根公式法。
9.算术根的性质: = ; ; (a≥0,b≥0); (a≥0,b>0)(正用、逆用)
10.根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A. ;B. ;C. .
11.科学记数法: (1≤a<10,n是整数=
㈣注意从语言叙述中写出相等关系。
如,x比y大3,则x-y=3或x=y+3或x-3=y。又如,x与y的差为3,则x-y=3。㈤注意单位换算
如,“小时”“分钟”的换算;s、v、t单位的一致等。
七、应用举例(略)
第六章 一元一次不等式(组)
★重点★一元一次不等式的性质、解法
☆内容提要☆
1.定义:a>b、a<b、a≥b、a≤b、a≠b。
2.已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。
第二章 代数式
★重点★代数式的有关概念及性质,代数式的运算
☆内容提要☆
一、 重要概念
分类:
1.代数式与有理式
用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独
的一个数或字母也是代数式。
整式和分式统称为有理式。
2.整式和分式
由一个二元一次方程和一个二元二次方程组成的二元二次方程组都可用代入法解。
六、列方程(组)解应用题
㈠概述
列方程(组)解应用题是中学数学联系实际的一个重要方面。其具体步骤是:
⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。
⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。
6.作图:任意等分线段。
四、应用举例(略)
第五章 方程(组)
★重点★一元一次、一元二次方程,二元一次方程组的解法;方程的有关应用题(特别是行程、工程问题)
☆内容提要☆
一、基本概念
1.方程、方程的解(根)、方程组的解、解方程(组)
2.分类:
二、解方程的依据—等式性质
1.a=b←→a+c=b+c
2.a=b←→ac=bc (c≠0)
二、实数的运算
1.运算法则(加、减、乘、除、乘方、开方)
2.运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]
分配律)
3.运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”
到“右”(如5÷ ×5);C.(有括号时)由“小”到“中”到“大”。
三、应用举例(略)
附:典型例题
1.已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│=b-a.
三、解法
1.一元一次方程的解法:去分母→去括号→移项→合并同类项→
系数化成1→解。
2.元一次方程组的解法:⑴基本思想:“消元”⑵方法:①代入法
②加减法
四、一元二次方程
1.定义及一般形式:
2.解法:⑴直接开平方法(注意特征)
⑵配方法(注意步骤—推倒求根公式)
⑶公式法:
⑷因式分解法(特征:左边=0)
3.根的判别式:
⑶用含未知数的代数式表示相关的量。
⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。
⑸解方程及检验。
⑹答案。
综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。
讨论:①定义②××线的交点—三角形的×心③性质
1高线②中线③角平分线④中垂线⑤中位线
⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等边三角形
4.特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质
5.全等三角形
⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)
⑵特殊三角形全等的判定:①一般方法②专用方法
4.两点间的距离(三个距离:点-点;点-线;线-线)
5.角(平角、周角、直角、锐角、钝角)
6.互为余角、互为补角及表示方法
7.角的平分线及其表示
8.垂线及基本性质(利用它证明“直角三角形中斜边大于直角边”)
9.对顶角及性质
10.平行线及判定与性质(互逆)(二者的区别与联系)
11.常用定理:①同平行于一条直线的两条直线平行(传递性);②同垂直于一条直线的两条直线平行。
⑴正数a的正的平方根( [a≥0—与“平方根”的区别]);
⑵算术平方根与绝对值
1联系:都是非负数, =│a│
②区别:│a│中,a为一切实数; 中,a为非负数。
8.同类二次根式、最简二次根式、分母有理化
化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。
满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。
6.奇数、偶数、质数、合数(正整数—自然数)
定义及表示:
奇数:2n-1
偶数:2n(n为自然数)
7.绝对值:①定义(两种):
代数定义:
几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。
②│a│≥0,符号“││”是“非负数”的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
3.样本标准差:
三、应用举例(略)
第四章 直线形
★重点★相交线与平行线、三角形、四边形的有关概念、判定、性质。
☆内容提要☆
一、直线、相交线、平行线
1.线段、射线、直线三者的区别与联系
从“图形”、“表示法”、“界限”、“端点个数”、“基本性质”等方面加以分析。
2.线段的中点及表示
3.直线、线段的基本性质(用“线段的基本性质”论证“三角形两边之和大于第三边”)
12.定义、命题、命题的组成
13.公理、定理
14.逆命题
二、三角形
分类:⑴按边分;
⑵按角分
1.定义(包括内、外角)
2.三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n边形内角和;④n边形外角和。⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。⑶角与边:在同一三角形中,
3.三角形的主要线段
三、应用举例(略)
四、数式综合运算(略)
第三章 统计初步
★重点★
☆内容提要☆
一、重要概念
1.总体:考察对象的全体。
2.个体:总体中每一个考察对象。
3.样本:从总体中抽出的一部分个体。
4.样本容量:样本中个体的数目。
5.众数:一组数据中,出现次数最多的数据。
6.中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数)
⑹证面积关系:将面积表示出来
三、四边形
分类表:
1.一般性质(角)
⑴内角和:360°
⑵顺次连结各边中点得平行四边形。
推论1:顺次连结对角线相等的四边形各边中点得菱形。
推论2:顺次连结对角线互相垂直的四边形各边中点得矩形。
⑶外角和:360°
2.特殊四边形
⑴研究它们的一般方法:
⑵平行四边形、矩形、菱形、正方形;梯形、等腰梯形的定义、性质和判定
=x, =│x│等。
4.系数与指数
区别与联系:①从位置上看;②从表示的意义上看
5.同类项及其合并
条件:①字母相同;②相同字母的指数相同
合并依据:乘法分配律
6.根式
表示方根的代数式叫做根式。
含有关于字母开方运算的代数式叫做无理式。
注意:①从外形上判断;②区别: 、 是根式,但不是无理式(是无理数)。
7.算术平方根
②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.0<a<1时1/a>1;a>1时,1/a<1;D.积为1。
4.相反数: ①定义及表示法
②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义(“三要素”)
②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
2.一元一次不等式:ax>b、ax<b、ax≥b、ax≤b、ax≠b(a≠0)。
3.一元一次不等式组:
4.不等式的性质:⑴a>b←→a+c>b+c
⑵a>b←→ac>bc(c>0)
⑶a>b←→ac<bc(c<0)
⑷(传递性)a>b,b>c→a>c