高层建筑筏板基础板厚设计浅见

高层建筑筏板基础板厚设计浅见
高层建筑筏板基础板厚设计浅见

高层建筑平板式筏板基础设计计算

龙源期刊网 https://www.360docs.net/doc/a85339697.html, 高层建筑平板式筏板基础设计计算 作者:赛里曼.海切木汉 来源:《城市建设理论研究》2013年第23期 摘要:高层建筑基础选型是整个结构设计中的一个重要组成部分,直接关系到工程造价、施工难度和工期。本文以湖北某高层住宅楼的基础设计为例,介绍高层建筑基础的选型和筏板基础的设计方法。 关键词:高层建筑;基础选型;筏板基础设计 中图分类号:TU97文献标识码: A 文章编号: 1引言 高层建筑地下室通常作为地下停车库,建筑上不允许设置过多的内墙,筏板基础能充分发挥其地基承载力,刚度大整体性好,调整不均匀沉降,更好的满足停车库的空间使用要求,同时施工难度小,缩短工期,降水及支护费用相对较低等优点,在高层建筑中广泛应用。本文以湖北某高层住宅楼的基础设计为例,介绍高层建筑基础的选型和筏板基础的设计方法。 2筏板基础结构设计 2.1 工程地质概况 本工程地下室1层,地上17层,采用框架-核心筒结构。根据岩土工程勘察报告,场地土分布自上而下分别为:①素填土层,厚度1.7~2.6m; ②粘土层,厚度6.4~7.1m, 标贯击数为15~17击; ③粉质粘土层,厚度2.7~4.0m, 标贯击数为10~11击;④粘土层,厚度2.6~19.8m, 标贯击数为12~17击; 2.2 基础结构方案选择 根据地基土质、上部结构体系、柱距、荷载大小、使用要求以及施工条件等因素的不同,筏形基础可分为梁板式和平板式两种类型。与梁板式筏基相比,平板式筏基具有抗冲切及抗剪切能力强的特点,且构造简单,施工便捷;对于框架-核心筒结构宜采用平板式筏形基础。本工程基础占地面积为1142m2,总荷载为210792KN,即要求地基平均承载力为185kPa。从地层剖面分析,地下室开挖后板底标高下的土层为硬-坚硬状粘土,标贯击数为15~17击,经深度及宽度修正后,地基承载力特征值fa≥300kPa,可满足要求。地基的验算包括地基承载力和变形两个方面,对于高层建筑,变形往往起着决定性的控制作用。本工程初步分析结果表明,

筏板基础的简化计算方法

伐板基础的简化计算方法 1.悬臂法 方法概述——就是传统的墙下钢混条基计算法。 计算特点——假定基底土反力为均匀分布,为了减小基底压力使之满足软弱地基承载力的要求而将基底加宽到互相连通的程度,但不作为连续的整板去分析。 方法缺点——基础宽度加大后,基底土的反力分布实际上是不均匀的。计算时,基底已经连成了一体却不考虑其连续性,因此很不合理,计算的结果是不经济的。 2.倒楼盖法 方法概述——假定筏板为一块倒置于地基上的连续板,由纵横墙支承。 计算特点——假定基底土反力为均匀分布,按普通的楼盖计算。 方法缺点——考虑了筏板的整体性,计算结果较悬臂法经济。但此法仍然没有考虑到基底土的反力分布实际上是不均匀的,所以各墙支座处所算得的负弯矩偏小,甚至出现小于实际弯矩而偏于不安全。 3.柔性基础简化计算法 方法概述——将在柱荷载作用下的十字交叉条形基础简化为各条单向连续条形基础的计算方法。 计算特点——将柱荷载的总值先按两个方向交叉连续的条形基础(板)的刚度比值进行分配以作为各向的柱荷载,然后分别按单向连续条形基础(板)计算。 方法缺点——此方法的一般假定为基底反力是按线性分布的,柱下最大,跨中最小,计算结果较倒楼盖法还要经济。但该方法只适用于柱下十字交叉条形基础和柱下筏板基础的简化计算,不适用于横墙承重的筏板基础。 4.弹簧地基梁法 方法概述——假定筏板沿横向被截分为单位宽的条板,置于文克尔假设的弹簧低级上,并假定板底面任一点的单位压力p与地基沉降S成正比,即p=kS。 计算特点——条板按受有一组横墙集中荷载作用的无限长梁计算。由于地基沉降S与基础挠度y接触协调相等,有p(x)=kS=ky. 方法缺点——同文克尔弹簧地基法假设。 5.弹性理论截条法 方法概述——将筏板横向截分为单位宽的条板并置于均质半空间弹性地基上。 计算特点——由于积分上的困难,基底地基反力与沉降之间的关系很难用解析函数表达。目前是利用郭尔布诺夫-波萨多夫的《弹性地基上结构物的计算》中的计算表格来简化计算。 方法缺点——虽然克服了文克尔弹簧地基法假设的基本缺点,具有能够扩散应力和变形的优点,但是,它的扩散能力往往超过实际情况。由于计算所得的沉降量和地表沉降范围较实测值为大,而实际地基压缩层厚度是有限的,压缩层范围内土质往往是非均质的,即使是同一种土层组成,变形参数也有随深度而增长的情况。按半空间弹性理论所得的地基反力分布一般呈马鞍形和集中在梁端和板的边缘处,这是半空间弹性理论所算得的梁板弯矩大的主要原因。 6.弹性地基板法

20层楼筏板基础设计计算手稿

前言 筏板基础有埋深深、刚度大、整体性强、抗震能力好等优点,不仅能充分发挥地基承载力,减小基础沉降量,调整地基不均匀沉降,而且可满足地下大空间(如地下停车场、地下仓库、地下商场等)的要求。因此,筏板基础作为建筑结构(尤其是高层和超高层建筑)首选的基础方案,应用越来越广泛。但是,由于筏板基础的受力和变形与诸多因素有关,到目前为止,人们对筏基的受力机理还不十分清楚,致使筏基在实际应用中,不同设计人员设计的筏基(如厚度、配筋等)相差悬殊,从而给工程造成浪费或隐患。本文以某工程为实例,对高层建筑筏板基础的选型和设计方法进行讨论,供同行商榷参考。 1.工程概况 某办公大楼,地面以上20 层,地下1 层,框架——剪力墙结构,基础占地面积1800m2。建筑物总荷重580000KN,即要求地基平均承载力为322Kpa。基坑开挖深度7.1m。根据勘察资料,其土层分布自上而下为粘性土,强风化泥质粉砂岩,中风化泥质粉砂岩,局部强风化与中风化岩层。 2.基础选型 一般的高层建筑,常需在地下设 置车库、人防、设备用房、水池等,并由其使用功能决定其层高和层数。这些条件基本确定了底板的埋置深度,然后根据该深度结合场地的岩土条件进行基础选型,确定选择天然筏板基础的可能性。本地区由于特定的地理环境,形成了一种典型的上软(填土、淤泥、砂石)下硬(风化残积土和风化软岩)的岩土结构地层,且其软土层厚薄不一,基础埋深变化较大,所以高层建筑大多采用桩基,采用桩基是设计人员对这种地层结构基础选型的第一选择,设计风险小,计算简单;缺点是桩长较长,投资较天然地基大。对本工程,地质勘察资料的建议也是桩基,但我们发现,该区域地下室开挖后板底标高下的岩土层已基本露出强风化或中风化岩层,通过对地基承载力和沉降的初步分析,这两项指标基本能满足要求,是有可能采用天然筏板基础型式的,没必要非桩基不可。再经过反复试算对比,采用天然地基上的筏板基础方案。 3.筏板基础的结构设计 3.1筏板基础地基承载力的确定 天然地基承载力特征值的经验值fak,通常由下列方法确定: (1)据地质勘察部门提供的报告。(2)据场地的地质情况,参照岩土工程手册或有关规范确定。 (3)现场荷载试验或静力触探试验。之后按照有关规范,经宽深修正得到修正后的地基承载力特征值fa。风化岩土在取样时的扰动和失水会使室内土工试验结果出现偏差,采用原位试验(如标贯、压板试验等)结合室内土工试验来综合评定,这样结果会更接近实际情况。有资料对本地区不同岩土层的现场压板试验和原位标贯试验以及建筑沉降观测结果反复分析,得到风化岩土地基承载力特征值的经验值fak 与实测标贯击数N 的关系为: fak=(12~15)N 风化残积土取高值,强风化软岩取低值。可用此值和其它方式取得的值对比,综合确定。3.2筏板基础天然地基变形计算及差异沉降的处理 对高层建筑,地基变形往往起决定性的控制作用,对变形的验算必不可少。根据该地区工程经验,采用传统的分层总和法计算残积层、全风化及强风化层的地基沉降量往往偏大,其主要原因是土样扰动使测得的土地压缩模量偏小。采用土的变形模量作为计算参数,地基的沉降量与实测结果较为接近。本工程按下式计算: 00 ( )pbSaE=式中:

高层建筑筏板基础选型分析

高层建筑筏板基础选型分析 发表时间:2016-10-17T17:17:00.110Z 来源:《基层建设》2016年12期作者:莫剑国[导读] 摘要:基础选型在整个建筑结构设计中占重要地位,合理的基础选型不仅可以节约造价,还能缩短工期。本文根据实际工程案例,对不同的筏基形式进行分析,选取最为经济合理的基础。深圳市建筑设计研究总院有限公司摘要:基础选型在整个建筑结构设计中占重要地位,合理的基础选型不仅可以节约造价,还能缩短工期。本文根据实际工程案例,对不同的筏基形式进行分析,选取最为经济合理的基础。关键词:高层建筑;基础选型;筏板一、工程概况 某建筑面积约为6300m2,抗震设防烈度为 6 度,设计基本地震加速度 0.05g,场地类别为Ⅱ类;特征周期 Tg 为 0.35s,结构体系为框架结构,抗震等级为三级。地下室顶板覆土为800~1400mm,±0.000相当于绝对标高+200.400,室内外高差0.50m。塔楼为两栋小高层住宅,层高为3m。 二、工程地质 根据地勘报告,结构设计地下水位较低(黄海高程为+ 197.000),场内分布有1~2m 杂填土,杂填土底下有6~8m 粉质粘土,其地基土承载力特征值为fak =200KPa(粉质粘土底下无软弱层)。为了节约造价,采用筏板基础的基础形式,不建议采用桩基础。根据地勘报告,设计拟采用四种不同形式的筏板基础方案:(1)方案一:采用无梁筏板方案:小高层住宅采用 1300mm厚无梁筏板,单层商业及纯地下室采用 750mm 厚无梁筏板;(2)方案二:采用梁板式筏板和无梁筏板方案:小高层住宅采用梁板式筏板,筏板厚度为 600mm;单层商业及纯地下室采用750mm 厚无梁筏板;(3)方案三:采用梁板式筏板和无梁筏板(加柱墩)方案:小高层住宅采用梁板式筏板,筏板厚度为 600mm;单层商业及纯地下室采用 350mm 厚无梁筏板(加柱墩);(4)方案四:采用梁板式筏板和独基加防水板方案:小高层住宅采用梁板式筏板,筏板厚度为 600mm;单层商业及纯地下室采用柱下独基加防水板。 三、基础设计方案比较本项目两栋小高层住宅与地下车库在地下室底板合为一体,基础底板受力情况复杂。由于地下水位较低,施工时可采取降水措施(地下室顶板及覆土完成后方可停止降水),且在使用期间其上部恒载总重大于水浮力,故可不考虑地下水浮力的影响。单层商业及纯地下室部分,上部结构荷载(含顶板及覆土)产生的附加应力与土自重产生的应力相差不大,因而理论上沉降S=0。由于小高层住宅部分产生的附加应力较大,所以理论上小高层与单层商业和纯地下室有沉降差存在,故计算时需考虑其沉降差的影响。(1)采用无梁筏板方案底板设计采用无梁筏板方案。由于筏板钢筋配筋量大部分是构造配筋,在柱底下的钢筋用量明显较大,筏板厚度由冲切计算控制,为满足冲切计算要求,筏板板厚较厚。板厚分两种:单层商业和纯地下室筏板厚度为 750mm,小高层住宅下筏板厚度为1300mm。底板大范围配筋量为:750mm厚的筏板配筋为 1500mm2,1300mm厚的筏板配筋为 2600mm2。经过计算,小高层住宅下的筏板钢筋用钢量大约为 85t/m2,混凝土用量每平米约为1.3m3;单层及纯地下室下的筏板钢筋用钢量大约为 50t/m2,混凝土量每平米约为0.75m3。 (2)采用梁板式筏板和无梁筏板方案因采用第一种方案,小高层住宅底下筏板板厚较厚(1300mm),筏板钢筋配筋量大部分是构造配筋,在柱底下的钢筋用量明显较大,筏板板厚由冲切计算控制。为了减少筏板板厚及钢筋用钢量和增加小高层住宅基础的整体性,故将小高层住宅底下无梁筏板基础改用梁板式筏板基础的型式,这样柱底冲切计算局部由地基梁来承担,以减少筏板厚度和钢筋用量;单层商业和纯地下室部分还是采用方案一的无梁筏板型式。板厚分两种,单层商业及纯地下室筏板厚度为 750mm,小高层住宅下筏板厚度为 600mm;地基梁截面尺寸均采用统一截面 800mm×1200mm,地基梁布置如(图1)所示: 图1地基梁布置图 图 2 柱墩布置示意图

筏板基础计算

筏板基础设计分析2009 1 筏板基础埋深及承载力的确定 天然筏板基础属于补偿性基础, 因此地基的确定有两种方法. 一是地基承载力设计值的直接确定法. 它是根据地基承载力标准值按照有关规范通过深度和宽度的修正得到承载力设计值, 并采用原位试验(如标惯试验、压板试验等) 与室内土工试验相结合的综合判断法来确定岩土的特性. 二是按照补偿性基础分析地基承载力. 例如: 某栋地上28 层、地下2 层(底板埋深10m ) 的高层建筑, 由于将原地面下10m 厚的原土挖去建造地下室, 则卸土土压力达180kpa, 约相当于11 层楼的荷载重量;如果地下水位为地面下2m , 则水的浮托力为80kpa, 约相当于5 层楼的荷载重量, 因此实际需要的地基承载力为14 层楼的荷载. 即当地基承载力标准值f ≥ 250kpa 时就能满足设计要求, 如果筏基底板适当向外挑出, 则有更大的可靠度. 2 天然筏板基础的变形计算 地基的验算应包括地基承载力和变形两个方面, 尤其对于高层或超高层建筑, 变形往往起着决定性的控制作用. 目前的理论水平可以说对地基变形的精确计算还比较困难, 计算结果误差较大, 往往使工程设计人员难以把握, 有时由于计算沉降量偏大, 导致原来可以采用天然地基的高层建筑, 不适当地采用了桩基础, 使基础设计过于保守, 造价提高, 造成浪费.采用各向同性均质线性变形体计算模型,用分层总和法计算出的自由沉降量往往同实测的地基变形量不同, 这是受多种因素的影响造成的. (1) 这种理论的假定条件遵循虎克定律, 即应力—应变呈直线关系, 土体任何一点都不能产生塑性变形, 与土体的实际应力—应变状态不相一致; (2) 公式中S = 7S6 z iAi- z i- 1Ai- 1ES i[ 2 ] 采用的计算参数系室内有侧限固结试验测得的压缩模量ESi , 试验条件与基础底面压缩层不同深度处的实际侧限条件不同; (3) 利用公式计算的建筑物沉降量只与基础尺寸有关, 而实测沉降量已受到上部结构与基础刚度的调整. 采用箱型基础或筏板基础的高层建筑物,由于其荷载大、基础宽, 因而压缩层深度大,与一般多层建筑物不同, 地基不是均一持力层. 因此在地基变形计算的公式中引入了一个沉降计算经验系数7S. 通过实际沉降观测与计算沉降量的比较, 适应高层建筑物箱型基础与筏板基础的沉降计算经验系数, 主要与压力和地层条件相关, 尤其与附加压力和主要压缩层中(0. 5 倍基础宽度的深度以内) 砂、卵石所占的百分比密切相关. 由于该系数7S 仅用于对附加压力产生的地基固结沉降变形部分进行调整, 所以《建筑地基基础设计规范》规定可根据地区沉降观测资料及经验确定.计算高层建筑的地基变形时, 由于基坑开挖较深, 卸土较厚往往引起地基的回弹变形而使地基微量隆起. 在实际施工中回弹再压缩模量较难测定和计算, 从经验上回弹量约为公式计算变形量10%~ 30% , 因此高层建筑的实际沉降观测结果将是上述计算值的1. 1~ 1. 3 倍左右. 应该指出高层建筑基础由于埋置太深,地基回弹

筏板基础计算

筏板基础分为平板式筏基和梁板式筏基,平板式筏基支持局部加厚筏板类型;梁板式筏基支持肋梁上平及下平两种形式,下面就筏基的分析计算做详细阐述。 (1 )地基承载力验算 地基承载力验算方法同独立柱基,参见第17.1.1节内容。对于非矩形筏板, 抵抗矩W采用积分的方法计算。 (2 )基础抗冲切验算 按GB50007-2002第8.4.5条至第8.4.8条相关条款的规定进行验算。 ①梁板式筏基底板的抗冲切验算 底板受冲切承载力按下式计算 *50.70/认 式中: F i ——作用在图17.1.5-1中阴影部分面积上的地基土平均净反力设计值; B hp——受冲切承载力截面高度影响系数; U m ――距基础梁边h°/2处冲切临界截面的周长; f t ――混凝土轴心抗拉强度设计值。 图17.1.5-1 底板冲切计算示意 ②平板式筏基柱(墙)对筏板的冲切验算

计算时考虑作用在冲切临界截面重心上的不平衡弯矩所产生的附加剪力, 距柱边h o/2处冲切临界截面的最大剪应力T max应按下列公式计算。 石=E / %瓜 - a / l s r max^0.7(0.4 + 1.2/A)ApZ 1 式中: F i——相应于荷载效应基本组合时的集中力设计值,对内柱取轴力设计值减去筏板冲切破坏锥体内的地基反力设计值;对边柱和角柱,取轴力设计值减去筏板冲切临界截面范围内的地基反力设计值;地基反力值应扣除底板自重; U m ――距柱边h o/2处冲切临界截面的周长;M unb ――作用在冲切临界截面重心上的不平衡弯矩设计值; C A B――沿弯矩作用方向,冲切临界截面重心至冲切临界截面最大剪应力点的距离; I s ――冲切临界截面对其重心的极惯性矩; B s——柱截面长边与短边的比值,当B s<2时,B s取2;当B s>4时,B s取4 ; c i——与弯矩作用方向一致的冲切临界截面的边长; C2——垂直于C i的冲切临界截面的边长;a s ――不平衡弯矩通过冲切临界截面上的偏心剪力传递的分配系数; ③平板式筏基短肢剪力墙对筏板的冲切验算 短肢剪力墙对筏板的冲切计算按等效外接矩形柱来计算,计算方法完全同柱对筏板的冲切,等效外接矩形柱参见图17.1.5-2。

PKPM软件JCCAD筏板基础设计步骤举例8-11

PKPM软件JCCAD筏板基础设计步骤举例 一、地质资料输入 1、PKPM软件的JCCAD部分进行基础设计时,不一定要输入地质资料。 对于无桩的基础,如果不进行沉降计算,则可以不输入地质资料;如果要进行沉降计算,则需要输入地质资料。输入土的力学指标包括:压缩模量、重度。 对于有桩基础,如果不进行单桩刚度及沉降计算的话,可以不输入地质资料;否则就要输入。输入土的力学指标包括:压缩模量、重度、状态参数、内摩擦角和粘聚力。 2、在PKPM软件主界面“结构”页中选择“JCCAD”软件的第一项“地质资料输入”,程序进入地质资料输入环境,如下图所示: 3、土层布置

给地质资料命名之后,开始进行土层布置,点击右侧菜单“土层布置”,如下图所示: 弹出土层参数对话框,显示用于生成各勘测孔柱状图的地基土分层数据,如下图所示:4、输入孔点

单击“孔点输入”→“输入孔位”,以相对坐标和米为单位,逐一输入所有勘测孔点的相对 位置。孔点输入结束后,程序自动用互不重叠的三角形网格将各个孔点连接起来,并用插值法将孔点之间和孔点外部的场地土情况计算出来。如下图所示: 程序要求孔点形成的三角形网格互不交叉,互不重叠。如孔点位置十分复杂,程序自动形成的网格不能满足上述要求,可以通过“网格修改”命令由人工修改完成。 点击“修改参数”,点取已输入的孔点,弹出孔点土层参数对话框,如下图所示。对话框中显示的是标准孔点的土参数,应按各勘测孔的情况修改表中的数据,如土层低标高、土层参数、空口标高、探孔水头标高等。空口位置一般不采用绝对坐标,不必修改孔口坐标。如某一列各勘测孔的土参数相同,可以选择“用于所有点”,以减少修改土层参数的工作量。

PKPM软件JCCAD筏板基础设计步骤举例

PKPM软件JCCAD筏板基础设计步骤举例PKPM软件JCCAD筏板基础设计步骤举例 一、地质资料输入 1、PKPM软件的JCCAD部分进行基础设计时,不一定要输入地质资料。 对于无桩的基础,如果不进行沉降计算,则可以不输入地质资料;如果要进行沉降计算,则需要输入地质资料。输入土的力学指标包括:压缩模量、重度。 对于有桩基础,如果不进行单桩刚度及沉降计算的话,可以不输入地质资料;否则就要输入。输入土的力学指标包括:压缩模量、重度、状态参数、内摩擦角和粘聚力。 2、在PKPM软件主界面“结构”页中选择“JCCAD”软件的第一项“地质资料输入”,程序进入地质资料输入环境,如下图所示: 3、土层布置

给地质资料命名之后,开始进行土层布置,点击右侧菜单“土层布置”,如下图所示: 弹出土层参数对话框,显示用于生成各勘测孔柱状图的地基土分层数据,如下图所示:4、输入孔点

单击“孔点输入”→“输入孔位”,以相对坐标和米为单位,逐一输入所有勘测孔点的相对 位置。孔点输入结束后,程序自动用互不重叠的三角形网格将各个孔点连接起来,并用插值法将孔点之间和孔点外部的场地土情况计算出来。如下图所示: 程序要求孔点形成的三角形网格互不交叉,互不重叠。如孔点位置十分复杂,程序自动形成的网格不能满足上述要求,可以通过“网格修改”命令由人工修改完成。 点击“修改参数”,点取已输入的孔点,弹出孔点土层参数对话框,如下图所示。对话框中显示的是标准孔点的土参数,应按各勘测孔的情况修改表中的数据,如土层低标高、土层参数、空口标高、探孔水头标高等。空口位置一般不采用绝对坐标,不必修改孔口坐标。如某一列各勘测孔的土参数相同,可以选择“用于所有点”,以减少修改土层参数的工作量。

超高层建筑的桩筏基础设计理论 赵锡宏

your name your caption here 超高层建筑的桩筏基础设计理论——工程实践是检验设计理论的标准 同济大学赵锡宏 同济大学建筑设计研究院巢斯

your name your caption here 提要 ?根据上海60层的长峰商场,66层的 恒隆广场,88层的金茂大厦和101层的上 海环球金融中心等的实测桩箱和桩筏基础 变形以及正在建造121层的上海中心大厦 的计算变形分析的宝贵数据,论证超高层 建筑的桩筏基础不是刚性,不宜继续采用 刚性偏心受压的公式计算桩顶的反力; 阻 尼器或深埋桩筏基础对风载影响桩顶反力 进行宏观探讨. 此外,对桩筏基础设计提出 一些建议,试图构成桩筏基础设计理论与 方法的蓝图。 提要

your name your caption here 前言在上海,近十几年来,高层建筑飞跃发展,见图1。 图1 上海高层建筑的今昔比 前言

前言 your name your caption here ?在中国土地上,拥有508m高的台北-101层 (Taipei-101)高楼和492m高101层的上海环球金融中心(Shanghai World Financial Center, SWFC)的高楼,这是中国人的骄傲。 ?现在,565.6m高121层的上海中心大厦 (Shanghai Tower)正在建造中,这样,与旁边88层的金茂大厦(Jinmao Building)和101层的上海环球金融中心(SWFC)将构成三足鼎力逞天下的 英姿,又是中国人的骄傲,见图2。

your name your caption here 左为上海环 球金融中心 中为金茂大 厦 右为上海中 心大厦 图 2 上海的三幢超高层大楼 前言

高层建筑桩筏基础变刚度调平设计分析

高层建筑桩筏基础变刚度调平设计分析 发表时间:2019-07-29T15:21:03.733Z 来源:《建筑学研究前沿》2019年7期作者:陈勇 [导读] 我国高层建筑当中很大部分的上部结构为框剪、框筒结构,其刚度相对较弱、荷载不均。 中国电建集团昆明勘测设计研究院有限公司昆明 650051 摘要:新修订的中华人民共和国行业标准《建筑桩基技术规范》(JGJ94—2008)中明确指出,要减少差异沉降和承台内力的变刚度调平设计是重要修订内容之一,通过调整桩基布置,使得基底反力分布模式与上部结构的荷载分布一致,可减小筏板内力,实现差异沉降、筏板内力的最小化。随着城市化进程的加快,高层建筑工程建设项目越来越多,探讨高层建筑桩筏基础变刚度调平设计有着重大的意义。本文主要分析了高层建筑桩基变刚度调平中的问题及其优化对策。 关键字:高层建筑;桩筏基础;变刚度调平;设计 我国高层建筑当中很大部分的上部结构为框剪、框筒结构,其刚度相对较弱、荷载不均,整个高层建筑的基础多采用桩筏、桩箱的类型进行基础施工,建成后很容易出现碟形沉降。而高层建筑的桩基变刚度调平优化是一种非常有效的基础优化形式,高层建筑桩基变刚度调平通过调整桩基竖向支承刚度,促使桩基沉降趋向均匀,显著降低基础、承台内力,上部结构次应力。变刚度调平需要优化桩土支承刚度分布,实施强化与弱化结合,减沉与增沉结合,长桩与短桩并用,刚性桩复合地基与天然地基并用。 1高层建筑桩基变刚度调平中的问题与分析 通过大量高层建筑的实际观测发现仅加大基础抗弯刚度是不能有效减小差异沉降的效4年最大差异沉降为0.0041m,超过《建筑桩基技术规范》(JGJ94—2008)的0.002m要求,出现差异化变形、结构开裂等方面的问题,主要还是传统设计方式中的理念问题,一般原因是:高层建筑设计过程中过分注重了天然地基的利用;在设计桩筏过程中,未能及时注意到桩型、结构等问题,荷载大小分布存在不匹配的情况,未能充分利用复合桩基对系统的刚度分布进行调整,以便减小差异沉降,或对桩反力分布、利用筏板刚度调整荷载减小差异沉降的期望过高。 2减沉设计 (1)桩长及桩身断面选择:选择桩长应尽可能穿过压缩性高的土层,桩端持力层压缩性应相对较低,在承台产生一定沉降时桩仍可充分发挥并能继续保持其全部极限承载力;选择桩身断面应使桩身结构强度确定的单桩容许承载力与地基土对桩的极限承载力二者匹配,以充分发挥桩身材料的承载能力。 (2)承台埋深及其地面尺寸的初步确定:首先按外荷载全部由承台承担时其极限承载力仍有一定安全储备的原则,先初步确定承台的埋深及其底面尺寸,然后确定减沉设计的用桩量,再验算承台的初步尺寸,并给予调整。 (3)不同用桩数量时桩基沉降计算:根据初定的承台埋深及其底面尺寸,原定若干种不同的用桩数量方案,分别计算相应的沉降量,从而得到沉降s与桩数n的关系曲线,减少沉降桩基础的桩距一般应大于6d,桩的分布与建筑物竖向荷载相对应。 (4)按建筑物容许沉降量确定实际用桩数量:根据沉降s与桩数n的关系曲线,按建筑物容许沉降量确定桩基实际所需的用桩数量。在用桩数量确定后,再按已经选定的桩数和初步确定的承台埋深及底面尺寸计算其极限荷载,验算安全系数或调整承台埋深及底面尺寸,以确保合理的安全度。 3变刚度调平设计 3.1变刚度调平设计的内容 在桩筏变刚度调平设计中,群桩刚度与单一筏板刚度的比值kpr最为关键。最合适的kpr值与桩筏面积比有关,且当有关桩筏面积比范围为16%~25%时,kpr值接近于1。当桩筏面积比较大时,为减少沉降差,kpr值应稍微增加。考虑到桩的非线性,比完全弹性分析所得到的稍大(约50%),kpr值可能更为合适。为减小桩的承载能力明显发挥(大于50%)后的沉降差,只要kpr=1的条件满足,任何实际桩长都可采用。当然为获得桩承载特性的合理发挥,桩的承载力应以侧摩阻力为主,而不是桩端阻力。研究表明,桩的总承载力发挥的强度与桩的极限承载力的比值m不应超过0.8,以避免沉降差明显增加,在m<0.8范围内,最合适群桩实际分担荷载相当于2.5倍-3倍群桩区域上的总荷载,仅为整个筏板上总外荷载的40%-70%。 对无限大地基上的局部区域,其沉降应与该区域的荷载成正比,而与其刚度成反比。地基局部区域沉降较大,是该处荷载较大而刚度较小所致。削减该处的荷载或增大该处的刚度就可以减少该处的沉降。高层建筑桩筏基础的荷载分布是由上部结构确定的。而上部结构由于受到功能的限制,一般很难进行调整。只能调整基础的刚度,对于桩筏基础,可通过变化板厚、设置肋梁,缩小墙距等调整基础刚度分布。但费用往往很高,因此减少某处的沉降或进行调平设计主要是针对筏底布桩与筏底地基土。 调整地基桩土刚度分布不仅可行而且调平效果显著,是变刚度调平设计的中心内容。首先,主裙楼的地基基础可采用不同形式,以适应上部结构荷载的分布状况。当采用桩基和复合地基时,可通过调整布桩及处理范围形成桩土变刚度分布。是改变桩的平面布置、桩数、桩长、桩径以改变桩土刚度,还是采用复合地基改变筏底地基土和桩?土界面的性质,选择的标准只能是技术可行性与经济合理性。一般来讲,对桩筏基础,桩在基础中占主导地位,改变基桩的参数效果显著。 3.2变刚度调平设计的步骤 (1)按建筑物性质、荷载、地质条件等进行初始布桩并确定板厚。 (2)对上部结构、桩筏基础与地基共同作用进行分析,绘制沉降等值线。 (3)对沉降等值线进行分析,当天然地基总体沉降不大而局部沉降过大时,根据具体条件,对沉降过大部分采用局部加强处理。如采用筏底布桩或复合地基,在桩基沉降较小部位,应抽掉一部分桩;或视土层情况适当缩短桩长或减小桩径。对沉降较大的部位,应适当加密布桩或视土层情况,适当增加桩径桩长,重新形成刚度体系。 (4)进行共同工作迭代计算,直至沉降差减到最小。在此过程中,可根据沉降等值线,判断主裙楼间是否设置后浇带或沉降缝,是否需对基础板厚和构造进行调整等。显然,调平设计的关键在于合理地计算桩筏基础的沉降分布与沉降差。因此,调平设计的沉降分析比减

筏板基础计算

pkpm平板筏基建模方法 目前工程中,“柱下或者剪力墙下平板式筏板”在pkpm里计算,简单概括有三个方法:“倒楼盖”“弹性地基梁法”“桩筏筏板有限元计算”。 具体到用“弹性地基梁法”(即jccad中第三个菜单)计算“柱下或者剪力墙下平板式筏板”的操作步骤是什么,这个流程是什么下面具体罗列: 1、首先要按地勘报告输入地质数据,用于沉降计算。非常重要。 2、在菜单2中输入筏基模型,注意筏板一般要挑出,因此首先用网格延伸命令将网格向外延伸一个悬挑长度,然后定义并布置筏板,给出厚度和埋深,并做柱和墙的冲切验算,看看板厚是否满足要求,如不满足,可以加柱帽(注:加柱帽的功能在“上部构件”的菜单中)。 3、输入筏板荷载,如果是平板式基础,可以直接布置板带,程序自动确定板带翼缘宽度形成地基梁模型。也可以不布置板带,直接定义地基梁形成梁元模型。 4、进入菜单3,按梁有限元法计算筏板。首先需要计算沉降,这里有个非常重要的概念,就是地基模型的选用。程序用模型参数kij(默认为0.2)来模拟不同的地基模型,kij=0的时候,为经典文克尔地基模型,kij=1的时候,为弹性半空间模型,不明白看教材。一般软土取低值0~0.2,硬土取高值0.2~0.4。其它参数不难理解,不赘述。梁元法程序提供两种沉降计算模式,刚性沉降和柔性沉降。柔性沉降假定筏板为完全柔性,而刚性沉降则假定为完全刚性。计算完成后,程序用求出的各区格反力除以其沉降值得到各区格的地基刚度值,然后转换为地梁计算用的地梁下的基床反力系数,这样便确定了基地的反力分布,用于下一步的内力计算。沉降计算是筏板计算的核心步骤。

4、基床系数k的合理性判断。沉降计算完毕后,计算数据中会给出各区格的地基刚度,即基床系数。这个系数一般要比建议值小很多。基床系数的合理性,关键看沉降计算结果。可用规范分层总和法手算地基中心点处的沉降值作比较。如出入大,应调整基床系数使其接近手算值。因此,用软件算连续基础,实际上就是对基床系数的校核。菜单5的有限元法中提供的“沉降试算”功能,就是这个思想(其实这个功能就是给懒人和初学者开发的)。 5、对于基床系数的调整,程序提供了一种方便的功能--可以按照广义文克尔地基模型进行地基梁计算,即变基床系数调整法。可以把你输入的基础系数,按照已经计算完毕的各区格的刚度变化率进行调整,作为新的基础系数用于下一步的地基梁内力计算。 6、基础计算模型一般用普通弹性地基梁就可以了,倒楼盖模型缺点较多,一般不推荐。考虑上部结构刚度可根据具体情况选择完全刚性,或等代刚度法。 筏板基础设计分析2009 1 筏板基础埋深及承载力的确定 天然筏板基础属于补偿性基础, 因此地基的确定有两种方法. 一是地基承载力设计值的直接确定法. 它是根据地基承载力标准值按照有关规范通过深度和宽度的修正得到承载力设计值, 并采用原位试验(如标惯试验、压板试验等) 与室内土工试验相结合的综合判断法来确定岩土的特性. 二是按照补偿性基础分析地基承载力. 例如: 某栋地上28 层、地下2 层(底板埋深10m ) 的高层建筑, 由于将原地面下10m 厚的原土挖去建造地下室, 则卸土土压力达180kpa, 约相当于11 层楼的荷载重量;如果地下水位为地面下2m , 则水的浮托力为80kpa, 约相当于5 层楼的荷载重量, 因此实际需要的地基承载力为14 层楼的荷载. 即当地基承载力标准值f ≥ 250kpa 时就能满足设计要求, 如果筏基底板适当向外挑出, 则有更大的可靠度. 2 天然筏板基础的变形计算 地基的验算应包括地基承载力和变形两个方面, 尤其对于高层或超高层建筑, 变形往往起着决定性的控制作用. 目前的理论水平可以说对地基变形的精确计算还比较困难, 计算结果误差较大, 往往使工程设计人员难以把握, 有时由于计算沉降量偏大, 导致原来可以采用天然地基的高层建筑, 不适当地采用了桩基础, 使基础设计过于保守, 造价提高, 造成浪费.采用各向同性均质线性变形体计算模型,用分层总和法计算出的自由沉降量往往同实测的地基变形量不同, 这是受多种因素的影响造成的. (1) 这种理论的假定条件遵循虎克定律, 即应力—应变呈直线关系, 土体任何一点都不能产生塑性变形, 与土体的实际应力—应变状态不相一致;

高层建筑基础筏板施工与测温方案

晋江市兴隆路住宅小区一期 筏板基础 大体积混凝土 施工及测温方案 福建省闽南建筑工程有限公司 2015年01月15日

目录 第一章筏基混凝土施工方法及技术措施 (2) 第二章基础大体积抗渗砼裂缝预防施工技术措施 (4) 第三章大体积砼测温 (11)

一、工程概况及工程特点: 1、工程基本情况 2、建筑设计概况 3、本工程采用筏板基础,筏板厚1300mm,筏基基础面标高-3.50m。 基础施工安排:因面积大,分布广,工程量大,桩基础工程开挖顺序施工,逐块移交。为缩短基础施工工期,减少投入,基础分批施工,筏板基础分3#、4#、5#楼三块进行浇筑施工,使施工节奏有序、合理。

第一章筏基混凝土施工方法及技术措施筏基基础为C30p6钢筋砼,其质量的好坏对于保证结构达到设计要求的可靠度,同时其施工周期将影响到基础工程施工进度的快慢。所以,其施工方法、施工工艺要求、技术措施落实均作为基础施工的重点控制对象,要求严格把握各工序交叉施工,实行质量动态控制管理,层层落实责任制,充分发挥我公司施工管理、施工技术优势,确保防水砼结构工程取得良好的施工质量。下面就三个分项施工工艺综合考虑确定其施工方法和制定技术措施。 混凝土分项工程是基础施工的主导工程,其浇筑质量的好坏将直接影响到工程的质量优劣和使用要求,本工程筏板厚1300mm,筏基基础混凝土现浇体积约为:3#楼1450m3、4#楼1400m3、5#楼1500m3,为加快施工进度,要求筏板每段一次连续浇完(以后浇带为分隔),且要控制住宅部分厚度超过1m基础砼温差裂缝,技术要求高,施工难度大。为此,从方案编制到作业交底,直到施工过程,均应作周密考虑,层层把关,确保基础防水砼施工质量。 1、筏基基础砼及浇筑道支撑系统 用钢管搭设,底脚设Ф25@1000筋马凳(呈梅花状布置),置于基础垫层上,纵横间距1000×1000,作上层钢筋定位支承之用,浇灌架,搭设高度视操作要求确定。铺板布置按砼运送主通道宽3m,次道沿主道两侧按@4m搭设,宽度约1.5m。 基础及基础面层钢筋设置撑脚,按1000mm×1000mm间距双向布置。型式及尺寸、使用部位如图所示:

浅谈某高层建筑桩筏基础设计及沉降计算

浅谈某高层建筑桩筏基础设计及沉降计算 彭奇华 (衡阳天翔工程咨询有限公司,湖南衡阳421000) 摘要:结合实际工程,介绍了软土地基中为控制沉降而设置桩基的深基础设计方法及采用电算软件进行沉降计算的设计手法,对沉降计算结果进行了分析,从而解决了软土中桩筏基础的沉降计算问题。 关键词:桩筏基础,沉降计算,弹性地基梁板 一、工程概况 本工程位于某市,为一栋集商业、写字楼、公寓于一体的高层建筑综合大楼,其地下4层,用作车库、超市及设备房;地上裙房6层,主要用作商场;两栋塔楼(分缝后)分别为商务公寓和商务写字楼,总层数为25层,基本层高3.3m和3.6m,建筑总高度为98.50m。 二、基础设计 (一)地质条件及基础选型 本区大地构造属于雷一琼喜山沉降带北部某区。场区内第四纪地层发育,厚度达数百米,区域稳定性较好。勘察发现场区及附近均为第四系松散沉积层覆盖,地表未发现有明显的构造形迹出露,场地地形平坦,不存在高陡边坡、崩塌等不良工程地质现象本次钻探最大深度为85.0m,揭露土层上部为填土,全新统沼泽相沉积淤泥质黏土及中更新统北海组粉土,下部为下更新统湛江组海陆交互沉积地层,按成因类型及岩土工程特性划分为16个主要单元层。 据钻探资料揭示,场地⑧中砂及其以下土层中⑨,⑩,⑩黏土强度相对较低,其余土层的承载力特征值在250kPa以上;其中⑥粉质黏土及⑩中砂层分布稳定,厚度较大,为硬塑~坚硬或中密~密实状,承载力特征值在280kPa以上,其下无软弱下卧层分布,是理想的桩基础桩端持力层。根据湛江地区经验,桩的类型可考虑选择预应力管桩或钻孔灌注桩。结合本工程特点,采用钻孔灌注桩基础的桩筏基础结构形式。 (二)基础设计 桩基的布置:根据主楼与裙楼基础的受力特点,主楼采用长桩基,裙房则采用天然地基加短桩基的设计思路,采用不同桩长的形式进行布桩。主楼桩基主要以承受上部竖向荷载为主,柱下布置群桩,桩径有800眦1,1000眦1两种,大部分有效桩长为40m,桩端持力层为粉质黏土层;核心筒下布置群桩,桩径1500FD./TI,有效桩长50m,桩端持力层为中砂层;裙楼则主要以抵抗水浮力为主,柱下布置单桩,桩径1000FD./TI,有效桩长25m,桩端持力层为中砂层。由于本工程地下室比较深,地下水埋深较浅,水浮力相当大,为了平衡水浮力的作用,在部分跨度较大的筏板跨中布置了抗拔桩。这样,既解决了抗浮的问题,又有利于减小筏板的受力及配筋,节约工程造价。

JCCAD筏板基础设计

JCCAD筏板基础设计 应用前提条件: 1.上部结构的计算可以提供荷载和凝聚到基础顶面的刚度; 2.有完整准确地地质报告输入,并成功读入到合适位置。 基本参数 基础埋置深度:一般应自室外地面标高算起。对于地下室,采用筏板基础也应自室外地面标高算起,其他情况如独基、条基、梁式基础从室内地面标高算起。 自动计算覆土重:该项用于独基、条基部分。点取该项后程序自动按20kN/m2的混合容重计算基础的覆土重。如不选该项,则对话框中出现单位面积覆土重参数需要用户填写。一般来说如条基、独基、有地下室时应采用人工填写单位面积覆土重,且覆土高度应计算到地下室室内地坪处,以保证地基承载力计算正确。 一层上部结构荷载作用点标高:即承台或基础顶标高,先进行估算,计算完成后进行修改。该参数主要是用于求出基底剪力对基础底面产生的附加弯矩作用。在填写该参数时,应输入PMCAD中确定的柱底标高,即柱根部的位置。注意:该参数只对柱下独基和桩承台基础有影响,对其他基础没有影响。 地梁筏板 该菜单定义了按弹性地基梁元法计算需要的有关参数 总信息: 结构种类:基础

基床反力系数:按默认 按广义文克尔假定计算:若此项选择后,计算模型改为广义文克尔假定,即各点的基床反力系数将在输入的反力系数附近上下变化,边角部大,中部小一些,变化幅度与各点反力与沉降的比值有关,采用广义文克尔假定的条件是要有地质资料数据,且必须进行刚性底板假定的沉降计算,否则按一般文克尔假定计算。在此处要与基础梁板弹性地基梁法计算中的沉降计算参数输入中参数相对应。 弹性基础考虑抗扭: 人防等级:不计算 双筋配筋计算压区配筋百分率:0.2% 地下水距天然地坪深度:按实际 梁的参数: 梁钢筋归并系数:0.3 梁支座钢筋放大系数:1.0 梁跨中钢筋放大系数:1.0 梁箍筋放大系数:1.0 梁主筋级别:二级或三级 梁箍筋级别:一级或二级 梁立面图比例、梁剖面图比例:按默认 梁箍筋间距:200 翼缘(纵向)分布钢筋直径、间距:8mm、200mm 梁式基础的覆土标高:当不是带地下室的梁式基础时,此值为0;否则

筏板基础模板计算书

Appendix 1附件1 Calculation of the Formworks模板计算书 1、Side Formwork Construction侧模施工 1.1、设计说明 Design description: using site processed wood formwork, face plate is plywood of 15mm, secondary keel is timber of 50mm×100mm (the material is northeast larch) with 250mm space in between. Main keel is the timber of 80mm×200mm as modeling with the min. height no less than 150mm. 2 main keel set up with spacing of 700mm, 250mm as bottom and 255mm as upper side of slab. 侧模采用现场加工木模板,面板为15厚胶合板;次龙骨为50mm×100mm木方(材质为东北落叶松),间距250mm;主龙骨使用80mm×200mm木方做造型木(材质为东北落叶松),造型木中心最小高度不小于150mm。主龙骨设置两道,间距700mm,距底部250mm和上侧255mm. 1.2、Computational Checking of Secondary Keel次龙骨验算 1)Load and Combination of Load荷载及荷载组合 a.side pressure on the form for concrete混凝土对模板的侧压力 t0=200/(25+15)=5h (即混凝土的温度按25℃计算) F1=0.22γc t0β1β2V1/2=0.22×25×5×1.2×1.15×21/2 =53.67KN/m2 F2=γc H=25×1.2=30KN/m2(取此值做强度验算) (take this value for computational checking of strength ) b.load of concrete pouring混凝土倾倒荷载:4KN/m2 c.load of concrete vibrating混凝土振捣荷载:4KN/m2 combination of load荷载组合:1.2×30+1.4×(4+4)=47.2KN/m2 line load化为线荷载:q=47.2×0.25=11.8KN/m 2)Computational Checking of Flexural Strength抗弯强度验算 M max =11.8×0.7^2×(1-4×0.252/0.72)/8=0.52KN·m (建筑施工手册表Construction Manual 2-10) W n =1/6bh2 =1/6×50×1002 =250000/3 σm = M/W n =0.52×106 /(250000/3)=6.24N/mm2≤ f m =17 N/mm2

合理设计高层建筑基础筏板厚度

合理设计高层建筑基础筏板厚度 摘要:针对如何合理设计高层建筑筏板基础厚度的问题,给出了在考虑基础与上部结构共同作用的前提条件下,按正常使用极限状态和承载力极限状态两方面分别入手, 应用纵向挠曲度和板的冲切等理论成果,并通过实例论证,给出了一套较合理和 完整的设计高层建筑筏板基础厚度的步骤。 关键词:基础与上部结构相互作用筏板基础厚度纵向挠曲值正常使用极限状态承载力极限状态冲切 近几年国内房地产业的迅猛发展,使得各地均纷纷出现了许多高层或者超高层项目,高层建筑逐渐成为或已经成为了一种趋势。高层基础设计作为高层建筑的根本,也日益成为设计行业关注的焦点。现行的《高层建筑混凝土结构技术规程》(JGJ3-2010)中(12.1.5)条规定:“高层建筑应采用整体性好、能满足地基承载力和建筑物容许变形要求并能调节不均匀沉降的基础形式;宜采用筏板基础或带桩基的筏板基础,必要时可采用箱型基础。”可是怎样合理设计高层筏板基础(简称“筏基”)厚度呢?尚无成熟方法。因此如何合理设计高层筏基厚度,对于工程设计有着十分必要的意义。在此对此问题进行简单的论述。 1设计基本条件 《高层建筑混凝土结构技术规程》(JGJ3-2010)中(12.1.4)条规定:“高层基础设计时,宜考虑基础与上部结构相互作用的影响。”所谓考虑基础与上部结构相互作用,即将上部结构刚度与荷载凝聚到与下部基础相连的节点上,从而有效控制筏基的非倾斜性沉降差,减小基础内力,使基础配筋更加均匀合理;对于上部结构,由于考虑了因基础变形引起的变形,这种变形将使上部结构产生次应力,考虑了这种次应力,上部结构将更安全。近年来,随着计算软件的开发,上部结构、基础和地基共同作用分析法在筏板基础内力计算中得到广泛运用,该分析法基础按弹性地基上板考虑,地基模型一般采用文克尔地基、弹性半空间地基和压缩层地基等地基模型,常用数值分析方法为有限元法、有限差分法等,其中有限元法较为常用。此基本条件比较准确的反映了高层结构实际受力情况,也是作者此文论述的基础与前提条件。 2 合理设计高层筏基厚度的原则 2.1 正常使用状态下的筏基厚度确定 高层筏基平面尺寸纵向长度一般较长,在结构荷载作用下,宜在纵向弯矩作用下产生差异沉降,过厚的基础纵向弯矩会引起上部结构次应力过大,产生结构开裂等问题,影响上部建筑的正常使用;而太薄,基础部分容易产生裂缝,抗渗性不满足要求,且基础计算钢筋面积会加大,提高基础造价和影响基础的正常使用。所以,对于高层建筑,控制纵向最大弯矩下的变形往往起着决定性的意义。纵向变形即纵向挠曲程度。合理的纵向挠曲值θ,一般按下式计算:θ=Δw/L,式中,Δw为基础纵向差异沉降值,L为基础长度。θ≤0.8‰为工程上允许的相对挠曲值。但由于此方法计算时,需知道基础纵向差异沉降,而此值一般要到结构整体计算完后才知,所以作者常采用设计上的经验公式来预估筏基的厚度,即筏基厚度按地面上的楼层数估算,每层约需板厚50~80mm。以此作为筏基在正常使用状态下的预估厚度。 2.2 承载力极限状态下验算筏基厚度

相关文档
最新文档