导播雷达调试四步法(1)

导播雷达调试四步法(1)
导播雷达调试四步法(1)

导波雷达调试四步法

第一步、量程调整

按OK键(右键)进入“行0列1”后按“OK”键进入“行0列8”后按“OK”键进入“行0列b”按“OK”键进入“行0列d”按“下键”键进入“0.0% at”按一下“+”让“0.0%”闪烁(百分数一般不变)按“OK”此时20.00闪烁这时可以按“+,-”键改变数值(长按会进位改变)按OK存储数据。按同样方法可改变“满料距离”(盲区)/一般为0.5米。

第二步、现场空高、料高显示设置

按OK键(右键)进入“行0列1”后按“OK”键进入“0列8”按“下键”键进入“行1列8”按“OK”进入“行1列9”按“OK”键进入“行1列a”按“下键”进入“行2列a”输入(量程-盲区)的数值,单位为厘米,按“OK”存储按“下键”键进入“行3列a”按“+,-”把实际8888该为88.88,按“OK”存储。

例:“行0列d”0.0%数值为10.00;100%数值为0.50将“行2列a”

第三步、空容器轮廓存储

按OK键(右键)进入“行0列1” 按“下键”进入“行1列1” 按“OK”

键进入“行1列3” 按“下键”进入“行2列3”按“OK”进入“行2列4”按“下键”进入“行3列4”按 “OK” 按“+,-”输入顶部需编辑的轮廓距离值按“OK”存储按“OK”确认(最后显示“等待”,“等待”

消失后即存储完成)

注:空容器轮廓存储功能是将罐顶的,对测量有影响测量的障碍物,以特殊的形式记录到处理器内,以消除这些障碍物对测量的影响,最好在仪表

第四步、缆长度设置

按OK键(右键)进入“行0列1” 按“下键”进入“行1列1” 按“OK”

键进入“行1列3” 按“OK”键进入“行1列5” 按“OK”键进入“行1列7” 按“下键”进入“行2列7”,按“OK”通过按 + - 可以 改变

一种雷达方位角检测方法

第28卷第12期 兵工自动化 Vol. 28, No. 12 2009年12月 Ordnance Industry Automation Dec. 2009 · 82· doi: 10.3969/j.issn.1006-1576.2009.12.028 一种雷达方位角检测方法 胡定军,王玮,冯玉龙 (镇江船艇学院 指挥系,江苏 镇江 212003) 摘要:介绍了一种雷达方位角测量的方法,该方法采用旋转变压器/轴角转换器AD2S80BD ,将旋转变压器输出的模拟信号通过AD2S80BD 轴角转换电路转换成数字量信号,再利用单片机MSP430F123进行解算,得出雷达角位置信号,实时供雷达终端显示或转发。该系统接口电路简单可靠,工作稳定,在雷达测量系统中有较高的应用价值。 关键词:旋转变压器;雷达;方位角;AD2S80BD 中图分类号:TP206+.1; TN956 文献标识码:A Study on Measuring Radar Azimuth HU Ding-jun, WANG Wei, FENG Yu-long (Dept. of Watercraft Commanding, Zhenjiang Watercraft College, Zhenjiang 212003, China) Abstract: Introduce the method of radar azimuth detection. The method adopts resolver and angle converter AD2S80BD, The analog signals of resolver were transformed into the digital signal by AD2S80BD axis angle circuit. Then the radar angle position can be disposed by simple chip MSP430F123, and it can be shown and transmitted on the radar terminator. The system interface circuit is simple, reliable and stable, with high application value in radar measurement system. Keywords: Resolver; Radar; Azimuth; AD2S80BD 0 引言 角位置测量装置是工业控制设备的重要组成部分,在飞行器姿态控制和检测、导弹控制、雷达天线跟踪等角位置测量控制系统中有着广泛应用。为精密测量雷达系统各轴角,在雷达角位置检测系统中采用旋转变压器,它具有耐高温、耐湿度、抗冲击、抗干扰等特点,但其输出信号为模拟量,故采用AD 公司的数字转换器芯片AD2S80BD ,将旋转变压器产生的模拟信号快速转换为二进制数字信号,实现对角位置的数字化分析。 1 雷达方位角测量系统组成 雷达方位角测量系统由方位轴、旋转变压器、 AD2S80BD 组成的轴角/数字转换电路等部分组成。将旋转变压器安装在雷达方位轴的方位铰链上,雷达转盘转动时带动方位轴的方位铰链的活动,旋转变压器也随之活动,产生的两相正、余弦信号[1]输入到由AD2S80BD 组成的轴角/数字转换电路,转换后的16位二进制数字信号,输入到雷达终端处理显示或转发,其系统组成如图1[2]。 图1 雷达方位角测量系统组成 2 旋转变压器的工作原理 旋转变压器是一种单相激励双相输出(幅度调制型)无刷旋转变压器,如图2。旋转变压器初级 励磁绕组(R1—R2) 和二相正交的次级感应绕组(S1—S3,S2—S4)同在定子侧,转子侧是与初级绕组和次级绕组磁通耦合的特殊结构的线圈绕组[3]。 图2 旋转变压器原理图 当旋转变压器转子随雷达方位轴同步旋转、初级励磁绕组(R1-R2)外加交流励磁电压后,次级两输出绕组(S1-S3,S2-S4)中会产生感应电动势,大小为励磁与转子旋转角的正、余弦值的乘积。旋转变压器输入输出关系如下: 120sin R R E E t ??= 1312sin S S R R E KE θ??= 2412cos S S R R E KE θ??= 这里的θ是转子旋转的角度,E 0是励磁最大幅值,?是励磁角频率,K 是旋转变压器变比。 3 AD2S80BD 的轴角/数字硬件电路 收稿日期:2009-06-10;修回日期:2009-07-15 作者简介:胡定军(1977-),男,江苏人,硕士,工程师,从事信号采集与模拟控制、电子自动化研究。

雷达目标检测性能分析

雷达目标检测实例 雷达对Swerling起伏目标检测性能分析 1.雷达截面积(RCS)的涵义 2.目标RCS起伏模型 3.雷达检测概率、虚警概率推导 4.仿真结果与分析

雷达通过发射和接收电磁波来探测目标。雷达发射的电磁波打在目标上,目标会将入射电磁波向不同方向散射。其中有一部分向雷达方向散射。雷达截面积就是衡量目标反射电磁波能力的参数。

雷达截面积(Radar Cross Section, RCS)定义:22o 2 4π 4π4π4π()4πo i i P P R m P P R σ=== 返回雷达接收机单位立体角内的回波功率 入射功率密度 在远场条件下,目标处每单位入射功率密度在雷达接收机处每单位立体角内产生的反射功率乘以4π。 R 表示目标与雷达之间的距离,P o 、P i 分别为目标反射回 的总功率和雷达发射总功率

?目标RCS和目标的几何横截面是两个不同的概念?复杂目标在不同照射方向上的RCS不同 ?动目标同一方向不同时刻的RCS不同 飞机舰船 目标RCS是起伏变化的,目标RCS大小直接影响着雷达检测性能。为此,需用统计方法来描述目标RCS。基于此,分析雷达目标检测性能。

Swerling 模型是最常用的目标RCS 模型,它包括Swerling 0、I 、II 、III 、IV 五种模型。其中,Swerling 0型目标的RCS 是一个常数,金属圆球就是这类目标。Swerling Ⅰ/Ⅱ型: 1 ()exp()p σ σσσ =- 指数分布 Swerling Ⅰ:目标RCS 在一次天线波束扫描期间是完 全相关的,但本次和下一次扫描不相关(慢起伏),典型目标如前向观察的小型喷气飞机。 Swerling Ⅱ:目标RCS 在任意一次扫描中脉冲间不相关(快起伏),典型目标如大型民用客机。

激光雷达高速数据采集系统解决方案

激光雷达高速数据采集系统解决方案 0、引言 1、 当雷达探测到目标后, 可从回波中提取有关信息,如实现对目标的距离和空间角度定位,并由其距离和角度随时间变化的规律中得到目标位置的变化率,由此对目标实现跟踪; 雷达的测量如果能在一维或多维上有足够的分辨力, 则可得到目标尺寸和形状的信息; 采用不同的极化方法,可测量目标形状的对称性。雷达还可测定目标的表面粗糙度及介电特性等。接下来坤驰科技将为您具体介绍一下激光雷达在数据采集方面的研究。 1、雷达原理 目标标记: 目标在空间、陆地或海面上的位置, 可以用多种坐标系来表示。在雷达应用中, 测定目标坐标常采用极(球)坐标系统, 如图1.1所示。图中, 空间任一目标P所在位置可用下列三个坐标确定: 1、目标的斜距R; 2、方位角α;仰角β。 如需要知道目标的高度和水平距离, 那么利用圆柱坐标系统就比较方便。在这种系统中, 目标的位置由以下三个坐标来确定: 水平距离D,方位角α,高度H。 图1.1 用极(球)坐标系统表示目标位置

系统原理: 由雷达发射机产生的电磁能, 经收发开关后传输给天线, 再由天线将此电磁能定向辐射于大气中。电磁能在大气中以光速传播, 如果目标恰好位于定向天线的波束内, 则它将要截取一部分电磁能。目标将被截取的电磁能向各方向散射, 其中部分散射的能量朝向雷达接收方向。雷达天线搜集到这部分散射的电磁波后, 就经传输线和收发开关馈给接收机。接收机将这微弱信号放大并经信号处理后即可获取所需信息, 并将结果送至终端显示。 图1.2 雷达系统原理图 测量方法 1).目标斜距的测量 雷达工作时, 发射机经天线向空间发射一串重复周期一定的高频脉冲。如果在电磁波传播的途径上有目标存在, 那么雷达就可以接收到由目标反射回来的回波。由于回波信号往返于雷达与目标之间, 它将滞后于发射脉冲一个时间tr, 如图1.3所示。 我们知道电磁波的能量是以光速传播的, 设目标的距离为 R, 则传播的距离等于光速乘上时间间隔, 即2R=ct r 或 2 r ct R

现代雷达信号检测及处理

现代雷达信号检测报告

现代雷达信号匹配滤波器报告 一 报告的目的 1.学习匹配滤波器原理并加深理解 2.初步掌握匹配滤波器的实现方法 3.不同信噪比情况下实现匹配滤波器检测 二 报告的原理 匹配滤波器是白噪声下对已知信号的最优线性处理器,下面从实信号的角度 来说明匹配滤波器的形式。一个观测信号)(t r 是信号与干扰之和,或是单纯的干扰)(t n ,即 ? ??+=)()()()(0t n t n t u a t r (1) 匹配滤波器是白噪声下对已知信号的最优线性处理器,对线性处理采用最大信噪比准则。以)(t h 代表线性系统的脉冲响应,当输入为(1)所示时,根据线性系统理论,滤波器的输出为 ?∞ +=-=0)()()()()(t t x d h t r t y ?τττ (2) 其中 ?∞ -=0 0)()()(τττd h t u a t x , ?∞ -=0 )()()(τττ?d h t n t (3) 在任意时刻,输出噪声成分的平均功率正比于 [ ] ??∞∞=?? ? ???-=0 20202 |)(|2)()(|)(|τττττ?d h N d h t n E t E (4) 另一方面,假定滤波器输出的信号成分在0t t =时刻形成了一个峰值,输出信 号成分的峰值功率正比于 2 02 2 0)()()(? ∞ -=τττd h t u a t x (5) 滤波器的输出信噪比用ρ表示,则

[ ] ?? ∞ ∞ -= = 2 02 02 2 20|)(|2)()(| )(|) (τ ττ ττ?ρd h N d h t u a t E t x (6) 寻求)(τh 使得ρ达到最大,可以用Schwartz 不等式的方法来求解.根据Schwartz 不等式,有 ??? ∞ ∞ ∞ -≤-0 20 2 02 0|)(||)(|)()(τττττ ττd h d t u d h t u (7) 且等号只在 )()()(0*τττ-==t cu h h m (8) 时成立。由式(1)可知匹配滤波器的脉冲响应由待匹配的信号唯一确定,并且是该信号的共轭镜像。在0=t t 时刻,输出信噪比SNR 达到最大。 在频域方面,设信号的频谱为 ,根据傅里叶变换性质可知,匹配滤 波器的频率特性为 (9) 由式(9)可知除去复常数 c 和线性相位因子 之外,匹配滤波器的频率 特性恰好是输入信号频谱的复共轭。式 (2)可以写出如下形式: (10) (11) 匹配滤波器的幅频特性与输入信号的幅频特性一致,相频特性与信号的相位谱互补。匹配滤波器的作用之一是:对输入信号中较强的频率成分给予较大的加权,对较弱的频率成分给予较小的加权,这显然是从具有均匀功率谱的白噪声中过滤出信号的一种最有效的加权方式;式(11)说明不管输入信号有怎样复杂的非线性相位谱,经过匹配滤波器之后,这种非线性相位都被补偿掉了,输出信号仅保留保留线性相位谱。这意味着输出信号的各个频率分量在时刻达到同相位,同相相加形成输出信号的峰值,其他时刻做不到同相相加,输出低于峰值。 匹配滤波器的传输特性 ,当然还可用它的冲激响应 来表示,这时有:

倒车雷达测试及评价试验规范

Q/SQR 奇瑞汽车股份有限公司企业标准 Q/SQR . x x. x x x - 2008倒车雷达性能台架测试及评价试验规范

前言 本规范主要规定了奇瑞汽车股份有限公司-2003进行。本规范是在满足奇瑞汽车产品性能要求的前提下制定的。本标准作为公司开发新产品和抽检配套供应商供货质量的依据。 本规范由奇瑞汽车股份有限公司试验技术中心提出。 本规范由奇瑞汽车股份有限公司汽车工程研究院归口 本规范起草单位:奇瑞汽车股份有限公司试验技术中心 本规范首次发布日期是2008年XX月XX日。 本规范主要起草人:李川、郑春平、周琴

倒车雷达性能台架测试及评价试验规范 1 范围 本规范适用于奇瑞汽车有限公司生产的系列车型所用倒车雷达系统台架性能测试及评价。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 Q/ 倒车辅助系统技术要求 ISO 17386-2003 Intelligent Transportation Systems. Manoeuvring Aids for Low Speed Operation. Performance requirements and test procedures 3 试验条件 试验环境条件 环境温度:23℃±5℃ 相对温度:25~75% 气压:86~106kPa 试验电压:13± 4 性能要求 探测区域分类 及ISO 17386-2003要求,把倒车雷达探测距离分为5段,见图1: OA(0~20cm]:由倒车雷达探头换能器工作原理决定,该区域为不定状态区域,因此在测试过 程中可以不进行测试; OS(0~35cm):为急停区域,当障碍物出现在在区域内时,必须停车,且声音报警声长鸣; SB[35~60cm]:为急停区域,当障碍物出现在在区域内时,必须停车,且声音报警声急促4Hz; BC(60~90cm]:为缓行区,在该区域内,车辆应该减慢车速,保证车速在5km/h内(在实际行驶 过程中),且声音报警声频率2Hz; CD(90~150cm]:为预警区,表示障碍物已经进入车辆倒车辅助系统进行提示作用,保证车速 在5km/h内(在实际行驶过程中),且声音报警声频率1Hz。 探测误差 及ISO 17386-2003要求,倒车雷达探测误差距离为±5cm。 测试条件 1)、倒车雷达安装台架(按实车状态调整好探头的测试台架) 2)、倒车雷达探测标准障碍物:Φ75mm、高1000mm的标准PVC管(水平范围探测);Φ50mm、 长500mm的标准PVC管(滚地试验) 3)、探测距离范围记录原始记录单(见附表一) 4)、倒车雷达探测范围测试网格(宽至少超出倒车雷达安装整车车宽两侧各20cm)(见附表二) 5)、倒车雷达评价的区域在AD段内,如设计探测距离超出1.5m,超出部分均算为CD部分距离。 图1:倒车雷达探测距离分区 检测过程注意事项

雷达测速抓拍系统设计方案

雷达测速抓拍系统设计方案 技 术 设 计 方 案 介 绍 设计单位:广州莱安智能化系统开发有限公司 网站:.cn 地址:广州市天河区中山大道建中路5号天河软件园海天楼3A06 用户服务中心:Tel: 联系人:周先生:陈先生: 欢迎来电索取详细方案或来电洽谈业务,免费提供设计方案,价格实惠 公司简介 广州莱安智能化系统开发有限公司成立于是2002年,专业从事数字网络视频监控系统、智能视频分析、机房动力环境监控、机房建设、雷达测速、闯红灯电子警察抓拍、电子治安卡口、智能控制等智能化系统开发的大型综合型企业,欢迎来电洽谈业务! 质量方针:以人为本、质量第一 公司成立至今,坚持以领先的技术、优良的商品、完善的售后服务、微利提取的原则服务于社会。我公司为您提供的产品,关键设备采用高质量进口合格产品,一般设备及材料采用国内大型企业或合资企业的产品,各种产品企业都通过ISO9001国际质量体系认证。有一支精良的安防建设队伍,由专业技术人员为您设计,现场有专业技术人员带领施工,有良好职业道德施工人员。我公司用户拥有优质的设计施工质量和优质的售后服务保障。 客户哲学:全新理念、一流的技术、丰富的经验,开创数字新生活 专注——维护世界第一中小企业管理品牌、跟踪业界一流信息技术、传播经营管理理念是莱安永恒不变的追求,莱安坚持“全新的

理念、一流的技术、丰富的经验、优质的服务”,专注于核心竞争力的建设是莱安取得今天成功的根本,也必将是莱安再创辉煌的基础! 分享——“道不同,不相谋”,莱安在公司团队之间以及与股东、渠道伙伴、客户之间均倡导平等、共赢、和谐、协同的合作文化,在迎接外部挑战的过程中,我们共同期待发展和超越,共同分享激情与快乐!“合作的智慧”是决定莱安青春永葆的最终动力! 客户服务:以高科技手段、专业化的服务为客户创造价值 分布于神州大地各行业中的800万中小企业是中国最具活力的经济力量,虽然没有强势的市场影响力和雄厚的资金储备,但无疑,个性张扬的他们最具上升的潜力,后WTO时代市场开放融合,残烈的竞争使他们的发展更加充满变数。基于以上认识,在智能化设备管理市场概念喧嚣的热潮中,独辟“实用主义”产品哲学,莱安将客户视为合作关系,我们提供最为实用的产品和服务,赢得良好的口碑。我们认为,用户企业运做效率的提升是莱安实现社会价值的唯一途径。 承蒙广大用户的厚爱,我公司得以健康发展。在跨入新的世纪后,公司将加快发展速度,充分发挥已有资源,更多地开展行业用户的服务工作,开创新的发展局面。 我公司全体员工愿与社会各界携手共创未来!我们秉承真诚合作精神向广大客户提供相关的系统解决方案,设备销售及技术支持,价格合理,欢迎来人来电咨询、洽谈业务! 雷达测速抓拍系统设计方案 一、系统图 根据客户需求,本系统采用前端抓拍方式,前端配备抓拍机箱及主机,这是目前道路雷达测速抓拍系统的主流方式。本公司配置的主机可以监测抓拍两车道。每个超速监控点的每个方向只需配备2台特写摄像机,1台全景摄像机。 系统优势: 1、系统采用了单车道测速雷达,增强了可靠性,性能稳定性高。

倒车雷达的检测方法

Date 日 期 2007-8-31 上海大众现在生产的Polo 劲情劲取和Passat 领驭的倒车雷达取消了CAN-BUS,用VAS505x 无法进 入76地址词(老状态零件可以)。新状态倒车雷达的故障是通过倒车雷达自检时的报警声来诊断的,具体方法如下: 在车后2 米内无障碍物的条件下,将倒车挡挂入后,仔细分辨倒车雷达模块通电后的自检提示: 1、全部功能正常:自检提示音为“嘀”一声后进入正常工作模式。 2、左外传感器故障:自检后出现约4-6秒的长鸣音,长鸣音后出现 “嘀”一声报警,此提示为左外 传感器故障。 3、左中传感器故障:自检后出现约4-6秒的长鸣音,长鸣音后出现 “嘀、嘀”两声报警,此提示为 左中传感器故障。 4、右中传感器故障:自检后出现约4-6秒的长鸣音,长鸣音后出现 “嘀、嘀、嘀”三声报警,此提 示为右中传感器故障。 5、右外传感器故障:自检后出现约4-6秒的长鸣音,长鸣音后出现 “嘀、嘀、嘀、嘀”四声报警, 此提示为右外传感器故障。 6、2个以上传感器故障:自检后出现约4-6秒的长鸣音,依照左、中、右的顺序,优先提示第一颗传 感器故障位置(每次自检后只提示一个故障位置)。例:当左中、右外两颗同时出现故障时,自检出现约4-6秒的长鸣音后,发出 “嘀、嘀”两声报警。更换左中传感器后再次通电自检,自检出现约4-6秒的长鸣音后,发出 “嘀、嘀、嘀、嘀”四声报警,更换左外传感器后再通电才出现自检提示音为“嘀”一声的正常提示音,而后进入正常工作模式。(即主机的自检每次通电后只能提示一个传感器异常,如有多个传感器异常需要更换后多次进行通电确认)。 7、当倒车雷达主机在通电后,自检出现约4-6秒的长鸣音后,发出 “嘀、嘀、嘀、嘀、嘀”五声报 警时,提示为倒车雷达主机出现故障。如倒车雷达主机在通电后,没有任何的提示反应,请先确认倒车雷达主机端子的安装状态,是否为线束脱落或断路造成。 8、以上异常报警同样适用在工作中的传感器,即在正常工作状态下,出现异常报警方式同上。 From 发自: 技术支持股 Department 部门:技术支持科 涉及车型: Polo 劲情劲取、Passat 领驭编号: Subject 主题 Polo 劲情劲取、Passat 领驭倒车雷达故障诊断

激光雷达应用

光电传感技术与应用 课程作业 学院 专业 姓名 学号

课程论文题目激光雷达技术 评审意见 演示文稿张数14 评审意见

激光雷达 林无穷 江南大学理学院光电信息科学与工程系江苏无锡 214122 摘要:本文介绍了激光雷达技术的原理、发展与历程,还有它在当今时代的多方面应用。我们把工作在红外和可见光波段的,以激光为工作光束的雷达称为激光雷达,它由激光发射机、光学接收机、转台和信息处理系统等组成。它在地形检测,导航,测距,追踪以及军事方面有着显著作用。 关键词:激光,雷达,环境检测 引言 激光雷达是以发射激光束探测目标的位置、速度等特征量的雷达系统。从工作原理上讲,与微波雷达没有根本的区别:向目标发射探测信号(激光束),然后将接收到的从目标反射回来的信号(目标回波)与发射信号进行比较,作适当处理后,就可获得目标的有关信息,如目标距离、方位、高度、速度、姿态、甚至形状等参数,从而对飞机、导弹等目标进行探测、跟踪和识别。 激光雷达是激光技术与现代光电探测技术结合的先进探测方式。由发射系统、接收系统、信息处理等部分组成。发射系统是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器以及光学扩束单元等组成;接收系统采用望远镜和各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等组合。 原理 激光雷达探测大气的基本原理即是上述几种激光与大气相互作用的机制。激光器产生的激光束经光束准直(有的情况下需要扩束)后发射到大气中,激光在大气中传输遇到空气分子、气溶胶等成分便会发生散射、吸收等作用。散射中的小部分能量——后向散射光落入接收望远镜视场被接收。被接收到的后向散射光传输到光电探测器(通常为PMT)被转换成电信号(一般为电流信号),实现光-

雷达测速试验报告

雷达测距实验报告 1. 实验目的和任务 1.1 实验目的 本次实验目的是掌握雷达带宽同目标距离分辨率的关系,通过演示实验了解雷达测距基本原理,通过实际操作掌握相关仪器仪表使用方法,了解雷达系统信号测量目标距离的软硬件条件及具体实现方法。 1.2 实验任务 本次实验任务如下: (1)搭建实验环境; (2)获得发射信号作为匹配滤波的参考信号; (3)获得多个地面角反射器的回波数据,测量其各自位置,评估正确性; (4)获得无地面角发射器的回波数据,与(3)形成对比,并进行分析。 2. 实验场地和设备 2.1 实验场地和环境条件 本次实验计划在雁栖湖西校区操场进行,环境温度25℃,湿度40%。 实验场地如上图所示,除角反射器以外,地面上还有足球门、石块以及操场上运动的人等比较明显的目标。

2.2 实验设备 实验所需的主要仪器设备如下: (1) 矢量信号源SMBV100A ; (2) 信号分析仪FSV4; (3) S 波段标准喇叭天线; (4) 角反射器 (5) 笔记本电脑 2.3 设备安装与连接 设备连接关系图如下: 雷达波形文件雷达回波数据 时钟同步 计算机终端 SMBV100A 矢量信号源 FSV4信号分析仪 角反射器 交换机 图1 实验设备连接示意图 其中:蓝色连接线表示射频电缆,灰色连接线表示网线。 3. 实验步骤 3.1 实验条件验证 检查仪器工作是否正常,实验环境是否合适。 3.2 获取参考信号 1. 调节信号源参数,生成线性调频信号,作为匹配滤波的参考信号,然后通过射频电缆将信号源与频谱仪相连,利用频谱仪的A/D 对线性调频信号采样,并通过网线将数据传输给计算机,并保存为“b1.dat ”。参考信号的主要参数如下所示:

嵌入式雷达测速系统解决方案

雷达测速文件编号:(由系统方案对外发布时统一管理) 嵌入式雷达测速系统 解决方案 版本号:Ver 1.0 编写人:应健 编写时间:2012.1.5 部门名:产品中心-智能交通 审核人: 审核时间:

·修订历史(Revision history)

目录 目录 (2) 1.概述 (5) 1.1前言 (5) 1.2设计依据 (5) 1.3设计原则 (6) 2系统优势 (8) 2.1全嵌入式结构稳定可靠 (8) 2.2精美制造工艺集成度高 (8) 2.3多种人机接口操作简便 (9) 2.4两张高清照片取证严谨 (10) 2.5高性能窄波雷达测速精确 (10) 2.6高可靠接插件质量保证 (11) 2.7全模块化设计维护便利 (12) 2.8多种组网方式灵活简便 (12) 2.9超低功耗设计节能减排 (12) 2.10固定便携转换操作简便 (13) 2.11图片防篡改设计安全可靠 (13) 2.12虚/实结合安装节省造价 (14) 3系统方案介绍 (15) 3.1原理简介 (15) 3.2系统组成 (16)

3.2.1雷达单元 (17) 3.2.2 摄像单元 (18) 3.2.3 显示单元 (19) 3.2.4 补光单元 (20) 3.2.5 操作单元 (21) 3.3系统部署结构 (22) 3.4系统组网设计 (24) 3.5系统供电设计 (29) 3.6数据接入设计 (32) 4系统功能 (46) 4.1车辆捕获功能 (46) 4.2图像抓拍功能 (46) 4.3车牌信息识别功能 (46) 4.4曝光自动调节功能 (48) 4.5测速范围设置功能 (48) 4.6车型设置及报警功能 (48) 4.7本地存储功能 (48) 4.8数据检索功能 (48) 4.9日志查询功能 (49) 4.10自动维护功能 (49) 4.11软件升级功能 (49) 4.12USB备份功能 (49) 4.13远程维护功能 (49) 4.14用户管理功能 (49) 5系统技术指标 (51) 6系统配置 (52) 6.1便携式测速仪清单(单套) (52) 6.2固定式测速仪清单(单套) (52) 7实际案例 (53) 7.1 浙江省高速总队项目 (53) 7.1.1项目简介 (53) 7.1.2实拍图片 (54) 7.2广西省高速总队项目 (56) 7.2.1项目简介 (56) 7.2.2实拍图片 (57)

地表雷达检测技术方案

贵州道兴建设工程检测有限责任公司 贵阳市轨道交通2号线兴筑西路站-水井坡站区间地表雷达探测技术方案 方案编制: 技术审核: 方案批准: 贵州道兴建设工程建设工程检测有限责任公司 2016年3月15日 目录

1 工程概况 (1) 2 探测项目和方法 (1) 3 编制依据 (1) 4 雷达探测的基本原理 (2) 5 探测流程 (3) 6 检测仪器和设备 (3) 7 需有关单位配合的事项 (3) 7 质量和安全保证措施 (4) 8 预期成果 (4) 9 本工程项目安排 (4)

1 工程概况 贵阳市轨道交通2号线兴筑西路站-水井坡站区间长1234.974m,其中水井坡站(长189.6m),为本一站一区间的土建工程施工。 水井坡站是贵阳市轨道交通2号线的一个中间站,位于主干道金阳南路的下方,周围交通较为繁忙。车站起止里程YDK19+978.193~YDK20+167.819,总长189.6m,为地下两层岛式车站,车站结构为明挖地下两层单柱双跨矩形结构。标准段宽19.9m,基坑深约15-21m,主体建筑面积7941.8m2,总建筑面积11936m2。顶板覆土约3.6m,轨面埋深15.35m。本站共设4个出入口、2组风亭。1、4号出入口过街段采用暗挖外其余均为明挖法施工。车站两端均为矿山法区间。 兴筑西路站-水井坡站区间,本区间线路出兴筑西路站后,穿过诚信南路东侧的一个小山包及金阳客站公交停车场(侧穿加气站),再穿过翠柳路后,进入喀斯特公园内,在公园内线路继续往东南,穿出公园东南角、石村东路后,到达金阳南路水井坡站,区间设计里程为:YDK18+741.914~YDK19+976.888,区间隧道全长1234.974m。采用矿山法施工。隧道拱顶埋深14.5~39.6m,线间距为12m~17m。 本工程项目为城市交通通道,工程地质条件复杂,为了保证施工安全,必须须对开挖段落的工程地质地质条件弄清楚,防止工安全施工大发生,故根据贵阳市城市轨道交通有限公司文件“筑轨道〔2015〕96号”“贵阳市城市轨道交通有限公司关于印发《贵阳市城市轨道交通工程地表地质雷达探测管理办法(试行)》的通知”的要求,根据本段的具体情况,对该标段的开挖站台和暗挖区间隧道地表进行了雷达探测,雷达测线布置严格按办法进行。其具体探测方案如下: 2 探测项目和方法 根据本工程的实际和相关规范要求,采用技术成熟地质雷达法,对施工站台的周围,以及暗挖区间的地表的空洞、脱空、水囊、疏松堆积体等进行探测,防止施工过程中的坍塌、涌泥、涌水等事故发生。 3 编制依据 《铁路隧道超前地质预报技术指南》(铁建设【2008】105); 《铁路隧道工程施工技术指南》(TZ 204-2008); 《铁路隧道设计施工有关标准补充规定》(铁建设【2007】88);

雷达原理及测试方案

雷达原理及测试方案 1 雷达组成和测量原理 雷达(Radar)是Radio Detection and Ranging的缩写,原意“无线电探测和测距”,即用无线电方法发现目标并测定它们在空间的位置。现代雷达的任务不仅是测量目标的距离、方位和仰角,而且还包括测量目标速度,以及从目标回波中获取更多有关目标的信息。 1.1 雷达组成 图1 雷达简单组成框图 图2 雷达主要组成框图 雷达主要由天线、发射机、接收机、信号处理和显示设备组成,基本组成框图如图1所示。通常雷达工作频率范围为2MHz~35GHz,其中超视距雷达工作频率为2~30MHz,工作频率为100~1000MHz范围一般为远程警戒雷达,工作频率为1~4GHz范围一般为中程雷达,工作频率在4GHz以上一般为近程雷达。 老式雷达发射波形简单,通常为脉冲宽度为τ、重复频率为Tτ的高频脉冲串。天线采

用机械天线,接收信号处理非常简单。这种雷达存在的问题是抗干扰能力非常差,无法在复杂环境下使用。 由于航空、航天技术的飞速发展,飞机、导弹、人造卫星及宇宙飞船等采用雷达作为探测和控制手段,对雷达提出了高精度、远距离、高分辨力及多目标测量要求,新一代雷达对雷达原有技术作了相当大的改进,其中频率捷变和线性相位信号、采用编码扩频的低截获概率雷达技术、动态目标显示和脉冲多普勒技术是非常重要的新技术。 1.2 雷达测量原理 1) 目标斜距的测量 图3 雷达接收时域波形 在雷达系统测试中需要测试雷达到目标的距离和目标速度,雷达到目标的距离是由电磁波从发射到接收所需的时间来确定,雷达接收波形参见图3,雷达到达目标的距离R为:R=0.5×c×t r式(2)式中c=3×108m/s,t r为来回传播时间 2) 目标角位置的测量 目标角指方位角或仰角,这两个角位置基本上是利用天线的方向性来实现。雷达天线将电磁能汇集在窄波束内,当天线对准目标时,回波信号最强。

雷达测速与测距 ()

雷达测速与测距 GZH 2016/3/29 系统流程图 模块分析 1 脉冲压缩 1.1 原理分析 雷达的基本功能是利用目标对电磁波的散射而发现目标,并测定目标的空 间位置。雷达分辨力是雷达的主要性能参数之一。所谓雷达分辨力是指在各 种目标环境下区分两个或两个以上的邻近目标的能力。一般说来目标距离不 同、方位角不同、高度不同以及速度不同等因素都可用来分辨目标,而与信 号波形紧密联系的则是距离分辨力和速度(径向)分辨力。两个目标在同一角 度但处在不同距离上,其最小可区分的距离称为距离分辨力,雷达的距离分 辨力取决于信号带宽。对于给定的雷达系统,可达到的距离分辨力为 (1.1) 其中c为光速,为发射波形带宽。 雷达的速度分辨率可用速度分辨常数表征,信号在时域上的持续宽度越大, 在频域上的分辨率能力就越好,即速度分辨率越好。 对于简单的脉冲雷达,,此处,为发射脉冲宽度。因此,对 于简单的脉冲雷达系统,将有 (1.2)在普通脉冲雷达中,由于信号的时宽带宽积为一常数(约为1),因此不 能兼顾距离分辨力和速度分辨力两项指标。 雷达对目标进行连续观测的空域叫做雷达的探测范围,也是雷达的重要 性能数,它决定于雷达的最小可测距离和最大作用距离,仰角和方位角的探 测范围。而发射功率的大小影响作用距离,功率大则作用距离大。发射功率 分脉冲功率和平均功率。雷达在发射脉冲信号期间 内所输出的功率称脉冲功 率,用Pt表示;平均功率是指一个重复周期Tr内发射机输出功率的平均值, 用Pav表示。它们的关系为 (1.3) 脉冲压缩(PC)雷达体制在雷达脉冲峰值受限的情况下,通过发射宽脉 冲而获得高的发能量,以保证足够的最大作用距离,而在接收时则采用相应

激光雷达在军事中的应用讲解

激光雷达在军事中的应用 作者 摘要:本文简要介绍激光雷达的特点、激光雷达探测的基本物理原理及其在军事领域的应用现状. 关键词:激光雷达;探测;军事应用 1.引言 激光雷达是现代激光技术与传统雷达技术相结合的产物,它像传统的微波雷达一样,由雷达向目标发射波束,然后接收目标反射回来的信号,并将其与发射信号对比,获得目标的距离、速度以及姿态等参数.但是它又不同于传统的微波雷达,它发射的不是微波束,而是激光束,使激光雷达具有不同于普通微波雷达的特点. 根据激光器的不同,激光雷达可工作在红外光谱、可见光谱和紫外光谱的波段上.相对于工作在米波至毫米波波段的微波雷达而言,激光雷达的工作波长短,是微波雷达的万分之一到千分之一,根据光学仪器的分辨率与波长成反比的原理,利用激光雷达可以获得极高的角分辨率和距离分辨率,通常角分辨率不低于0.1mrad ,距离分辨率可达0.1m , 利用多普勒效应 可以获得10m / s 以内的速度分辨率.这些指标是一般微波雷达难以达到的,因此激光雷达可获得比微波雷达清晰得多的目标图像。 激光束的方向性好、能量集中,在 20km 外,其光束也只有茶杯口大小,因而敌方难以截获,而且激光束的抗电磁干扰能力强,难以受到敌方有源干扰的影响.由于各种地物回波影响,因而在低空存在微波雷达无法探测的盲区.而对于激光雷达,只有被激光照射的目标才能产生反射,不存在低空地物回波的影响,所以激光雷达的低空探测性能好. 激光雷达体积小、重量轻,有的整套激光雷达系统的重量仅几十千克.例如为了适应海军陆战队的需要,美国桑迪亚国家实验室和伯恩斯公司都提出了手持激光雷达的设计方案.相对于重达数吨、乃至数十吨的微波雷达而言,激光雷达的机动性能显然要好得多. 任何事物都是一分为二的,激光雷达也有自身的缺陷.激光光束窄、方向性好,虽然表现出能量集中的优点,但不宜用作战场监视雷达搜索大空域.而且激光的传输受环境影响大,尤其是在雨、雪、雾的天气,激光在传输过程中的衰减更大.当然,激光在大气层外传输时不易衰减,有其得天独厚的优势.经过几十年的努力,科学家们趋利避害,已研制出多种类型的军用激光雷达. 2. 用干战场侦察的激光雷达 众所周知,普通的成像技术(如电视摄像、航空摄影及红外成像等)获得的场景图像都是反映被摄区域辐射强度几何分布的图像,而激光雷达可以通过采集方位角一俯冲角一距离一速度一强度等三维数据,再将这些数据以图像的形式显示出来,从而可产生极高分辨率的辐射强度几何图像、距离图像、速度图像等,因而它提供了普通成像技术所不能提供的信息.例如美国桑迪亚国家实验库研制的一种激光雷达,激光器功率为120MW ,显示屏幕的像素为64 X 64 元,视场内物体的图像可显示在屏幕上,每秒钟更新4 次,并用不同颜色和灰度显示物体的相对距离.这种激光雷达能对运动的装甲车辆产生实时图像,图像分辨率足以识别车辆型号. 美国雷西昂公司研制的ILR100 型砷化稼激光雷达,可安装在高性能飞机和无人机上,当飞机在120m~460m 高空飞行

某某城墙病害普查探地雷达测试报告-样本

某某城墙病害普查 探地雷达测试报告 编号:结检-某某-2009-05 项目名称:某某城墙病害普查地点:某某市 类别:古建筑结构病害 二00九年五月十八日

注意事项 1.复制的报告或有涂改的报告无效。 2.报告无审核人及批准人签字无效。 3.对报告若有异议,应于收到报告之日起十五日内向检测单位提 出。

项目名称: 某某城墙病害普查探地雷达测试委托单位: 某某勘察设计研究院 检测人员:白雪冰 报告编写:白雪冰

目录 1.工程概况 (1) 2.检测依据 (1) 3.检测精度要求 (1) 4.检测方法 (1) 5.采用的仪器和设备 (4) 6.测线布置 (5) 7.检测工作量和工作布置 (5) 8.现场测试照片 (6) 9.数据处理和解释 (7) 10.探地雷达测试结果 (8)

某某城墙病害普查 探地雷达测试报告 1.工程概况 略。 2.检测依据 1、《水利水电工程物探规程》SL326-2005 2、《铁路工程物理勘探规程》TB 10013-2004 3.检测精度要求 因所测试城墙顶部存在数条横向布置的电缆管道,影响了测距轮的精度,因此缺陷病害的水平定位误差约1-1.5米;另外因为无探坑或钻孔验证城墙夯土的电磁波速度,此次数据分析的电磁波速均为0.1m/ns(经验值,比较接近于真实值),缺陷病害的垂直深度定位误差约为0.3米内。 4.检测方法 根据国内测试相关经验,检测采用探地雷达法,工作方式为连续探测。 探地雷达法(Ground Penetrating Radar Method)是利用探地雷达发射天线向目标体发射高频脉冲电磁波,由接收天线接收目标体的反射电磁波,探测目标体空间位置和分布的一种地球物理探测方法。其实际是利用目标体及周围介质的电磁波的反射特性,对目标体内部的构造和缺陷(或其他不均匀体)进行探测。 探地雷达是近年来一种新兴的地下探测与混凝土建筑物无损检测的新技术,它是利用宽频带高频电磁波信号探测介质结构位置和分布的非破坏性的探测仪器,是目前国内外用于测量混凝土内部缺陷最先进、最便捷的仪器之一,天线屏蔽抗干扰性强,探测范围广,分辨率高,具有实时数据处理和信号增强,可进行连续透视扫描,现场实时显示二维黑白或彩色图像。探地雷达工作示意图见图1。 探地雷达通过雷达天线对隐蔽目标体进行全断面扫描的方式获得断面的垂直二维剖面图像,具体工作原理是:当雷达系统利用天线向地下发射宽频带高频电磁

安捷伦雷达测试解决方案

?雷达信号的模拟 大功率信号,低相噪信号 宽带信号, 相参信号 ?雷达信号的分析 ?矢量分析 ?脉冲参数分析 ?脉冲相噪测试 ?脉冲器件寄生相噪测试 ?数字相控阵系统测试 ?模块级(T/R组件)测试 ? Agilent Technologies, Inc. 2009 2

对目标方位的确定多卜勒频移效应 f d= 2 * v r/ λc 对目标速度的确定 相控阵雷达 ?功率合成,实现大的功率孔径乘积 ?系统效率高,可获得很高的发射信号功率 ?简化复杂的馈线系统设计,改善了发射天线的体积和重量 ?通过电扫描完成波束扫描,波束扫描速度快 ?波束的成形控制 ?系统的多功能,实现频谱共享阵面和综合化电子系统 ?提高电子对抗能力 ?稳定性提高,T/R组件5%损坏时,系统仍能工作。

全数字式相控阵雷达 ?数字T/R模块:包含微波电路,数字电路,时钟电路和光电路的复杂系统?数字波束合成 ?大容量高速数据传输技术 ?高性能信号处理机 ?雷达信号的模拟 ?雷达信号的分析 ?模块级(T/R组件)测试 ? Agilent Technologies, Inc. 2009 6

替换 信号类型测试应用技术要求 正弦波信号替代系统本振,ADC等电路性能测试功率,频率精度,相位噪声 调制信号测试接收机或关键部件性能功率,频率精度,调制带宽,调制能力,调制精度失真信号测试接收机或关键处理器性能信号带宽,失真处理能力,信号幅度精度 基带信号测试模拟或数字基带电路性能模拟IQ,数字IQ 信号输出能力。数字接口形式,速率 备注 具有一定相关性的两路信号同时发射。两路信号的 双路信号具有定相关性的两路信号同时发射。两路信号的 PRI和载波频率可以相同也可不同。 用户反侦察积抗干扰信号 脉冲压缩信号具备很大的时宽带宽积。包含线性调频,非线性调频 信号,二相编码信号,多相编码信号和频率编码信号。用于预警雷达和高分辨力雷达

雷达测速仪有哪些特点

我国河流湖泊众多,水网密布,而要测量水流的流速,记录水文数据资料,就需要用到测速仪。雷达测速仪就是众多测速仪中的一种,雷达测流运用的原理是多普勒效应。多普勒效应是为纪念奥地利物理学家克里斯琴约翰.多普勒而命名的。在声学领域中,当声源与接收体(即探头和反射体)之间有相对运动时,回声的频率将有所变化,此种频率的变化称之为频移,即多普勒效应。如下图所示,当雷达流速仪与水体以相对速度V发生对运动时,雷达流速仪所收到的电磁波频率与雷达自身所发出的电磁波频率有所不同, 此频率差称为多普勒频移。通过解析频移与V的关系,得到流体表面流速。 雷达测速仪被广泛应用在河道、灌渠、防汛等水文测量;江河、水资源监测;环保排污、地下水道管网监测;城市防洪、山区暴雨性洪水监测;地质灾害预警监测等诸多领域。 今天我们主要来看看雷达测速仪的特点,主要有如下几个特点: 1、非接触、安全低损、少维护、不受泥沙影响; 2、能胜任洪水期高流速条件下的测量; 3、具有防反接、防雷保护功能; 4、系统功耗低,一般太阳能供电即可满足测流需要; 5、多种接口方式,既有数字接口又具有模拟接口,方便接入系统; 6、无线传输功能(可选),可将数据无线传输到3.5km以外;

7、测速范围宽,测量距离远达40m; 8、多种触发模式:周期、触发、查询、自动; 9、安装特别简单,土建量很少; 10、全防水设计,适合野外使用。 非接触雷达测流方式测速时设备不受污水腐蚀,不受泥沙影响,少受水毁影响,土建简单,便于维护,保障人员安全,特殊的天线设计使得功耗超低,大大降低了供电需求。不仅可用于平时流速监测,而且特别适合承担急难险重观测任务。 航征科技是目前国内具有自主知识产权的雷达方案提供商, 拥有多项专利和软件著作权。航征面向水文、水利、环境保护、城市排水管网等行业用户, 提供雷达流速流量在线监测解决方案。航征分别在上海、无锡建立了运营和研发测试中心,拥有完整的技术研发体系和阵容强大的科研队伍,与清华大学、国防科技大学、上海交通大学等知名院校达成长期战略合作,有多位业内专家作为公司的技术后盾,立志成为全球优秀的智能传感解决方案提供商。

宜张高速隧道雷达检测报告

宜张高速公路隧道地质雷达 检测报告 宜张高速公路总监办中心试验室 二○一四年十一月

根据宜张高速公路总监办及合同要求,中心试验室于2014年11月5日~7日对土建2标的丁家坪隧道、灯盏窝隧道、长岭岗隧道砼衬砌质量采用地质雷达仪进行了质量抽检。 一、检测内容 根据隧道结构受力的特点,本次隧道砼衬砌质量检测采用对两侧拱腰及拱顶三条线检测,检测内容为:砼衬砌(二衬)质量、厚度及初衬后缺陷情况。 二、检测仪器设备 本次工作使用仪器设备如下: 雷达:瑞典产RAMAC/GPR地质雷达,选用500MHz屏蔽天线。 采集软件:RAMAC GroundVision V1.4.4版 1、仪器介绍 RAMAC/GPR地质雷达是一种宽带高频电磁波信号探测方法,它是利用电磁波信号在物体内部传播时电磁波的运动特点进行探测的。雷达组成及探测方法如下: 地质雷达系统主要由以下几部分组成(如下图所示):

雷达系统组成示意图 ①、控制单元:控制单元是整个雷达系统的管理器,计算机(32位处理器)对如何测量给出详细的指令。系统由控制单元控制着发射机和接收机,同时跟踪当前的位置和时间。 ②、发射机:发射机根据控制单元的指令,产生相应频率的电信号并由发射天线将一定频率的电信号转换为电磁波信号向地下发射,其中电磁信号主要能量集中于被研究的介质方向传播。 ③、接收机:接收机把接收天线接收到的电磁波信号转换成电信号并以数字信息方式进行存贮。 ④、电源、光缆、通讯电缆、触发盒、测量轮等辅助元件。 2、雷达检测基本原理 探地雷达(Ground Penetrating Radar,简称GPR)依据电磁波脉冲在地下传播的原理进行工作。发射天线将高频(106~109Hz或更高)

相关文档
最新文档