高中三角函数 两角和与差二倍角公式

合集下载

8.3-两角和与差、二倍角的三角函数公式

8.3-两角和与差、二倍角的三角函数公式

1 [答案] 2
5 10 若 sinA= ,sinB= ,且 A,B 均为钝角,求 A 5 10 +B 的值.
[解]
5 10 ∵A、B 均为钝角且 sinA= 5 ,sinB= 10 ,
2
2 2 5 ∴cosA=- 1-sin A=- =- 5 , 5 3 3 10 cosB=- 1-sin B=- =- 10 , 10
2 2
点评:注意公式的逆用(认清公式特点) •③ =

几个常用结论
1 cos 2 1.降幂公式: cos 2
2
1 cos 2 sin 2
2
2 1 cos 2 2cos 2.升幂公式:
1 cos 2 2sin 2
1 sin (sin)④合一公式: a sin x b cos x
a b sin x
2 2
(其中 角所在的象限由a, b的符号确定, 角的值由 b 确定) tan a 一般情况下: ( , )
2 2

求cos24°·cos36°-sin24°·cos54°的值.
1 tan 3
点评:1、利用倍角公式构建方程;2、倍数关系的相对性。

1 4
tan ,则 3 10 2

• 3、求值:
0= • ①sin750cos75 。 0 3 tan 67.5 3 0 0 • ②(cos22.5 +sin22.5 )(cos22.502 0 2 2 tan 67.5 4 0 sin22.5 )= 。
tan 2 6 sin cos •3sin 3、已知 2 cos
tan
__________ __

高考第一轮复习数学:4.3 两角和与差、二倍角的公式(二)

高考第一轮复习数学:4.3  两角和与差、二倍角的公式(二)

4.3 两角和与差、二倍角的公式(二)●知识梳理 1.在公式S (α+β)、C (α+β)、T (α+β)中,当α=β时,就可得到公式S 2α、C 2α、T 2α,在公式S 2α、C 2α中角α没有限制在T 2α中,只有当α≠2πk +4π且α≠k π+2π时,公式才成立. 2.余弦二倍角公式有多种形式即cos2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.变形公式sin 2α=22cos 1α-,cos 2α=22cos 1α+.它的双向应用分别起到缩角升幂和扩角降幂作用. ●点击双基 1.下列各式中,值为21的是 A.sin15°cos15°B.2cos 212π-1C.230cos 1︒+ D.︒-︒5.22tan 15.22tan 22.设a =sin14°+cos14°,b =sin16°+cos16°,c =66,则a 、b 、c 的大小关系是 A.a <b <c B.a <c <bC.b <c <aD.b <a <c3.若f (tan x )=sin2x ,则f (-1)的值是 A.-sin2B.-1C.21 D.14.(春季上海,13)若cos α=53,且α∈(0,2π),则tan 2α=____________.5.(春季北京,11)已知sin 2θ+cos 2θ=332,那么sin θ的值为____________,cos2θ的值为____________.●典例剖析【例1】 试求函数y =sin x +cos x +2sin x cos x +2的最大值和最小值,若x ∈[0,2π]呢?【例2】 已知sin (x -4π3)cos (x -4π)=-41,求cos4x 的值.【例3】 已知α为第二象限角,cos 2α+sin2α=-25,求sin 2α-cos 2α和sin2α+cos2α的值.●闯关训练 夯实基础1.已知f (x )=x -1,当θ∈(4π5,2π3)时,f (sin2θ)-f (-sin2θ)可化简为 A.2sin θB.-2cos θC.-2sin θD.2cos θ2.(春季上海,14)在△ABC 中,若A a cos =B b cos =C ccos ,则△ABC 是 A.直角三角形B.等边三角形C.钝角三角形D.等腰直角三角形3.若8cos (4π+α)cos (4π-α)=1,则sin 4α+cos 4α=_______.4.若tan x =2,则xx x xcos sin 1sin 2cos 22+--=_______.5.化简xx x x x 2sin 1cos sin 1cos sin ))((+--+.6.(江苏,17)已知0<α<2π,tan 2α+cot 2α=25,求sin (α-3π)的值.培养能力7.已知f (x )=2a sin 2x -22a sin x +a +b 的定义域是[0,2π],值域是[-5,1],求a 、b 的值.8.(湖北,17)已知6sin 2α+sin αcos α-2cos 2α=0,α∈[2π,π),求 sin (2α+3π)的值.探究创新9.将一块圆心角为120°,半径为20 cm 的扇形铁片截成一块矩形,如图,有2种裁法:让矩形一边在扇形的一半径OA 上或让矩形一边与弦AB 平行,请问哪种裁法能得到最大面积的矩形,并求出这个最大值.A ABBMMO O 甲乙●思悟小结 1.化简要求:(1)能求出值的应求出值. (2)使三角函数种数尽量少. (3)使项数尽量少.(4)尽量使分母不含三角函数. (5)尽量使被开方数不含三角函数. 2.常用方法:(1)直接应用公式.(2)切割化弦,异名化同名,异角化同角.(3)形如cos αcos2αcos22α…cos2n α的函数式,只需将分子、分母分别乘以2n +1sin α,应用二倍角正弦公式即可.教学点睛1.公式的熟与准,要依靠理解内涵,明确联系应用,练习尝试,不可机械记忆.2.要重视对遇到的问题中角、函数名及其整体结构的分析,提高公式选择的恰当性,有利于缩短运算程序,提高学习效率.3.角的变换体现出将未知转化为已知的思想方法,这是解决三角中关于角的变换问题常用的数学方法之一.拓展题例【例1】 若sin αcos β=21,求cos αsin β的取值范围.【例2】 (东北三校高三第一次联考题)已知a =(cos23x ,sin 23x ),b =(cos 2x ,-sin 2x ),x ∈[0,2π]. (1)求a ·b 及|a +b |;(2)若f (x )=a ·b -2λ|a +b |的最小值是-23,求λ的值.。

2019高考总复习数学(理科)课件:第三章 第5讲 两角和与差及二倍角的三角函数公式

2019高考总复习数学(理科)课件:第三章 第5讲 两角和与差及二倍角的三角函数公式

解析:由题意 得
π 3 sinθ+4=5,
π π π 4 π 3 cos θ+4 = 5 . ∴ cos 4-θ = sin θ+4 = 5 , sin 4-θ =
π 4 sin 4-θ -5 π π 4 π cos θ+4 =5.∴tan θ-4 =-tan 4-θ =- π = 3 = cos4-θ 5
1.两角和与差的三角函数
三角函数 正弦 余弦 正切
两角和 sin(α+β)=sin αcos β+cos αsin β
cos αcos β-sin αsin β cos(α+β)=____________________
简写形式 Sα+β Cα+β Tα+β
tan α+tan β tan(α+β)= 1-tan αtan β
【规律方法】三角函数的给角求值,关键是把待求角用已 知角表示:
(1)当已知角为两个时,待求角一般表示为已知角的和或差;
(2)当已知角为一个时,待求角一般与已知角成“倍的关系” 或“互余、互补”的关系.
考点 2
给值求值问题
例 2 : (1)(2016 年新课标Ⅰ ) 已知 θ 是第四象限角,且
π 3 sinθ+4=5,则 π tanθ-4=________.
1 解析:原式=sin 20° cos 10° +cos 20° sin 10° =sin 30° =2.故 选 D.
答案:D
(2)(2015 年四川)sin 15°+sin 75°=________.
解析:方法一,sin 15° +sin 75° =sin 15° +cos 15° = 6 2sin(15° +45° )= 2 . 方法二,sin 15° +sin 75° =sin(45° -30° )+sin(45° +30° )= 6 2sin 45° cos 30° =2. 6- 2 6+ 2 6 方法三,sin 15° +sin 75° = 4 + 4 =2.

两角和与差及二倍角三角函数公式

两角和与差及二倍角三角函数公式
解。
05 公式的应用举例
在三角形中的应用
已知两边及夹角求第三边
求三角形的面积
利用两角和与差的余弦公式,结合三 角形的边长和角度关系,可以求出第 三边的长度。
在已知三角形的三边长度时,可以利 用海伦公式结合两角和与差的三角函 数公式求出三角形的面积。
判断三角形的形状
通过比较三角形的三个内角的余弦值, 可以判断三角形的形状(锐角、直角 或钝角^circ - 45^circ) = cos30^circcos45^circ + sin30^circsin45^circ = frac{sqrt{3}}{2} times frac{sqrt{2}}{2} + frac{1}{2} times frac{sqrt{2}}{2} = frac{sqrt{6} + sqrt{2}}{4}$。
二倍角公式允许我们将一个 角的二倍角的三角函数表达 式化简为单角的三角函数表 达式,这在解决一些特定问 题时非常有用,如求某些特 殊角的三角函数值或证明某 些恒等式。
公式在三角恒等 式证明中的应用
两角和与差及二倍角公式在 三角恒等式的证明中扮演着 重要角色。通过使用这些公 式,我们可以将复杂的三角 函数表达式化简为更简单的 形式,从而更容易地证明恒 等式。
04 公式推导与证明
两角和与差公式的推导
利用三角函数的和差化积公式, 将两角和与差的三角函数表达式 转化为单个角的三角函数表达式。
通过三角函数的加减变换,得到 两角和与差的正弦、余弦公式。
结合三角函数的周期性,将公式 扩展到任意角。
二倍角公式的推导
利用三角函数的倍角公式,将 二倍角的三角函数表达式转化 为单个角的三角函数表达式。
三角函数的性质

三角函数的和差角公式二倍角公式

三角函数的和差角公式二倍角公式

三角函数的和差角公式二倍角公式三角函数是数学中的重要概念,常见的三角函数有正弦函数(sin)、余弦函数(cos)、正切函数(tan)等。

在数学中,三角函数的和差角公式和二倍角公式是极其基础和重要的公式,它们在三角函数的计算和证明中起着非常关键的作用。

以下将详细介绍三角函数的和差角公式和二倍角公式。

一、三角函数的和差角公式1.正弦函数的和差角公式:sin(A ± B) = sinAcosB ± cosAsinB2.余弦函数的和差角公式:cos(A ± B) = cosAcosB ∓ sinAsinB3.正切函数的和差角公式:tan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)这些和差角公式是由三角函数的基本定义和三角函数间的关系推导得出的。

在使用和差角公式时,只需将需要计算的角度代入公式进行计算即可。

1.正弦函数的二倍角公式:sin2A = 2sinAcosA2.余弦函数的二倍角公式:cos2A = cos^2A - sin^2A = 2cos^2A - 1 = 1 - 2sin^2A3.正切函数的二倍角公式:tan2A = (2tanA) / (1 - tan^2A)二倍角公式的推导基于和差角公式,在计算时只需要将角度代入对应的公式即可得到结果。

三、和差角公式的应用和差角公式在三角函数的计算、证明和简化中都有着重要的应用。

1. 运用和差角公式可以化简复杂的三角函数表达式,使其更容易计算。

例如,通过和差角公式,我们可以将sin(A + B)表示为以A和B的三角函数表示的简化形式。

2.在证明三角函数的恒等式时,和差角公式是一种常用的方法。

通过运用和差角公式,我们可以将一个复杂的恒等式转化为更简单的形式,从而更容易进行证明。

3.和差角公式也常常应用于解决实际问题。

例如,当我们需要计算不同角度下的三角函数值时,可以通过将给定角度的和差关系转化为已知角度的三角函数值来计算。

两角和与差的正弦余弦正切公式及二倍角公式

两角和与差的正弦余弦正切公式及二倍角公式

两角和与差的正弦余弦正切公式及二倍角公式1.两角和的正弦公式:设角A和角B的正弦分别为sinA和sinB,则它们的和角C的正弦为sinC。

根据三角函数的定义,有sinA = a/c和sinB = b/c,其中a、b、c分别为三角形ABC的对边、邻边和斜边。

根据正弦公式,sinC = c/c =1、所以,两角和的正弦公式为sin(A + B) = sinC = 12.两角和的余弦公式:设角A和角B的余弦分别为cosA和cosB,则它们的和角C的余弦为cosC。

根据三角函数的定义,有cosA = b/c和cosB = a/c。

根据余弦公式,cosC = cos(A + B) = cos(AcosB - BsinA) = cosAcosB + sinAsinB = (b/c)(a/c) + (a/c)(b/c) = 2ab/c²。

3.两角和的正切公式:设角A和角B的正切分别为tanA和tanB,则它们的和角C的正切为tanC。

根据三角函数的定义,有tanA = a/b和tanB = b/a。

根据正切公式,tanC = tan(A + B) = (tanA + tanB) / (1 - tanAtanB) = (a/b + b/a) / (1 - (a/b)(b/a)) = (a² + b²) / (ab - ab) = a² + b² / ab。

4.两角差的正弦公式:设角A和角B的正弦分别为sinA和sinB,则它们的差角C的正弦为sinC。

根据三角函数的定义,有sinA = a/c和sinB = b/c。

根据差角公式,sinC = sin(A - B) = sin(AcosB + BsinA) = sinAcosB - cosAsinB = a/c(b/c) - (b/c)(a/c) = 2a b/c²。

5.两角差的余弦公式:设角A和角B的余弦分别为cosA和cosB,则它们的差角C的余弦为cosC。

2023版高考数学一轮总复习第三章三角函数解三角形第三讲两角和与差及二倍角的三角函数公式课件

2023版高考数学一轮总复习第三章三角函数解三角形第三讲两角和与差及二倍角的三角函数公式课件

1.两角和与差的余弦、正弦、正切公式
(1)cos(α-β)=cos αcos β+sin αsin β(C(α-β)). (2)cos(α+β)=cos αcos β-sin αsin β(C(α+β)). (3)sin(α-β)=sin αcos β-cos αsin β(S(α-β)). (4)sin(α+β)=sin αcos β+cos αsin β(S(α+β)). (5)tan(α-β)=1t+antαan-αttaannββ(T(α-β)). (6)tan(α+β)=1t-antαan+αttaannββ(T(α+β)).
可得 3sin 18°(1-sin 18°)(1+sin 18°)-(sin 18°-1)· (sin218°-sin 18°-1)=0,
可得(1-sin 18°)[3sin 18°(1+sin 18°)+sin218°-sin 18° -1]=0,
可得 3sin 18°(1+sin 18°)+sin218°-sin 18°-1=0, 可得 4sin218°+2sin 18°-1=0, 解得 sin 18°=-22+×24 5= 54-1(负值舍去).
题组三 真题展现
4.(2021 年全国乙)cos21π2-cos251π2=(
)
1
3
2
A.2
B. 3
C. 2
3 D. 2
答案:D
5.(2021 年新高考Ⅰ)若 tan
θ=-2,则sinsinθθ1++csoins
2θ θ
=( )
A.-65
B.-25
2 C.5
6 D.5
答案:C
考点一 公式的直接应用 [例 1](1)(2020 年全国Ⅰ)已知α∈(0,π),且 3cos 2α- 8cos α=5,则 sin α=( )

江苏专用高考数学复习第四章三角函数解三角形第3讲两角和与差的三角函数二倍角公式课件

江苏专用高考数学复习第四章三角函数解三角形第3讲两角和与差的三角函数二倍角公式课件
(3)公式 tan(α+β)= 1ta-n αta+n αtatnanββ可以变形为 tan α+tan β=tan(α+β)(1-tan αtan β),且 对任意角 α,β 都成立.( )
(4)存在实数α,使tan 2α=2tan α.( )
解析 (3)变形可以,但不是对任意的 α,β 都成立,α,β,α+β≠π2+kπ,k∈Z.
【训练 2】 (1)已知 α∈0,π2,cosα+π3=-23,则 cos α=________. (2)(2019·苏州暑假测试)已知 α∈0,π2,β∈π2,π,cos α=13,sin(α+β)=-35,则 cos β=________.
解析 (1)法一 因为 α∈0,π2,所以 α+π3∈π3,56π,
φ)其中tan

φ=ba或
f(α)=
a2+b2·cos(α-φ)其中tan

φ=ab.
诊断自测
1.思考辨析(在括号内打“√”或“×”) (1)两角和与差的正弦、余弦公式中的角α,β是任意的.( ) (2)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( )
2.熟悉角的拆拼技巧,理解倍角与半角是相对的,如 2α=(α+β)+(α-β),α=(α+β) -β=(α-β)+β,α3是23α的半角,α2是α4的倍角等. 3.通过求角的某种三角函数值来求角,在选取函数时,遵照以下原则:(1)已知正切函 数值,选正切函数;(2)已知正、余弦函数值,选正弦或余弦函数;若角的范围是0,π2, 选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为-π2,π2,选正弦 较好.
10°+ cos
3sin 10°
10°·
2sin
80°=(2sin

高一-三角函数的和差公式与二倍角 含答案

高一-三角函数的和差公式与二倍角  含答案

课程主题: 三角函数的和差公式与二倍角教学内容知识精讲知识梳理1.两角和与差的正弦、余弦、正切公式 (1)C (α-β):cos(α-β)=cos_αcos_β+sin_αsin_β; (2)C (α+β):cos(α+β)=cos_αcos_β-sin_αsin_β; (3)S (α+β):sin(α+β)=sin_αcos_β+cos_αsin_β; (4)S (α-β):sin(α-β)=sin_αcos_β-cos_αsin_β; (5)T (α+β):tan(α+β)=tan α+tan β1-tan αtan β;(6)T (α-β):tan(α-β)=tan α-tan β1+tan αtan β.2.二倍角的正弦、余弦、正切公式 (1)S 2α:sin 2α=2sin_αcos_α;(2)C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; (3)T 2α:tan 2α=2tan α1-tan 2α.3.有关公式的逆用、变形等(1)tan α±tan β=tan(α±β)()βαtan tan 1∙ ; (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2; (3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin ⎪⎭⎫ ⎝⎛±4πa .4.函数f (α)=a cos α+b sin α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)或f (α)=a 2+b 2cos(α-φ),其中φ可由a ,b 的值唯一确定.例题精讲题型1:三角函数的给值求值例1.已知0β<<344παπ<<,335cos(),sin()45413παπβ-=+=,求的sin(α+β)的值. 分析:比较所要求的角和已知角,可以发现3()()()442πππβααβ+--=++或由cos()sin 4πα-=()4πα+,再由3()()()44παπβπαβ+++=++求解. 解(一):33,,0444424ππππαππαα<<∴-<-<--<-<,又34cos(),sin().4545ππαα-=∴-=-33353120,,sin(),cos()444413413πβππβππβπβ<<∴<+<+=∴+=-.sin(α+β)=3cos[()]cos[()()]244ππαβπβα-++=-+--33cos()cos()sin()sin()4444πππβαπβα=+--+-1235456()()13513565=--⨯-⨯-=.解(二):cos()sin 4πα-=()4πα+35=,4,cos()2445πππαπα<+<∴+=-.33353120,,sin(),cos()444413413πβππβππβπβ<<∴<+<+=∴+=-.sin(α+β)333sin[()()][sin()cos()cos()sin()]444444πππαπβαπβαπβ=-+++=-+++++3124556[()()]51351365=-⨯-+-⨯=.解题思路:我们在计算、化简或证明一些三角函数式时,充分所求的角和已知角之间的联系,如:()()()αβαββαβαα-+=-++=,2,33ππαα-⎪⎭⎫ ⎝⎛+=,244παπαπ=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+,()⎪⎭⎫ ⎝⎛--+=+44πββαπα,这一点非常重要它可以有效的帮助我们解题,更重要的是它可以让许多问题变得非常简单.课堂检测如图,点P 是单位圆上的一个顶点,它从初始位置0P 开始沿单位圆按逆时针方向运动角α(02πα<<)到达点1P ,然后继续沿单位圆逆时针方向运动3π到达点2P ,若点2P 的横坐标为45-,则cos α的值等于 。

第三节 两角和与差及二倍角三角函数公式

第三节  两角和与差及二倍角三角函数公式

栏 目 链 接
课前自修
1-tan 15° 2. =( B ) 1+tan 15° A.1 B. 3 2 C. D. 3 3 2
解析:f(1-tan 15°,1+tan 15°)=f(tan 45°-tan 15°,1+tan 15°tan 45°)=tan (45°-15°)= tan 30°=f(r(3),3).故选B.
栏 目 链 接
考点探究
π π 解析:(1)∵0<α< ,- <β<0, 2 2 π π 3π π π β π ∴ < +α< , < - < . 4 4 4 4 4 2 2 π 1 π β π 2 2 3 于是由 cos +α= ,cos - = 可得 sin +α= , 3 3 3 4 4 2 4 π β 6 sin - = . 3 4 2 β π π β ∵α+ = +α- - , 2 4 4 2 π π β β ∴cos α+2 =cos[ +α -( - )] 4 2 4 π π π β π β =cos +αcos( - )+sin +αsin - 4 2 4 4 4 2 1 3 2 2 6 5 3 = × + × = .故选 C. 3 3 3 3 9
高考总两角和与差及二倍角三角函
数公式
考纲要求
栏 目 链 接
考纲要求
1.会用向量的数量积推导出两角差的余弦公式. 2.能利用两角差的余弦公式推导出两角差的正弦、正切 公式. 3.能利用两角差的余弦公式推导出两角和的正弦、余弦、 正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的 内在联系. 栏 目 链 接
π 1 11 已知 cos α = ,cos(α+β)=- ,α 、β∈0, ,则 β 7 14 2

两角和与差的正弦、余弦和正切公式及二倍角公式

两角和与差的正弦、余弦和正切公式及二倍角公式

答案 D 由cos +sin α= , 可得 cos α+ sin α+sin α= , 即 sin α+ cos α= , ∴ sin = , 即sin = , ∴sin =-sin =- .
单击此处添加大标题内容
2-1 已知cos +sin α= ,则sin 的值是 ( ) A.- B. C. D.-
方法技巧 三角恒等变换的变“角”与变“名”问题的解题思路 角的变换:明确各个角之间的关系(包括非特殊角与特殊角、已知角 与未知角),熟悉角的拆分与组合的技巧,半角与倍角的相互转化,如:2α= (α+β)+(α-β),α=(α+β)-β=(α-β)+β,40°=60°-20°, + = , =2× 等. 名的变换:明确各个三角函数名称之间的联系,常常用到同角关系、 诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.
添加标题
1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2.
添加标题
cos2α=⑩ ,sin2α= ;
添加标题
1.sin 20°cos 10°-cos 160°sin 10°= ( ) A.- B. C.- D.
02
03
已知sin(α-kπ)= (k∈Z),则cos 2α的值为 ( ) A. B.- C. D.-
A
若tan = ,则tan α= .
.
考点突破
典例1 (1)已知sin =cos ,则tan α= ( ) A.-1 B.0 C. D.1 (2)(2017课标全国Ⅰ,15,5分)已知α∈ ,tan α=2,则cos = (3)设sin 2α=-sin α,α∈ ,则tan 2α的值是 .

第19讲 两角和与差的三角函数、二倍角公式

第19讲 两角和与差的三角函数、二倍角公式

( C)
A.
3 3
B.-
3 3
C.5 9 3
D.-
6 9
1.(2023·石家庄模拟)已知 sin α+π4=45,α∈π4,π2,则 cos α=
(Hale Waihona Puke )A.2 10B.3102
C.
2 2
2.已知 cos α+1π2=35,α∈0,π2,则 cos α+π3=
A.3-140 3
B.45
C.-
2 10
D.
2 10
D.7102 ()
3.(2023·邯郸期末)已知 cos x+1π2=45,则 sin 2x+23π=___27_5__.
目标 3 辅助角公式的应用
3 (1)(2023·泰州调研)已知 sin α-π6+cos α=35,则 cos 2α+π3= ( B )
A.-275
B.275
C.-2245
A.79
B.19
C.-19
D.-79
3.(2023·沈阳一模)已知向量 a=(cos α,-2),b=(sin α,1),且 a∥b,则 tan π4-α
=___3__.
4.已知 α,β∈-π2,0,且 tan α+tan β+ 3tan αtan β= 3,则 α+β=________.
目标 2 拆、配角问题
tan 2θ=-2
2

π 4

θ

π 2


2cos22θ-sinθ-1 2sin θ+π4

____________.
1.已知角 θ 的终边过点 A(-1,1),则 sin π6 -θ=
( D)
A.
2+ 4

两角和与差的正弦、余弦和正切公式及二倍角公式考点与提醒归纳

两角和与差的正弦、余弦和正切公式及二倍角公式考点与提醒归纳

两角和与差的正弦、余弦和正切公式及二倍角公式考点与提醒归纳一、基础知识1.两角和与差的正弦、余弦、正切公式 S (α±β):sin(α±β)=sin αcos β±cos αsin β. C (α±β):cos(α±β)=cos αcos β∓sin αsin β. T (α±β):tan(α±β)=tan α±tan β1∓tan αtan β⎝⎛⎭⎫α,β,α±β≠π2+k π,k ∈Z .两角和与差的正弦、余弦、正切公式的结构特征和符号特点及关系:C (α±β)同名相乘,符号反;S (α±β)异名相乘,符号同;T (α±β)分子同,分母反.2.二倍角公式 S 2α:sin 2α=2sin αcos α.C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.T 2α:tan 2α=2tan α1-tan 2α⎝⎛⎭⎫α≠k π+π2且α≠k π2+π4,k ∈Z . 二倍角是相对的,例如,α2是α4的二倍角,3α是3α2的二倍角.二、常用结论(1)降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.(2)升幂公式:1+cos 2α=2cos 2α,1-cos 2α=2sin 2α. (3)公式变形:tan α±tan β=tan(α±β)(1∓tan αtan β).(4)辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ)⎝⎛⎭⎪⎫其中sin φ=b a 2+b 2,cos φ=a a 2+b 2.考点一 三角函数公式的直接应用[典例] (1)已知sin α=35,α∈⎝⎛⎭⎫π2,π,tan β=-12,则tan(α-β)的值为( ) A .-211B.211C.112D .-112(2)(2019·呼和浩特调研)若sin ()π-α=13,且π2≤α≤π,则sin 2α的值为( )A .-229B .-429C.229D.429[解析] (1)因为sin α=35,α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-45,所以tan α=sin αcos α=-34.所以tan(α-β)=tan α-tan β1+tan αtan β=-211.(2)因为sin(π-α)=sin α=13,π2≤α≤π,所以cos α=-1-sin 2α=-223,所以sin 2α=2sin αcos α=2×13×⎝⎛⎭⎫-223=-429.[答案] (1)A (2)B[解题技法] 应用三角公式化简求值的策略(1)首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”.(2)注意与同角三角函数基本关系、诱导公式的综合应用.(3)注意配方法、因式分解和整体代换思想的应用. [题组训练]1.已知sin α=13+cos α,且α∈⎝⎛⎭⎫0,π2,则cos 2αsin ⎝⎛⎭⎫α+π4的值为( ) A .-23B.23C .-13D.13解析:选A 因为sin α=13+cos α,所以sin α-cos α=13,所以cos 2αsin ⎝⎛⎭⎫α+π4=cos 2α-sin 2αsin αcos π4+cos αsin π4=(cos α-sin α)(cos α+sin α)22(sin α+cos α)=-1322=-23.2.已知sin α=45,且α∈⎝⎛⎭⎫π2,3π2,则sin ⎝⎛⎭⎫2α+π3的值为________. 解析:因为sin α=45,且α∈⎝⎛⎭⎫π2,3π2,所以α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-1-⎝⎛⎭⎫452=-35. 因为sin 2α=2sin αcos α=-2425,cos 2α=2cos 2α-1=-725.所以sin ⎝⎛⎭⎫2α+π3=sin 2αcos π3+cos 2αsin π3=-24+7350. 答案:-24+7350考点二 三角函数公式的逆用与变形用[典例] (1)(2018·全国卷Ⅱ)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________.(2)计算:tan 25°+tan 35°+3tan 25°tan 35°=________. [解析] (1)∵sin α+cos β=1,① cos α+sin β=0,②∴①2+②2得1+2(sin αcos β+cos αsin β)+1=1,∴sin αcos β+cos αsin β=-12,∴sin(α+β)=-12.(2)原式=tan(25°+35°)(1-tan 25°tan 35°)+ 3 t an 25°·tan 35°= 3 (1-tan 25°tan 35°)+3tan 25°tan 35°= 3. [答案] (1)-12 (2)3[解题技法]两角和、差及倍角公式的逆用和变形用的技巧(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式. (2)公式的一些常用变形: sin αsin β+cos(α+β)=cos αcos β; cos αsin β+sin(α-β)=sin αcos β; 1±sin α=⎝⎛⎭⎫sin α2±cos α22; sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1;cos 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α.[提醒](1)公式逆用时一定要注意公式成立的条件和角之间的关系.(2)tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者中可以知二求一,且常与一元二次方程根与系数的关系结合命题.(3)注意特殊角的应用,当式子中出现12,1,32, 3等这些数值时,一定要考虑引入特殊角,把“值变角”构造适合公式的形式.[题组训练]1.设a =cos 50°cos 127°+cos 40°cos 37°,b =22(sin 56°-cos 56°),c =1-tan 239°1+tan 239°,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >a >bD .a >c >b解析:选D 由两角和与差的正、余弦公式及诱导公式,可得a =cos 50°cos 127°+cos 40°cos 37°=cos 50°cos 127°+sin 50°sin 127°=cos(50°-127°)=cos(-77°)=cos 77°=sin 13°,b =22 (sin 56°-cos 56°)=22 s in 56°-22 c os 56°=sin(56°-45°)=sin 11°,c =1-tan 239°1+tan 239°=1-sin 239°cos 239°1+sin 239°cos 239°=cos 239°-sin 239°=cos 78°=sin 12°.因为函数y =sin x ,x ∈⎣⎡⎦⎤0,π2为增函数,所以sin 13°>sin 12°>sin 11°,所以a >c >b .2.已知cos ⎝⎛⎭⎫α-π6+sin α=435,则sin ⎝⎛⎭⎫α+π6=________. 解析:由cos ⎝⎛⎭⎫α-π6+sin α=435, 可得32cos α+12sin α+sin α=435, 即32sin α+32cos α=435, ∴3sin ⎝⎛⎭⎫α+π6=435,即sin ⎝⎛⎭⎫α+π6=45. 答案:453.化简sin 2⎝⎛⎭⎫α-π6+sin 2⎝⎛⎭⎫α+π6-sin 2α的结果是________. 解析:原式=1-cos ⎝⎛⎭⎫2α-π32+1-cos ⎝⎛⎭⎫2α+π32-sin 2α=1-12⎣⎡⎦⎤cos ⎝⎛⎭⎫2α-π3+cos ⎝⎛⎭⎫2α+π3-sin 2α =1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12. 答案:12考点三 角的变换与名的变换考法(一) 三角公式中角的变换[典例] (2018·浙江高考改编)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ⎝⎛⎭⎫-35,-45.若角β满足sin(α+β)=513,则cos β的值为________. [解析] 由角α的终边过点P ⎝⎛⎭⎫-35,-45, 得sin α=-45,cos α=-35.由sin(α+β)=513,得cos(α+β)=±1213.由β=(α+β)-α,得cos β=cos(α+β)cos α+sin(α+β)sin α, 所以cos β=-5665或cos β=1665.[答案] -5665或1665[解题技法]1.三角公式求值中变角的解题思路(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式; (2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.2.常见的配角技巧2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=⎝⎛⎭⎫α+β2-⎝⎛⎭⎫α2+β等. 考法(二) 三角公式中名的变换[典例] (2018·江苏高考)已知α,β为锐角,tan α=43,cos(α+β)=-55.(1)求cos 2α的值; (2)求tan(α-β)的值.[解] (1)因为tan α=43,tan α=sin αcos α,所以sin α=43cos α .因为sin 2α+cos 2α=1, 所以cos 2α=925,所以cos 2α=2cos 2α-1=-725.(2)因为α,β 为锐角,所以α+β∈(0,π). 又因为cos(α+β)=-55,所以α+β∈⎝⎛⎭⎫π2,π. 所以sin(α+β)=1-cos 2(α+β)=255,所以tan(α+β)=-2. 因为tan α=43,所以 tan 2α=2tan α1-tan 2α=-247.所以tan(α-β)=tan [2α-(α+β)] =tan 2α-tan (α+β)1+tan 2αtan (α+β)=-211.[解题技法] 三角函数名的变换技巧明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.[题组训练]1.已知tan θ+1tan θ=4,则cos 2⎝⎛⎭⎫θ+π4=( ) A.12 B.13C.14D.15解析:选C 由tan θ+1tan θ=4,得sin θcos θ+cos θsin θ=4,即sin 2θ+cos 2θsin θcos θ=4,∴sin θcos θ=14,∴cos 2⎝⎛⎭⎫θ+π4=1+cos ⎝⎛⎭⎫2θ+π22=1-sin 2θ2=1-2sin θcos θ2=1-2×142=14.2.(2018·济南一模)若sin ⎝⎛⎭⎫A +π4=7210,A ∈⎝⎛⎭⎫π4,π,则sin A 的值为( ) A.35 B.45C.35或45D.34解析:选B ∵A ∈⎝⎛⎭⎫π4,π,∴A +π4∈⎝⎛⎭⎫π2,5π4, ∴cos ⎝⎛⎭⎫A +π4=- 1-sin 2⎝⎛⎭⎫A +π4=-210,∴sin A =sin ⎣⎡⎦⎤⎝⎛⎭⎫A +π4-π4=sin ⎝⎛⎭⎫A +π4cos π4-cos ⎝⎛⎭⎫A +π4sin π4=45. 3.已知sin α=-45,α∈⎣⎡⎦⎤3π2,2π,若sin (α+β)cos β=2,则tan(α+β)=( ) A.613 B.136C .-613D .-136解析:选A ∵sin α=-45,α∈⎣⎡⎦⎤3π2,2π, ∴cos α=35.又∵sin (α+β)cos β=2,∴sin(α+β)=2cos [(α+β)-α].展开并整理,得65cos(α+β)=135sin(α+β),∴tan(α+β)=613.[课时跟踪检测]A 级1.sin 45°cos 15°+cos 225°sin 165°=( ) A .1 B.12C.32D .-12解析:选B sin 45°cos 15°+cos 225°sin 165°=sin 45°·cos 15°+(-cos 45°)sin 15°=sin(45°-15°)=sin 30°=12.2.若2sin x +cos ⎝⎛⎭⎫π2-x =1,则cos 2x =( ) A .-89B .-79C.79D .-725解析:选C 因为2sin x +cos ⎝⎛⎭⎫π2-x =1,所以3sin x =1,所以sin x =13,所以cos 2x =1-2sin 2x =79.3.(2018·山西名校联考)若cos ⎝⎛⎭⎫α-π6=-33,则cos ⎝⎛⎭⎫α-π3+cos α=( ) A .-223B .±223C .-1D .±1解析:选C cos ⎝⎛⎭⎫α-π3+cos α=12cos α+32sin α+cos α=32cos α+32sin α=3cos ⎝⎛⎭⎫α-π6=-1.4.tan 18°+tan 12°+33tan 18°tan 12°=( ) A.3 B.2 C.22D.33解析:选D ∵tan 30°=tan(18°+12°)=tan 18°+tan 12°1-tan 18°tan 12°=33,∴tan 18°+tan 12°=33(1-tan 18°tan 12°),∴原式=33. 5.若α∈⎝⎛⎭⎫π2,π,且3cos 2α=sin ⎝⎛⎭⎫π4-α,则sin 2α的值为( ) A .-118B.118C .-1718D.1718解析:选C 由3cos 2α=sin ⎝⎛⎭⎫π4-α,可得3(cos 2α-sin 2α)=22(cos α-sin α),又由α∈⎝⎛⎭⎫π2,π,可知cos α-sin α≠0,于是3(cos α+sin α)=22,所以1+2sin αcos α=118,故sin2α=-1718.6.已知sin 2α=13,则cos 2⎝⎛⎭⎫α-π4=( ) A .-13B.13C .-23D.23解析:选D cos 2⎝⎛⎭⎫α-π4=1+cos ⎝⎛⎭⎫2α-π22=12+12sin 2α=12+12×13=23. 7.已知sin ⎝⎛⎭⎫π2+α=12,α∈⎝⎛⎭⎫-π2,0,则cos ⎝⎛⎭⎫α-π3的值为________. 解析:由已知得cos α=12,sin α=-32,所以cos ⎝⎛⎭⎫α-π3=12cos α+32sin α=-12. 答案:-128.(2019·湘东五校联考)已知sin(α+β)=12,sin(α-β)=13,则tan αtan β=________.解析:因为sin(α+β)=12,sin(α-β)=13,所以sin αcos β+cos αsin β=12,sin αcos β-cosαsin β=13,所以sin αcos β=512,cos αsin β=112,所以tan αtan β=sin αcos βcos αsin β=5.答案:59.(2017·江苏高考)若tan ⎝⎛⎭⎫α-π4=16,则tan α=________. 解析:tan α=tan ⎣⎡⎦⎤⎝⎛⎭⎫α-π4+π4=tan ⎝⎛⎭⎫α-π4+tan π41-tan ⎝⎛⎭⎫α-π4tan π4=16+11-16=75.答案:7510.化简:sin 235°-12cos 10°cos 80°=________.解析:sin 235°-12cos 10°cos 80°=1-cos 70°2-12cos 10°sin 10°=-12cos 70°12sin 20°=-1.答案:-1 11.已知tan α=2. (1)求tan ⎝⎛⎭⎫α+π4的值; (2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.解:(1)tan ⎝⎛⎭⎫α+π4=tan α+tan π41-tan αtan π4=2+11-2=-3. (2)sin 2αsin 2α+sin αcos α-cos 2α-1=2sin αcos αsin 2α+sin αcos α-(2cos 2α-1)-1 =2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×222+2-2=1. 12.已知α,β均为锐角,且sin α=35,tan(α-β)=-13. (1)求sin(α-β)的值;(2)求cos β的值.解:(1)∵α,β∈⎝⎛⎭⎫0,π2,∴-π2<α-β<π2. 又∵tan(α-β)=-13<0,∴-π2<α-β<0. ∴sin(α-β)=-1010. (2)由(1)可得,cos(α-β)=31010. ∵α为锐角,且sin α=35,∴cos α=45. ∴cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =45×31010+35×⎝⎛⎭⎫-1010=91050. B 级1.(2019·广东五校联考)若tan ⎝⎛⎭⎫π2-θ=4cos(2π-θ),|θ|<π2,则tan 2θ=________. 解析:∵tan ⎝⎛⎭⎫π2-θ=4cos(2π-θ),∴cos θsin θ=4cos θ, 又∵|θ|<π2,∴sin θ=14, ∴0<θ<π2,cos θ=154,tan θ=sin θcos θ=115,从而tan 2θ=2tan θ1-tan 2θ=157. 答案:157 2.(2018·江西新建二中期中)已知A ,B 均为锐角,cos(A +B )=-2425,sin ⎝⎛⎭⎫B +π3=35,则cos ⎝⎛⎭⎫A -π3=________. 解析:因为A ,B 均为锐角,cos(A +B )=-2425,sin ⎝⎛⎭⎫B +π3=35, 所以π2<A +B <π,π2<B +π3<π, 所以sin(A +B )=1-cos 2(A +B )=725,cos ⎝⎛⎭⎫B +π3=- 1-sin 2⎝⎛⎭⎫B +π3=-45, 可得cos ⎝⎛⎭⎫A -π3=cos ⎣⎡⎦⎤(A +B )-⎝⎛⎭⎫B +π3=-2425×⎝⎛⎭⎫-45+725×35=117125. 答案:1171253.(2019·石家庄质检)已知函数f (x )=sin ⎝⎛⎭⎫x +π12,x ∈R. (1)求f ⎝⎛⎭⎫-π4的值; (2)若cos θ =45,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫2θ-π3的值. 解:(1)f ⎝⎛⎭⎫-π4=sin ⎝⎛⎭⎫-π4+π12=sin ⎝⎛⎭⎫-π6=-12. (2)f ⎝⎛⎭⎫2θ-π3=sin ⎝⎛⎭⎫2θ-π3+π12=sin ⎝⎛⎭⎫2θ-π4=22(sin 2θ-cos 2θ). 因为cos θ=45,θ∈⎝⎛⎭⎫0,π2,所以sin θ=35, 所以sin 2θ=2sin θcos θ=2425,cos 2θ=cos 2θ-sin 2θ=725, 所以f ⎝⎛⎭⎫2θ-π3=22(sin 2θ-cos 2θ)=22×⎝⎛⎭⎫2425-725=17250.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档