九年级上册数学 圆 几何综合(篇)(Word版 含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级上册数学 圆 几何综合(篇)(Word 版 含解析)
一、初三数学 圆易错题压轴题(难)
1.如图,二次函数y=x 2-2mx+8m 的图象与x 轴交于A 、B 两点(点A 在点B 的左边且OA≠OB ),交y 轴于点C ,且经过点(m ,9m ),⊙E 过A 、B 、C 三点。 (1)求这条抛物线的解析式; (2)求点E 的坐标;
(3)过抛物线上一点P (点P 不与B 、C 重合)作PQ ⊥x 轴于点Q ,是否存在这样的点P 使△PBQ 和△BOC 相似?如果存在,求出点P 的坐标;如果不存在,说明理由
【答案】(1)y=x 2
+2x-8(2)(-1,-
72)(3)(-8,40),(-15
4,-1316),(-174
,-25
16
) 【解析】
分析:(1)把(),9m m 代入解析式,得:22289m m m m -+=,解这个方程可求出m 的值;
(2)分别令y =0和x =0,求出OA ,OB ,O C 及AB 的长,过点E 作EG x ⊥轴于点
G ,EF y ⊥轴于点F ,连接CE ,AE ,设OF =GE =a ,根据AE CE = ,列方过程求出a 的值,
从而求出点E 的坐标;
(3)设点P (a , a 2+2a -8), 则2
28,2PQ a a BQ a =+-=-,然后分PBQ ∽CBO 时
和PBQ ∽BCO 时两种情况,列比例式求出a 的值,从而求出点P 的坐标.
详解:(1)把(),9m m 代入解析式,得:22289m m m m -+= 解得:121,0m m =-=(舍去) ∴228y x x =+-
(2)由(1)可得:2
28y x x =+-,当0y =时,124,2x x =-=;
∵点A 在点B 的左边 ∴42OA OB ,== , ∴6AB OA OB =+=, 当0x =时,8y =-, ∴8OC =
过点E 作EG x ⊥轴于点G ,EF y ⊥轴于点F ,连接CE ,,
则11
6322
AG AB =
=⨯= ,
设
,则
, 在Rt AGE ∆中,,
在
中,
()2
22218CE EF CF a =+=+-,
∵AE CE = ,
∴()2
2918a a +=+- ,
解得:7
2a =
, ∴712E ⎛
⎫-- ⎪⎝
⎭
,
; (3)设点()2,28a a a P +-,
则2
28,2PQ a a BQ a =+-=-, a.当PBQ ∆∽CBO ∆时,
PQ CO
BQ OB =,即228822
a a a +-=-, 解得:10a =(舍去);
22a =(舍去);38a =- ,
∴()18,40P - ;
b.当PBQ ∆∽BCO ∆时,
PQ BO
BQ CO =,即228228
a a a +-=-, 解得:12a =(舍去),2154a =-;317
4
a =- , ∴21523,416P ⎛⎫-
- ⎪⎝⎭;31725416P ⎛⎫
- ⎪⎝⎭
, ; 综上所述,点P 的坐标为:()18,40P -,21523,416P ⎛⎫--
⎪⎝⎭,31725416P ⎛⎫
- ⎪⎝⎭
, 点睛:本题考查了二次函数的图像与性质,二次函数与坐标轴的交点,垂径定理,勾股定理,相似三角形的性质和分类讨论的数学思想,熟练掌握二次函数与一元二次方程的关系、相似三角形的性质是解答本题的关键.
2.已知:四边形ABCD 内接于⊙O ,∠ADC =90°,DE ⊥AB ,垂足为点E ,DE 的锯长线交⊙O 于点F ,DC 的延长线与FB 的延长线交于点G . (1)如图1,求证:GD =GF ;
(2)如图2,过点B 作BH ⊥AD ,垂足为点M ,B 交DF 于点P ,连接OG ,若点P 在线段OG 上,且PB =PH ,求∠ADF 的大小;
(3)如图3,在(2)的条件下,点M 是PH 的中点,点K 在BC 上,连接DK ,PC ,D 交PC 点N ,连接MN ,若AB =122,HM +CN =MN ,求DK 的长.
【答案】(1)见解析;(2)∠ADF =45°;(31810
【解析】 【分析】
(1)利用“同圆中,同弧所对的圆周角相等”可得∠A =∠GFD ,由“等角的余角相等”可得∠A =∠GDF ,等量代换得∠GDF =∠GFD ,根据“三角形中,等角对等边”得GD =GF ; (2)连接OD 、OF ,由△DPH ≌△FPB 可得:∠GBH =90°,由四边形内角和为360°可得:∠G =90°,即可得:∠ADF =45°;
(3)由等腰直角三角形可得AH =BH =12,DF =AB =12,由四边形ABCD 内接于⊙O ,
可得:∠BCG =45°=∠CBG ,GC =GB ,可证四边形CDHP 是矩形,令CN =m ,利用勾股定理可求得m =2,过点N 作NS ⊥DP 于S ,连接AF ,FK ,过点F 作FQ ⊥AD 于点Q ,过点F 作FR ⊥DK 交DK 的延长线于点R ,通过构造直角三角形,应用解直角三角形方法球得DK . 【详解】
解:(1)证明:∵DE ⊥AB ∴∠BED =90° ∴∠A +∠ADE =90° ∵∠ADC =90° ∴∠GDF +∠ADE =90° ∴∠A =∠GDF ∵BD BD = ∴∠A =∠GFD ∴∠GDF =∠GFD ∴GD =GF (2)连接OD 、OF ∵OD =OF ,GD =GF ∴OG ⊥DF ,PD =PF 在△DPH 和△FPB 中
PD PF DPH FPB PH PB =⎧⎪
∠=∠⎨⎪=⎩
∴△DPH ≌△FPB (SAS ) ∴∠FBP =∠DHP =90° ∴∠GBH =90°
∴∠DGF =360°﹣90°﹣90°﹣90°=90° ∴∠GDF =∠DFG =45° ∴∠ADF =45°
(3)在Rt △ABH 中,∵∠BAH =45°,AB =2 ∴AH =BH =12 ∴PH =PB =6 ∵∠HDP =∠HPD =45° ∴DH =PH =6
∴AD =12+6=18,PN =HM =1
2
PH =3,PD =2 ∵∠BFE =∠EBF =45° ∴EF =BE
∵∠DAE =∠ADE =45°