六年级下册数学教案-《第五单元数学广角》人教版

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用有余数除法5÷2=2……1可以发现,如果每个抽屉放进2本,还剩1本。把剩下的这1本放进任何一个抽屉,该抽屉里就有3本书了。

研究了“把5本书放进2个抽屉”的问题后,教材又进一步提出“如果一共有7本书,9本书,情况会怎样?”的问题,让学生利用前面的方法进行类推,得出“7本书放进2个抽屉,总有一个抽屉至少放进4本书,9本书放进2个抽屉,总有一个抽屉至少放进5本书”的结论。

在此基础上,让学生观察这几个“抽屉问题”的特点,寻找规律,使学生对这一类“抽屉原理”达到一般性的理解。例如,学生可以通过观察,归纳出“要把a (a是奇数)本书放进2个抽屉,如果a÷2=b ……1,那么总有一个抽屉至少有(b+1)本书”的一般性结论。

教材第71页的“做一做”延续了第70页“做一做”的情境,在例2的基础上有所扩展,把“抽屉数”变成了3,要求学生在例2思考方法的基础上进行迁移类推。

教学建议

教学例2时,仍应鼓励学生用多样化的方法解决问题,自行总结“抽屉原理”。例如,在解决“5本书放2个抽屉”的问题时,由于数据较小,学生用动手操作或分解数的方法仍有其直观、简单的特点,这也是学生最容易想到的方法。但由于枚举的方法毕竟受到数据大小的限制,随着书的本数的增多,教师应该进行适当的引导。例如,可以提问学生“125本书放进2个抽屉呢?”由于数据很大,用枚举法解决就相当繁琐了,就可以促使学生自觉采用更一般的方法,即假设法。假设法最核心的思路就是把书尽量多地“平均分”给各个抽屉,看每个抽屉能分到多少本书,剩下的书不管放到哪个抽屉,总有一个抽屉比平均分得的本数多1本。这个核心思路是用“有余数除法”这一数学形式表示出来的,需要学生借助直观,逐步理解并掌握。

当学生利用有余数除法解决了本例中的三个具体问题后,教师应引导学生总结归纳这一类“抽屉问题”的一般规律,要把某一数量(奇数)的书放进2个抽屉,只要用这个数除以2,总有一个抽屉至少放进数量比商多1的书。例如,要把125本书放进2个抽屉,125÷2=62……1,因此,总有一个抽屉至少放进63本书。如果进一步一般化的话,就是:要把a 个物体放进n个抽屉,如果a÷n=b……c(c≠0),那么一定有一个抽屉至少可以放(b+1)个物体。这一结论与前文提到的“把多于kn 个物体任意分放进n个空抽屉(k 是正整数),那么一定有一个抽屉中放进了至少(k+1)个物体”意思是完全一致的。

学生完成“做一做”时,可以仿照例2,利用8÷3=2……2,可知总有一个鸽舍里至少有3只鸽子。

需要注意的是,例2中“某个抽屉至少有的书的本数”是除法算式中的商加“1”,而例2中除法算式的余数也正好是1,很容易让学生错误地理解成是商加“余数”,并迁移到“做一做”,想成至少有“2(商)+2(余数)”,

把结论变成“至少有4只鸽子要飞进同一个鸽舍里”。事实上,只要学生从本质上理解“抽屉原理”的推理过程,就能克服这种错误理解。

第三课时

3.例3。

本例是“抽屉原理”的具体应用,也是运用“抽屉原理”进行逆向思维的一个典型例子。要从4个红球和4个蓝球中摸出2个同色的球,问最少需要摸出几个球。要解决这个问题,可以联想到前两个例题中的“抽屉问题”。因为一共有红、蓝两种颜色的球,可以把两种“颜色”看成两个“抽屉”,“同色”就意味着“同一抽屉”。这样,就可以把“摸球问题”转化成“抽屉问题”。假设最少要摸出a 个球,a÷2=1……b ,当b =1时,a就是最小的,此时a=3。即至少要摸出3个球,才能保证有两个球是同色的。

教材通过三个学生的对话,指出了学生可以通过先猜测再验证的方法来解决问题,也反映了学生在解决这个问题时有可能会遇到的一些困难。例如,本例中的“4个红球和4个蓝球”很容易给学生造成干扰。

接下来,教材引导学生把这个结论进一步推广,指出“只要摸出的球比它们的颜色种数多1,就能保证有两个球同色。”例如,球的颜色有三种,至少要摸出四个球,才能保证摸出的球里有两个同色。教材第72页的“做一做”中第2题描述的就是这种情形。

“做一做”第1题也是“抽屉原理”的典型例子。其中“370名学生中一定有两人的生日是同一天”与例1中的“抽屉原理”是一类,“49名学生中一定有5人的出生月份相同”则与例2的类型相同。

教学建议

教学例3时,要先引导学生思考本例的问题与前面所讲的抽屉原理是否有联系,有什么样的联系,应该把什么看成抽屉,要分放的东西是什么。但学生在思考这些问题的时候,一开始可能会缺乏思考的方向,很难找到切入点。此时,可以让学生先自由猜测,再验证。例如,有的学生会猜测“只摸2个球能否保证这2个球同色”,只要举出一个反例就可以推翻这种猜测,如这两个球正好是一红一蓝时就不能满足条件。再如,由于受到题目中“4个红球和4个蓝球”这个条件的干扰,许多学生会猜测要摸的球数只要比其中一种颜色的个数多1就可以了,即“至少要摸出5个球才能保证一定有2个是同色的”。为了验证这个猜测,学生会自觉地把“摸球问题”与“抽屉问题”联系起来,把两种颜色看成两个抽屉。根据

5÷2=2……1,可以知道,摸出5个球时至少有3个球同色。因此,摸出5个球是没有必要的。

在学生猜测、验证的基础上,逐步引导学生把具体问题转化为“抽屉问题”,找出这里的“抽屉”是什么,“抽屉”有几个,再应用前面所学的“抽屉原理”进行反向推理。例如,在本例中,根据例1中的结论“只要分的物体个数比抽屉数多,就能保证一定有一个抽屉至少有2个球”就能推断“要

相关文档
最新文档