人教中考数学平行四边形-经典压轴题

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、平行四边形真题与模拟题分类汇编(难题易错题)

1.如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.

(1)求证:∠APB=∠BPH;

(2)当点P在边AD上移动时,求证:△PDH的周长是定值;

(3)当BE+CF的长取最小值时,求AP的长.

【答案】(1)证明见解析.(2)证明见解析.(3)2.

【解析】

试题分析:(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出

∠APB=∠PBC即可得出答案;

(2)首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出

PD+DH+PH=AP+PD+DH+HC=AD+CD=8;

(3)过F作FM⊥AB,垂足为M,则FM=BC=AB,证明△EFM≌△BPA,设AP=x,利用折叠的性质和勾股定理的知识用x表示出BE和CF,结合二次函数的性质求出最值.

试题解析:(1)解:如图1,

∵PE=BE,

∴∠EBP=∠EPB.

又∵∠EPH=∠EBC=90°,

∴∠EPH-∠EPB=∠EBC-∠EBP.

即∠PBC=∠BPH.

又∵AD∥BC,

∴∠APB=∠PBC.

∴∠APB=∠BPH.

(2)证明:如图2,过B 作BQ ⊥PH ,垂足为Q .

由(1)知∠APB=∠BPH ,

又∵∠A=∠BQP=90°,BP=BP ,

在△ABP 和△QBP 中,

{90APB BPH

A BQP BP BP

∠=∠∠=∠=︒=,

∴△ABP ≌△QBP (AAS ),

∴AP=QP ,AB=BQ ,

又∵AB=BC ,

∴BC=BQ .

又∠C=∠BQH=90°,BH=BH ,

在△BCH 和△BQH 中,

{90BC BQ

C BQH BH BH

=∠=∠=︒=,

∴△BCH ≌△BQH (SAS ),

∴CH=QH .

∴△PHD 的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.

∴△PDH 的周长是定值.

(3)解:如图3,过F 作FM ⊥AB ,垂足为M ,则FM=BC=AB .

又∵EF 为折痕,

∴EF ⊥BP .

∴∠EFM+∠MEF=∠ABP+∠BEF=90°,

∴∠EFM=∠ABP .

又∵∠A=∠EMF=90°,

在△EFM 和△BPA 中,

{EFM ABP

EMF A FM AB

∠=∠∠=∠=,

∴△EFM ≌△BPA (AAS ).

∴EM=AP .

设AP=x

在Rt △APE 中,(4-BE )2+x 2=BE 2.

解得BE=2+2

8

x , ∴CF=BE-EM=2+28

x -x , ∴BE+CF=24

x -x+4=14(x-2)2+3. 当x=2时,BE+CF 取最小值,

∴AP=2.

考点:几何变换综合题.

2.在图1中,正方形ABCD 的边长为a ,等腰直角三角形FAE 的斜边AE =2b ,且边AD 和AE 在同一直线上.

操作示例

当2b <a 时,如图1,在BA 上选取点G ,使BG =b ,连结FG 和CG ,裁掉△FAG 和△CGB 并分别拼接到△FEH 和△CHD 的位置构成四边形FGCH .

思考发现

小明在操作后发现:该剪拼方法就是先将△FAG 绕点F 逆时针旋转90°到△FEH 的位置,易知EH 与AD 在同一直线上.连结CH ,由剪拼方法可得DH=BG ,故△CHD ≌△CGB ,从而又可将△CGB 绕点C 顺时针旋转90°到△CHD 的位置.这样,对于剪拼得到的四边形FGCH (如图1),过点F 作FM ⊥AE 于点M (图略),利用SAS 公理可判断△HFM ≌△CHD ,易得FH=HC=GC=FG ,∠FHC=90°.进而根据正方形的判定方法,可以判断出四边形FGCH 是正方形.

实践探究

(1)正方形FGCH 的面积是 ;(用含a , b 的式子表示)

(2)类比图1的剪拼方法,请你就图2—图4的三种情形分别画出剪拼成一个新正方形的示意图.

联想拓展

小明通过探究后发现:当b≤a时,此类图形都能剪拼成正方形,且所选取的点G的位置在BA方向上随着b的增大不断上移.当b>a时(如图5),能否剪拼成一个正方形?若能,请你在图5中画出剪拼成的正方形的示意图;若不能,简要说明理由.

【答案】(1)a2+b2;(2)见解析;联想拓展:能剪拼成正方形.见解析.

【解析】分析:实践探究:根据正方形FGCH的面积=BG2+BC2进而得出答案;

应采用类比的方法,注意无论等腰直角三角形的大小如何变化,BG永远等于等腰直角三角形斜边的一半.注意当b=a时,也可直接沿正方形的对角线分割.

详解:实践探究:正方形的面积是:BG2+BC2=a2+b2;

剪拼方法如图2-图4;

联想拓展:能,

剪拼方法如图5(图中BG=DH=b).

点睛:本题考查了几何变换综合,培养学生的推理论证能力和动手操作能力;运用类比方法作图时,应根据范例抓住作图的关键:作的线段的长度与某条线段的比值永远相等,旋转的三角形,连接的点都应是相同的.

3.已知:在菱形ABCD中,E,F是BD上的两点,且AE∥CF.

求证:四边形AECF是菱形.

【答案】见解析

【解析】

【分析】

由菱形的性质可得AB∥CD,AB=CD,∠ADF=∠CDF,由“SAS”可证△ADF≌△CDF,可得AF=CF,由△ABE≌△CDF,可得AE=CF,由平行四边形的判定和菱形的判定可得四边形AECF是菱形.

【详解】

证明:∵四边形ABCD是菱形

∴AB∥CD,AB=CD,∠ADF=∠CDF,

∵AB=CD,∠ADF=∠CDF,DF=DF

∴△ADF≌△CDF(SAS)

∴AF=CF,

∵AB∥CD,AE∥CF

∴∠ABE=∠CDF,∠AEF=∠CFE

∴∠AEB=∠CFD,∠ABE=∠CDF,AB=CD

∴△ABE≌△CDF(AAS)

∴AE=CF,且AE∥CF

∴四边形AECF是平行四边形

又∵AF=CF,

相关文档
最新文档