2017年飞行汽车行业投资预测分析报告
智能飞行汽车关键技术及发展趋势

智能飞行汽车关键技术及发展趋势目录一、内容描述 (1)二、智能飞行汽车概述 (2)1. 飞行汽车的起源与发展 (3)2. 智能飞行汽车的定义与特点 (4)三、智能飞行汽车的关键技术 (5)1. 飞行控制技术 (7)2. 能源动力技术 (8)3. 导航与通信技术 (9)4. 安全防护技术 (10)5. 系统集成与优化技术 (11)四、智能飞行汽车的发展趋势 (13)1. 技术创新与突破 (13)2. 市场需求与规模预测 (15)3. 政策法规与标准制定 (16)4. 跨界合作与产业生态构建 (17)五、结论与展望 (18)一、内容描述智能飞行汽车作为一种融合了现代科技与传统交通工具的新型交通工具,其关键技术及发展趋势日益受到全球关注。
本文档将就智能飞行汽车的关键技术及其未来发展趋势进行深入探讨。
智能飞行汽车的核心技术主要包括自动驾驶技术、航空航天技术、智能化控制技术和车辆制造技术。
不同气候条件下稳定运行;而车辆制造技术则是实现这些技术的基础平台。
关于智能飞行汽车的发展趋势,随着科技的进步和智能化水平的不断提高,我们可以预见以下几个方向:一是智能化程度的提升,如更高精度的导航、自主决策能力更强;二是能源问题的解决,特别是飞行汽车所采用的电力能源及相应的续航能力将会获得更大的提升;三是无人驾驶技术商业化趋势加快,使得智能飞行汽车能够逐渐走向大众市场;四是智能网联技术的融合应用,实现与交通基础设施、城市智能管理等系统的互联互通。
这些趋势将共同推动智能飞行汽车从理论走向实践,最终实现广泛应用和普及。
“智能飞行汽车关键技术及发展趋势”涉及广泛领域的知识,旨在深入研究和发展具有颠覆性意义的现代交通技术。
对此进行深入了解与研究有助于更好地把握科技趋势和行业未来发展动态。
二、智能飞行汽车概述随着科技的飞速发展,交通出行方式也在不断地变革与创新。
在这个变革的浪潮中,智能飞行汽车作为新能源汽车领域的一种新兴业态,正逐渐崭露头角,为人们的出行带来了全新的可能性和想象空间。
飞行汽车财务分析报告范文(3篇)

第1篇一、前言随着科技的飞速发展,飞行汽车作为一种新型的交通工具,正逐渐走进人们的视野。
本报告旨在对飞行汽车的财务状况进行分析,包括成本结构、市场前景、投资回报等方面,以期为投资者、制造商和相关决策者提供参考。
二、飞行汽车市场概述1. 市场背景随着城市化进程的加快,地面交通拥堵问题日益严重,人们对出行效率的要求越来越高。
飞行汽车的出现,有望解决地面交通拥堵,提高出行效率,同时具有环保、安全等优势。
2. 市场规模根据相关研究机构预测,全球飞行汽车市场规模将在未来十年内实现快速增长,预计到2025年将达到数百亿美元。
中国市场作为全球最大的汽车市场,预计也将占据重要份额。
三、飞行汽车成本分析1. 研发成本飞行汽车的研发涉及多个领域,包括航空、电子、材料等,研发周期长,投入大。
目前,飞行汽车的研发成本主要集中在以下几个方面:- 航空动力学研究- 飞行控制系统开发- 电池技术突破- 飞行安全认证2. 生产成本飞行汽车的生产成本主要包括以下几个方面:- 机身材料:高性能复合材料、铝合金等- 动力系统:电池、电机、传动系统等- 飞行控制系统:导航、飞控、通信等- 航空电子设备:传感器、显示器、导航设备等3. 运营成本飞行汽车的运营成本主要包括以下几个方面:- 燃料成本:飞行汽车的动力系统主要包括电池和燃料电池两种,其中燃料电池的运营成本相对较高。
- 维护成本:飞行汽车的结构复杂,维护成本较高。
- 保险成本:由于飞行汽车的特殊性,保险成本相对较高。
四、飞行汽车市场前景分析1. 政策支持随着各国政府对新能源汽车和智能交通的重视,飞行汽车行业将受益于一系列政策支持。
例如,政府补贴、税收优惠、基础设施建设等。
2. 市场需求随着人们生活水平的提高,对出行效率和舒适度的要求越来越高,飞行汽车市场前景广阔。
特别是在城市拥堵、应急救援、观光旅游等领域,飞行汽车具有明显的优势。
3. 技术进步随着航空、电子、材料等领域的不断突破,飞行汽车的技术将不断完善,成本将逐渐降低,市场竞争力将增强。
2017年中国通运航空行业市场预测分析报告

2017年中国通运航空行业市场预测分析报告目录第一节通用航空——再造一个汽车产业 (5)第二节我国通航行业前景广阔 (7)一、我国通航产业发展势头良好 (7)二、我国通航产业与发达国家差距尚存 (9)三、空域不开放制约通用航空产业 (10)四、政策利好频出助力通航产业实现突破 (11)第三节谁是通航低空开放受益者? (14)一、通航飞机——仍然主要依赖进口 (14)二、通航运营——对政府补贴依赖性较大 (18)三、通航空管设备——已具备国产化能力 (22)四、通用机场建设——拉动基建的重要增长点 (22)五、通航飞行培训——关注飞机模拟设备行业 (26)第四节行业受益公司 (27)图表目录图表1:我国通用航空运营企业数量 (7)图表2:我国在册通用航空器总量 (7)图表3:2014 年我国通用航空器分类 (8)图表4:通用航空飞行作业时间总量 (8)图表5:我国通用航空市场作业时间分布 (9)图表6:2015 年我国通航飞机前十大机型排行 (15)图表7:2015 年我国新增民用直升机生产商一览 (15)图表8:2014 年我国企业自有非运营公务机价格 (17)图表9:2014 年我国公务机前五大制造商 (17)图表10:2014 年我国前十大通航企业运营飞机数量 (18)图表11:2015 年我国公务机运营公司飞机数量排行 (18)图表12:我国通航机场基础建设规划 (24)表格目录表格1:“十一五”、“十二五”、“十三五”通航规划对比 (6)表格2:中国通用航空发展严重滞后 (9)表格3:中国通用航空差距甚大 (10)表格4:我国出台的扶持通用航空产业发展的相关措施 (11)表格5:我国主要通航飞机制造企业 (16)表格6:2014 年我国代维飞机数量前十大公司 (19)表格7:2016 年通用航空专项资金预算方案(万元)(仅列百万以上的企业) 19表格8:我国通用航空机场统计 (22)表格9:美国通用机场收入来源 (24)表格10:通用机场建设运营相关名词解释 (25)表格11:2015 年我国前十三个飞行培训学校运营飞机数量 (26)表格12:通用航空行业相关公司梳理 (27)第一节通用航空——再造一个汽车产业通用航空应用广泛、体系完整。
飞行汽车市场分析

飞行汽车市场
飞行汽车脱离固定的道路在空中飞行,对城市道路依赖性相对较小,能有效地缓解地面交通压力。
在抢险救灾或遭遇突发情况时,更可以起到重要作用。
它在城市也具有很大的灵活性,能在城市的高楼大厦的狭小的空间中自由穿梭,是直升飞机无法做到的。
据国际投行摩根士丹利(Morgan Stanley)的预测,随着飞行汽车技术和资本投入状况的改善,城市空中交通(Urban Air Mobility)这一蓝海市场将呈现显著的增长势头,到2040年规模超过1.4万亿美元,其中中国成为最大单一市场,规模达到4300亿美元。
而如果市场超预期发展,前面的数字还将翻倍。
最终,飞行汽车将转变为一种成本效益高、时间效率高的中短途旅行方式,并从汽车和航空公司各抢下一块肉。
到2040年,客运将会占据市场的绝大部分,市场规模将达到8510亿美元,货运市场规模将达到4130亿美元。
美国无人飞行器安全性测试公司Deseret UAS董事会主席肖恩·米尔恩认为,城市空中交通将引发整个出行领域的革命,它对减少交通拥堵、刺激经济增长、保护环境等方面都有着巨大的潜能。
但这个市场要崛起,必须得到技术和监管环境的支持,关键挑战包括升级下一代电池的储能密度、降低噪音,以及使用人工智能来满足严格的自动飞行安全标准。
2017年汽车行业市场投资前景分析报告

2017年汽车行业市场投资前景分析报告目录第一节行业分析 (5)一、销量分析 (5)二、汽车价格走势分析 (8)三、库存分析 (14)四、成本分析 (16)第二节行业投资策略 (24)一、自主崛起,强势合资品牌仍强 (25)二、坚持看好中高端轻卡市场 (35)1、轻卡进入更新周期,消费升级致中高端车型占比持续上行 (35)2、更新淘汰黄标车与老旧车将成为轻卡未来需求主力 (37)3、2017年起取消低速货车产品类别,可升级并入轻卡 (38)三、下半年新能源汽车将持续改善 (42)四、智能网联汽车 (47)五、行业国企改革仍值得关注 (54)图表目录图表1:乘联会终端销量数据有所回落 (6)图表2:购置税减免政策调整导致车购税增速回升 (6)图表3:各系销量增速 (7)图表4:各系销量市场份额 (8)图表5:A00级轿车价格变化指数 (9)图表6:A0级轿车价格变化指数 (9)图表7:A级轿车价格变化指数 (10)图表8:B级轿车价格变化指数 (10)图表9:C级轿车价格变化指数 (11)图表10:MPV价格变化指数 (11)图表11:SUV价格变化指数 (12)图表12:汽车产成品库存情况 (14)图表13:汽车制造业工业增加值情况 (15)图表14:经销商库存系数 (15)图表15:钢材价格走势 (16)图表16:铝价格走势 (16)图表17:铜价格走势 (17)图表18:天然橡胶价格走势 (17)图表19:顺丁橡胶价格走势 (18)图表20:丁苯橡胶价格走势 (18)图表21:国内汽油价格走势 (19)图表22:国内柴油价格走势 (19)图表23:国际三地原油价格走势 (20)图表24:国内浮法玻璃价格走势 (20)图表25:今年汽车行业收入与利润增长面临压力 (21)图表31:经济动能虽有波动,但目前仍较强 (24)图表32:PPI增速回落,CPI仍处于低位 (24)图表33:今年以来自主品牌增速明显回落但仍高于整体水平 (25)图表34:自主品牌份额升至近几年高位 (26)图表35:SUV增速回落但仍明显高于整体水平 (26)图表36:SUV继续挤压轿车份额 (27)图表37:1L-2.0L排量SUV占据销量主力(单位:万辆) (27)图表38:1L-2.0L排量SUV仍是增长主力 (28)图表39:近三年自主SUV超越合资高速增长 (28)图表40:自主SUV份额持续提升 (29)图表41:强势自主品牌销量强势,未来有待向上突破 (29)图表42:强势自主品牌销量目标高 (30)图表43:今年以来日系增速明显高于乘用车整体 (32)图表44:主要日企销量情况及主力车型 (32)图表45:大众在华新扩产能情况 (34)图表46:轻卡更新需求情况估算 (36)图表47:轻卡高端产品占比持续上升 (36)图表48:“黄标车”保有量 (37)图表49:“黄标车淘汰项目”中轻卡占比较高 (37)图表50:我国低速汽车保有量 (39)图表51:轻卡今年开始复苏 (40)图表52:今年以来前两大轻卡车企销量温和增长 (40)图表53:云内动力车用柴油机销量快速增长 (41)图表54:今年以来新能源汽车销量逐月提升(单位:辆) (43)图表55:今年以来新能源乘用车销量逐月上升(单位:辆) (43)图表56:地补调整政策出台情况(含原有低于国补50%省市) (44)图表57:其他有吸引力的政策措施 (45)图表58:2017年新能源汽车有望平稳较快发展 (45)图表59:新能源汽车产量预测 (46)图表60:MOBILEYE近几年营收持续快速增长(单位:亿元) (48)图表61:英伟达今年Q1营收继续高速增长(单位:亿元) (48)图表62:上汽荣威首款互联网SUVRX5 (49)图表63:特斯拉Model3 (49)图表64:上汽荣威首款互联网轿车i6 (50)图表65:互联网SUV名爵ZS (50)图表66:上汽互联网汽车成市场热捧的“爆款” (51)图表67:上汽乘用车受益互联网汽车,销量暴增 (52)图表68:智能网联汽车领域市场空间广,各大企业积极布局 (52)图表69:国内互联网巨头百度积极投资无人驾驶大事件 (53)图表70:我国汽车工业总产值增速持续走低 (55)图表71:汽车行业国企改革主要方案与相关标的 (55)图表72:国内摩托车上市公司积极寻求出路 (56)图表73:“大集团、小平台”类型的汽车上市公司未来有望充分受益于国改 (57)表格目录表格1:汽车行业5月批发销量统计数据(单位:万辆) (5)表格2:新能源汽车5月销量统计(单位:万辆) (6)表格3:各车系5月份销量数据(单位:万辆) (7)表格4:车企官方降价品牌不完全统计 (12)表格5:2017下半年预计将上市的新车型汇总 (21)表格7:下半年主要上市新车型不完全统计(以SUV为主) (31)表格8:主要日系车企在华新车规划不完全统计 (33)表格9:大众在华计划推出的新车型不完全统计(今年及以后) (34)表格10:关于开展低速货车生产企业及产品升级并轨工作的通知 (38)表格11:主要企业轻卡销量目标较高(单位:万辆) (41)表格12:特斯拉概念投资主线及相关标的 (46)第一节行业分析一、销量分析今年前5月汽车累计销量为1118.17万辆,同比增长4.16%,增速继续收窄,主要原因在于今年购置税政策调整(从5%提升到7.5%)以及去年透支部分市场需求所致。
飞行汽车商业计划书——基于摆线桨技术

定价策略与收益预测
定价策略:根据 市场需求、成本 和竞争情况制定 合理的价格
收益预测:根据 销售量、价格和 成本预测未来的 收益
定价策略的影响 因素:市场需求、 竞争情况、成本、 品牌定位等
收益预测的影响 因素:销售量、 价格、成本、市 场趋势等
品牌推广与市场宣传
品牌定位:高端、 科技、环保
宣传渠道:社交 媒体、网络广告、 线下活动
合作伙伴:知名 企业、政府机构 、科研机构
宣传内容:产品 优势、技术创新 、环保理念
生产计划与供应 链管理
章节副标题
生产计划与产能规划
生产计划:根据市场需求和预测,制定合理的生产计划,确保产品供应稳 定
产能规划:根据生产计划,合理规划生产线和设备,确保产能满足市场需 求
供应链管理:建立完善的供应链管理体系,确保原材料、零部件等供应稳 定
单击此处添加副标题
汇报人:
单击添加目录项标题 产品特点与优势 生产计划与供应链管理
项目背景与市场分析 商业模式与营销策略 财务预测与投资回报
添加章节标题
章节副标题
项目背景与市场 分析
章节副标题
摆线桨技术的介绍
摆线桨技术是一种新型的飞行技术,通过旋转的桨叶产生升力,实现飞行。 摆线桨技术具有结构简单、效率高、噪音低等优点,适合用于城市空中交通等领域。 摆线桨技术的发展历程:从最初的概念到现在的成熟技术,经历了多次改进和创新。 摆线桨技术的应用前景:预计将在未来城市空中交通、应急救援等领域发挥重要作用。
产品创新点与专利保护
创新点:摆线桨技术,实现垂直起降和空中飞行 专利保护:已申请多项专利,保护核心技术 技术优势:高效、节能、环保,降低运营成本 市场前景:未来城市交通的重要解决方案,具有广阔的市场空间
深圳市易飞特飞行汽车有限公司介绍企业发展分析报告

Enterprise Development专业品质权威Analysis Report企业发展分析报告深圳市易飞特飞行汽车有限公司免责声明:本报告通过对该企业公开数据进行分析生成,并不完全代表我方对该企业的意见,如有错误请及时联系;本报告出于对企业发展研究目的产生,仅供参考,在任何情况下,使用本报告所引起的一切后果,我方不承担任何责任:本报告不得用于一切商业用途,如需引用或合作,请与我方联系:深圳市易飞特飞行汽车有限公司1企业发展分析结果1.1 企业发展指数得分企业发展指数得分深圳市易飞特飞行汽车有限公司综合得分说明:企业发展指数根据企业规模、企业创新、企业风险、企业活力四个维度对企业发展情况进行评价。
该企业的综合评价得分需要您得到该公司授权后,我们将协助您分析给出。
1.2 企业画像类别内容行业计算机、通信和其他电子设备制造业-电子器件制造资质空产品服务是:飞行汽车系列产品的研发、销售,提供相1.3 发展历程2工商2.1工商信息2.2工商变更2.3股东结构2.4主要人员2.5分支机构2.6对外投资2.7企业年报2.8股权出质2.9动产抵押2.10司法协助2.11清算2.12注销3投融资3.1融资历史3.2投资事件3.3核心团队3.4企业业务4企业信用4.1企业信用4.2行政许可-工商局4.3行政处罚-信用中国4.5税务评级4.6税务处罚4.7经营异常4.8经营异常-工商局4.9采购不良行为4.10产品抽查4.12欠税公告4.13环保处罚4.14被执行人5司法文书5.1法律诉讼(当事人)5.2法律诉讼(相关人)5.3开庭公告5.4被执行人5.5法院公告5.6破产暂无破产数据6企业资质6.1资质许可6.2人员资质6.3产品许可6.4特殊许可7知识产权7.1商标7.2专利7.3软件著作权7.4作品著作权7.5网站备案7.6应用APP7.7微信公众号8招标中标8.1政府招标8.2政府中标8.3央企招标8.4央企中标9标准9.1国家标准9.2行业标准9.3团体标准9.4地方标准10成果奖励10.1国家奖励10.2省部奖励10.3社会奖励10.4科技成果11 土地11.1大块土地出让11.2出让公告11.3土地抵押11.4地块公示11.5大企业购地11.6土地出租11.7土地结果11.8土地转让12基金12.1国家自然基金12.2国家自然基金成果12.3国家社科基金13招聘13.1招聘信息感谢阅读:感谢您耐心地阅读这份企业调查分析报告。
科技行业-飞行汽车:城市自动驾驶空中汽车的投资意义-85页

BLUEPAPERMMorgan Stanley does and seeks to do business with companies covered in Morgan Stanley Research. As a result, investors should be aware that the firm may have a conflict ofinterest that could affect the objectivity of Morgan Stanley Research. Investors should consider Morgan Stanley Research as only a single factor in making their investment decision.For analyst certification and other important disclosures, refer to the Disclosure Section, located at the end of this report.Urban Air MobilityFlying Cars: InvestmentImplications of AutonomousUrban Air MobilityIf you're bullish on autonomous cars, it's time to start looking at autonomous aircraft. To make this complex topic accessible, we collaborated across sectors and regions, using scenario analysis to size the addressable market – ~ $1.5tn in our base case by 2040. Logistics is leading the way.December 2, 2018 10:00 PM GMTC ontributors MORGAN STANLEY & CO. LLCAdam Jonas, CFAEquity Analyst +1 212 761-1726Adam.Jonas@ MORGAN STANLEY & CO. LLCRavi ShankerEquity Analyst +1 212 761-6350Ravi.Shanker@MORGAN STANLEY & CO. LLCRajeev Lalwani, CFAEquity Analyst +1 212 761-8518lwani@MORGAN STANLEY & CO. LLCArmintas Sinkevicius, CFA, CPAEquity Analyst +1 212 296-5469Armintas.Sinkevicius@ MORGAN STANLEY & CO. INTERNATIONAL PLC+Penelope Butcher, CFAEquity Analyst +44 20 7425-6698Penelope.Butcher@ MORGAN STANLEY & CO. INTERNATIONAL PLC+Harald C HendrikseEquity Analyst +44 20 7425-6240Harald.Hendrikse@ MORGAN STANLEY & CO. INTERNATIONAL PLC+Andrew HumphreyEquity Analyst +44 20 7425-2630Andrew.Humphrey@ MORGAN STANLEY & CO. LLCBrian Nowak, CFAEquity Analyst +1 212 761-3365Brian.Nowak@ MORGAN STANLEY & CO. LLCKaty L. Huberty, CFAEquity Analyst +1 212 761-6249Kathryn.Huberty@ MORGAN STANLEY & CO. LLCKeith Weiss, CFAEquity Analyst +1 212 761-4149Keith.Weiss@ MORGAN STANLEY & CO. LLCSimon FlanneryEquity Analyst +1 212 761-6432Simon.Flannery@ MORGAN STANLEY & CO. LLCEthan C EllisonEquity Analyst +1 212 296-5124Ethan.Ellison@ MORGAN STANLEY & CO. INTERNATIONAL PLC+Adam WoodEquity Analyst +44 20 7425-4450Adam.Wood@ MORGAN STANLEY & CO. LLCJames E FaucetteEquity Analyst +1 212 296-5771James.Faucette@ MORGAN STANLEY & CO. LLCMeta A MarshallEquity Analyst +1 212 761-0430Meta.Marshall@ MORGAN STANLEY & CO. LLCKai PanEquity Analyst +1 212 761-8711Kai.Pan@ MORGAN STANLEY & CO. LLCThomas AllenEquity Analyst +1 212 761-3356Thomas.Allen@ MORGAN STANLEY & CO. LLCJoseph MooreEquity Analyst +1 212 761-7516Joseph.Moore@ MORGAN STANLEY & CO. LLCCraig HettenbachEquity Analyst +1 212 761-6435Craig.Hettenbach@ MORGAN STANLEY & CO. LLCVinayak Rao, CFAEquity Analyst +1 212 761-4669Vinayak.Rao@ MORGAN STANLEY & CO. LLCYuuji AndersonEquity Analyst +1 212 296-8284Yuuji.Anderson@ MORGAN STANLEY & CO. INTERNATIONAL PLC+Charles L WebbEquity Analyst +44 20 7425-0234Charlie.Webb@ MORGAN STANLEY & CO. LLCGeorge M DaileyResearch Associate +1 212 761-1711George.Dailey@ MORGAN STANLEY & CO. LLCMatthew SharpeResearch Associate +1 212 761-5156Matt.Sharpe@ MORGAN STANLEY & CO. LLCNicolette ShenderResearch Associate +1 212 761-1701Nicolette.Shender@ MORGAN STANLEY & CO. LLCCarmen HundleyResearch Associate +1 212 296-8832Carmen.Hundley@ MORGAN STANLEY & CO. LLCDiane HuangEquity Analyst +1 212 761-8290Diane.Huang@ MORGAN STANLEY & CO. INTERNATIONAL PLC+Shaked AtiaResearch Associate +44 20 7677-7902Shaked.Atia@MORGAN STANLEY & CO. LLCJonathan MoralesResearch Associate +1 212 296-8051Jonathan.Morales@MORGAN STANLEY & CO. LLCMatthew C RachalResearch Associate +1 212 761-4592Matthew.Rachal@C ontents4Executive Summary11Urban Air Mobility: Where Are We Now?11Why Now?11Where Is Urban Air MobilityToday?12Autos and Shared Mobility andAirlines (Transporting Humans) 12Military a nd Defense(Transporting Troops andSupplies / Surveillance / Strike) 13Freight Transportation(Transporting Freight andPackages)14Scenario Introductions – Assessing the TAM for Urban Air Mobility14What Do the UAM SectorAdoption Curves Look Like?16Bull Case: Meet George Jetson16Bear Case: From Hobbyists toCommercial Novelty16Base Case: Is It a Bird… aPlane? Oh… It's My Toothpaste 17Gating Factors for Urban Air Mobility – What Do We Need and Where AreWe Now?17Technology18Battery Improvement21Distributed Electric Propulsion(DEP)24Regulation25Social Considerations28Morgan Stanley UAM TotalAddressable Market Model28Global Total AddressableMarket Summary29US Bottom-Up ModelSummary30Autos & Shared Mobility (US)31Freight Transportation33Airlines34Military & Defense35Enabling Technology – TheContent Opportunity36US Hardware TotalAddressable Market37US Software Total AddressableMarket38US Telecom Total AddressableMarket39US Batteries Total AddressableMarket40UAM Global Total AddressableMarket Extrapolations41Case Assumptions42Sector Implications: Introducing theMorgan Stanley Flying Car 5043List of Stocks Most Exposed tothe Adoption of Urban AirMobility48Urban Air Mobility PotentialDisruptors – the Future ofTransportation51NASA's UAM EcosystemCompanies54Appendix54US Bottom-Up TotalAddressable Market Model(Case Summary)55Base Case61Total Addressable MarketModel (Bear Case)67Total Addressable MarketModel (Bull Case)73Global Total AddressableMarket Model Extrapolation76Miscellaneous78More on AlphaWiseMark my words: a combination airplane and motorcar is coming. You may smile, but it will come.– Henry Ford (1940)We're making investments in areas like urban mobility and flying taxis, if you want to call them that. As you think about future urban congestion, three-dimensional highways and cities are not all that far-fetched. The technology is doable, and we're working on prototype vehicles today. – Dennis Muilenburg, Chairman, President & CEO of Boeing (MS Laguna Conference, September 2018)Executive SummaryAutonomous flying cars aren't πin the sky. In many ways, an autonomous aircraft is an easier software problem to solve than an autonomous car. Military drones have been around for years, and now electrified, autonomous vertical takeoff and landing vehicles (VTOLs) are gaining traction. In logistics, drone package delivery is in active testing. On November 1st, 2018, NASA launched a Grand Challenge to accelerate the development of Urban Air Mobility (UAM), which it defines as a "safe and efficient system for air pas-senger and cargo transportation within an urban area." NASA is fol-lowing in the footsteps of the Defense Department's Defense Advanced Research Projects Agency (DARPA), which launched a Grand Challenge in 2004 to accelerate the development of autono-mous vehicle technology for military usage. Many participants in that challenge went on to found and run major autonomous driving startups, including Waymo and GM Cruise. So we see a clear need to give investors a starting point for understanding how UAM may unfold.Exhibit 1:Notable Attendees of NASA's "Grand Challenge" Industry Day (Non-Exhaustive)Source: NASA, Company Websites, Morgan Stanley ResearchCapital is flowing into the space. We see the development of the UAM ecosystem as extremely long-dated and requiring up-front cap-ital allocation, testing, and development in the short term, with increasing visibility. The intersection of many technologies, such as ultra-efficient batteries, autonomous systems, and advanced manu-facturing processes are spawning a flurry of activity.l Aerospace & Defense majors are making investments.Beyond Boeing, Airbus is investing in a helicopter ride-hailing ser-vice (Voom) in Brazil, and its electric VTOL (eVTOL) project A3 Vahana hopes to create a quieter extension of this platform in other urban areas. In January 2018, Vahana completed its first full-scale test flight, which reached a height of 16 meters. It has also launched Altiscope, a simulator for evaluating policy/opera-tional options for air traffic management systems. Lockheed Martin is investing in eVTOL autonomous aircraft, and we believe Northrop Grumman is likely involved as well, while Raytheon and Harris are targeting air traffic control technology.l Startups are attracting capital. Google cofounder Larry Page isfunding a number of flying car start ups. Sebastian Thrun (who founded Google X and Google’s self-driving car team) is leading Kitty Hawk and its subsidiary companies Cora and Flyer. Cora describes its mission as "bringing the airport to you" by elimi-nating the need for a runway and “combining self-flying software with expert human supervision, so you can enjoy the ride.” Last month, the company struck a deal with New Zealand’s domestic airline, establishing a long-term relationship to build the world's first autonomous air taxi service. Uber’s autonomous air taxi project Uber Elevate has begun joint testing with Bell in the Dallas-Fort Worth area.l Megatech platforms are actively involved. Google is devel-oping autonomous drone prototypes and architecture in its Project Wing, as is Amazon with Amazon Prime Air (not to be confused with their planes). Shipping is Amazon's second largest cost, as we detailed in "Should Amazon Become a Larger Competitor Against Waymo?", and flying cars could reduce delivery costs in both rural and traffic-congested urban areas. For context, we estimate Amazon spends $28bn on shipping in ’18 and $38bn in ’19. For Google, flying cars represent a TAM expan-sion opportunity as another evolution of its self-driving car initia-tive, Waymo, which we believe is leading the space (Waymo: 3 Steps to $175 billion). A push into flying cars would partly mirror Uber’s work with Elevate, which hopes to transport people in urban environments to avoid lengthy commutes.l We also believe national security concerns will buttress autonomous airborne technology, ensuring the attention of multiple governmental constituencies.Exhibit 2:Urban Air Mobility Is Making HeadlinesSource: Geekwire, Businesswire, Endagadget, Forbes, Autoevolution, TechCrunch, Morgan Stanley ResearchUAM economics could be compelling. Think of a 20-mile Uber or Lyft ride home to the suburbs after a night in the city. At an average speed of 25 mph it takes you 48 minutes to get home at $1.50/mile for a total cost of $30. At 10 trips per shift (a busy day) this can bring in $300 of revenue for the driver or $75k per year. With an autono-mous vehicle, that revenue flows to the company. But what if a large drone or autonomous aircraft could make the 20-mile trip at 100 mph and $2.50 per mile? Assuming you'd be willing to pay a premium for speed, you'd be home in 12 minutes for a $50 fee. Faster speeds mean more trips… as many as 40 in an 8-hour shift. Thus $2k of rev-enue per shift and more working hours could yield close to $1.5 mil-lion of revenue per year per flying car. Exhibit 3:UAM Economics ComparisonSource: Company websites, Morgan Stanley ResearchWe would describe the current state of technology for electric autonomous aircraft as underdeveloped, but rapidly improving in areas of pilot substitution, safety, and efficiency. Widespread VTOL adoption faces a number of serious technological hurdles, including battery energy density and noise. Fully functional autono-mous aviation may need to improve to a level significantly greater than that of conventional EVs/AVs for road transport over the next 10 years.It's early days for UAM payloads and ranges, as well as informa-tion. The most detailed data we have on progress in human transport comes from German-based Volocopter. It began testing its electric VTOL aircraft prototype in Singapore this year. Currently, the max-imum payload is 160 kg, with maximum range of 17 miles at an optimal cruise speed of 43 mph. Most other companies remain in stealth mode and keep their testing specifications close to the vest. Joby Aviation estimates that its Joby S4 prototype for human travel will be able to travel 150 miles on a single charge at ~200 mph with an estimated capacity of 5 people. Many private companies say they can achieve a maximum range of ~250 miles per charge at speeds of 150-200 mph with payload capacities of 4-5 people (including the pilot), which equates to about 600 lbs for mature eVTOL aircraft.Most package drone prototypes can carry a maximum of ~10 lbs. Amazon has stated it plans to fly drones weighing 55 lbs at speeds of 55 mph for packages of 5 lbs or less. Sikorsky has begun testing autonomous flying technologies on its helicopters. A military-grade helicopter such as the Sikorsky CH53K, however, has a maximum pay-load of 15.9 tons and can carry up to 37 soldiers. The chasm between military grade aircraft and urban eVTOL and drone technology exists because battery technology (the primary noise mitigant) is extremely underdeveloped. A 50-fold increase in the global annual production of electric cars by 2030 and as much as $100bn or more of capital investment directed at the mass production of EV batteries (>100 gigafactories by 2040) could reasonably drive technology andExhibit 4:VTOL Expected Weight and Range LimitationsR a n g e1 mile500 feetSource: Company estimates, Morgan Stanley ResearchThe total addressable markets in our base and bull cases assume the same level of capacity and payload trajectories. Our model embeds the low-end projected speed range of 150 mph by 2040. For logistics, we assume freight payloads of >50 lbs beginning in 2035. Our Autos and Shared Mobility Model assumes steady average growth in occupancy/overall payload of 4% through 2040 for eVTOLs, yielding an average occupancy capacity of 3.3, slightly more conservative than what a ircraft developers project for more mature eVTOL designs. In our "Airlines" model for longer distance flights we assume a maximum capacity of 10 people across our cases to account for potentially larger electric eVTOL aircraft with lower noise/regu-latory restrictions along more traditional airline routes.Battery technology and advanced propulsion architectures such as distributed electric propulsion will be critical to the UAM development . We believe that current Lithium-ion battery tech-nology is largely workable and will near-term be "fit for purpose" to support EV adoption. However, we believe that a material change in battery technology will be needed to achieve the levels of charge rates, cycle life, and capacity that companies are targeting. Potential battery technologies include lithium sulfur or solid state lithium ion batteries, both of which are years away for operation in terrestrial vehicles, let alone electric aircraft. In our view, the push for electric vehicles to reach cost parity with internal combustion engine vehi-cles will accelerate the demand for advanced battery technologies over the coming decade.Regulation and a host of other legal and behavioral factors create another set of obstacles. Nevertheless, we see the develop-ment and early commercialization of terrestrial autonomous net-works (shared autonomous cars) as an incubator and accelerator for the framework of regulation and consumer acceptance of flying car tech.To assess the Global Total Addressable Market for UAM we began with our bottom up forecast of the US Total Addressable Market. Our forecasts are based on scenario analysis with bull, bear, and base total addressable market (TAM) outcomes, given the long-term time horizon and myriad unpredictable technological and policy vectors. We roll these vectors up into two broad parame-ters: (1) technology and (2) regulation. Our cases reflect several spe-cific areas of technological capability, including payload, range, speed, noise, software, connectivity, battery, and unit cost. A number of regulatory inputs also shape our scenarios, such as state/local/regional government intervention, FAA/EASA oversight, infrastruc-ture barriers, and most importantly public acceptance/acceleration. To size the addressable markets in each scenario, we focused on three broad end markets + the supply chain: (1) transporting humans, (2) transporting goods, (3) military & defense, and (4) the enabling supply chain/content. More specifically, we look at markets directly relevant to personal urban/suburban transporta-tion, final mile shipping/logistics, short-haul airlines, and defense. Our forecasts for components, sensors, compute, and software – the so called "arms dealers" of the autonomous aircraft ecosystem – are based on our bottom-up forecasts for the three end markets. We then extrapolated this US only bottom-up model globally to estimate the TAM in China, Europe, and ROW. We did this by taking the relative percentage of GDP our US UAM TAM forecast represents in the US and adjusted across regions for factors such as shared, autonomous, and electric vehicle penetration to arrive at the respec-tive GDP percentages for each region. While we recognize comparing terrestrial ground transportation penetration to UAM may not be entirely apples to apples, we believe they are solid proxies, given the overlap of AV / UAM technologies. The markets that are relevant to the UAM ecosystem represent just shy of $1.5tn of potential global economic value in our base case.Exhibit 5:Source: Morgan Stanley ResearchBase Case: Is It a Bird… a Plane? Oh… It's My Toothpaste: Advanced technology but obstructive policy. Technology outpaces regulations, infrastructure, and budgets. VTOL and drone adoption is snarled by red tape and moves down on the legislative priority list, limiting uptake even though the technology is readily available. Global Total Addressable Market: ~$1.5tn by 2040 (~1.2% of projected Global GDP).Bull Case: Meet George Jetson: Advanced / developed technology with accommodative policy. VTOL / drone transportation of goods and people achieves mass acceptance and adoption. Technology accelerates and becomes cost effective for both consumers and busi-nesses; it proves more efficient than existing transportation models. Policy is flexible and infrastructure is readily available or easily adapted. Regulations permit “easy” VTOL / drone usage and adapt to changing consumer / business demands. Global Total Addressable Market: ~$2.9tn by 2040 (~2.2% of projected Global GDP).Bear Case: From Hobbyists to Commercial Novelty: Underdeveloped / unsuccessful technology combined with obstruc-tive policy. Mass rejection / minimal adoption of VTOL / drone trans-port of goods and people. Technology stagnates as it is not cost effective for consumers or businesses. It is less efficient than current transportation models and encounters critical technological barriers to adoption (weight, noise, range, payload, safety, etc.). Policy is restrictive and infrastructure cannot support adoption. Regulations hinder VTOL / drone usage and impede widespread global adoption. Global Total Addressable Market: $615bn by 2040 ( ~0.5% of projected Global GDP) .Our base case Global Total Addressable Market of $1.5tn by 2040 assumes significant technological advancement coupled with obstructive policy and neither supportive nor negative social response.l Autos and Shared Mobility ($674bn) and Airlines ($177bn) – Transporting humans: We assess the opportunity for a growing fleet of electric, shared, and autonomous VTOL aircraft or other large terrestrial drones. We see the market beginning as an ultra-niche add-on to existing transportation infrastructure, similar to how helicopters operate today. It eventually transforms into a cost-effective, time-efficient method of traveling short to medium distances, eventually taking share from car and airline companies.l Freight Transportation ($413bn) – Transporting goods: The opportunity is much nearer term than transporting humans, espe-cially with smaller, more lightweight drones. We utilize AlphaWise in our model to inform our urban vs. rural drone pene-tration. AlphaWise shows that 80% of the US population lives in 28% of the zip codes. Our model shows the bulk of the revenue opportunity will come from the urban parcel market; however, this is also the most risky, and we model lower urban drone pene-tration due to regulatory concerns. We value additional revenue opportunity and cost savings for larger electric VTOL aircraft that can use excess capacity to fulfill trips that are too long and too heavy for smaller drones.l Military & Defense ($12bn) – Transporting troops/supplies: The total addressable market for Military and Defense is much smaller than the other sectors because we model the market asa function of US military (DoD) spend. On a relative basis, this isa much smaller revenue pool (~$1bn today) versus the potentialfor operating a fleet of autonomous aircraft at a cost of $2 mile.We still view military and defense applications as an extremely important accelerant for UAM technologies, similar to what DARPA and the military did for autonomous driving in the early 2000s.l Key Accelerants ($198bn) – Enabling Technology/Services: Growth in autonomous, connected, and electric flight systems creates a significant demand opportunity for batteries (and bat-tery materials), hardware, communications equipment, and soft-ware. Using our bottom-up autonomous aircraft model, we constructed a framework to assess the market opportunity for content in urban air mobility.Exhibit 6:Source: Morgan Stanley ResearchThe UAM adoption curve varies across the core sectors we explore, as we outline in Exhibits 12-14. VTOL aircraft is already being used extensively in the military, and we believe that the adoption curve will continue to move logarithmically at the fastest rate, given lower societal and technological barriers. Transporting goods to rural and urban areas should follow an S-curve, as we believe adop-tion will start aggressively in rural areas, followed by urban areas, where regulatory hurdles will be higher.We believe widespread com-mercial adoption for transporting humans will take the longest, pri-marily due to more stringent safety regulations and higher technology requirements for autonomous aviation systems.Exhibit 7:UAM Adoption Overview – Military & Defense Leading the WayAutos + SM /Source: Morgan Stanley ResearchThe Morgan Stanley Flying Car 50: In a collaborative effort across Morgan Stanley Research, we've constructed a diversified list of stocks that, in our collective view, represents the best exposure to the growth of Urban Air Mobility. We created the list irrespective of 12-monthrecommendations,henceitincludessomeUnderweight-rated stocks, in addition to Equal-weight and Overweight-rated names.Freight Transportation: Names in logistics with most exposure include UPS, FDX, USPS, and DPW. We also highlight NEX, SGC, and FGP as European bus/rail companies with exposure to VTOL short-haul flight operations.Airlines: We highlight AAL, DAL, and UAL with regional feeds that represent 10-20% of revenues as the emergence of UAM could pose a risk as it targets short-haul airline routes. We also highlight JBLU as a name with e xposure to and investment in UAM, including a Series B round in Joby Aviation.Aerospace and Defense: Best positioned names include: TXT, BA, LMT, NOC, AIR, SAF, and RR.Autos and Shared Mobility: Best positioned names include: TSLA, LEA, ADNT, and APTV.Tech Hardware: UAM aligns with the “data era” thesis. It will grow hardware TAM as edge computing and storage requirements increase. It could also further automate technology maintenance. Best positioned names include: STX, HPE, NTAP, NTNX, APPL, and GRMN.Telecom and Networking Equipment: UAM will leverage autono-mous vehicle technology; growth in cars as networked computers vs. independent vehicles generally benefits the networking universe. Companies such as Cisco and Qualcomm help provide the network connection, with BlackBerry supplying the secure kernel for system development. Names like Lumentum, IIVI, and Finisar (pending acqui-sition by IIVI) help enable LiDAR technology through 3D sensing tech-nology, fundamental to autonomous driving (and eventually flying). Best positioned names include: CSCO, QCOM, BB, LITE, and II-VI.We expect connected UAM aircraft to layer additional capacity needs onto wireless networks. As providers of passive network infrastruc-ture, Towers offer the best play on this theme in Telecoms. Towers should benefit from any network deployments to serve UAM air-craft, whether via traditional wireless carriers or emerging compa-nies. Best positioned names include: AMT, CCI, and SBAC.Clean Tech: Within the UAM ecosystem, we’re focused on composite vehicle bodies, with TPI Composites the lone pure play. Clean Tech companies could be involved at many levels – directly applying wind, solar, and battery storage to create and/or store the electrons used to charge eVTOL aircraft. We believe TPI is best positioned for next-gen aircraft.Software: UAM represents a TAM expansion opportunity. Likeautonomous vehicles, they represent new endpoints, chock full of CPUs and throwing off a ton of data to be managed and optimized, with the potential of new applications to be built on top of their net-works. We believe MSFT is best positioned in Air TrafficBLUEPAPERMWe also highlight DSY as a leader in terms of software used in 3D printing and designing advanced material systems.Internet: Wide range of interest from mega-tech platforms. We expect continuing involvement as UAM evolves. Best positioned names include: GOOGL, AMZN.Gaming/Lodging: Flying cars should be a positive for Vegas casinos, while a potential risk to corporate-focused hotel companies. They would give gaming and nightlife customers easier access to Las Vegas, which suffers from infrastructure headwinds (e.g., no direct train service and heavy trafficfrom LA on busy weekends). Best posi-tioned names include: CZR, MGM.Greater ability to travel long distances would likely hurt hotels across the country. “Road warriors” and other corporate travelers(70% of US hotel room nights), would likely choose to stay in theirown homes when practical (or employers would require it) vs. paying for lodging. Names with potential exposure include: DRH, HLT, H, HST, MAR, SHO, and XHR.Semis and Sensors: In Semis, computer vision is a key enabling tech-nology for UAM. Innovation in machine learning has accelerated "machine vision,” or extracting information from video images – key to autonomous driving/flying. Long term beneficiaries among semi-conductor suppliers include Nvidia, Intel, Ambarella, Xilinx, as well as sensor providers (for radar/LiDAR/machine vision) like NXP Semiconductors, Analog Devices, and ON Semi. Near term, DJI’s con-sumer drone dominance may limit opportunities for US semicon-ductor companies, as DJI is pursuing ASIC designs for their devices. Best positioned names include: NVDA, INTC, AMBA, XLNX, NXPI, ADI, ON.Insurance: UAM represents a TAM expansion for insurers, but a risk in terms of cannibalizing insurance on traditional ground vehicles. We believe PGR is best positioned for potential Insurance TAM expansion.Exhibit 8:The Morgan Stanley Flying Car 50I n t e r n e t /S o f t w a r eA&D / Airlines Clean TechG a m i n g / L o d g i n g Semis / SensorsI n s u r a n c eAutos / Shared Mobility Transport / LogisticsT e c h H a r d w a r eTelecom & Netwroking EquipmentNote: The "Morgan Stanley Flying Car 50" is a label our analysts will use to discuss the concept of Urban Air Mobility as a theme. The actual number of names on the list may fluctuate。
成都投资计划书:某飞行汽车项目获得立项批复

成都投资计划书:某飞行汽车项目获得立项批复目前,某飞行汽车项目投资计划书由中哲咨询负责编制完成,该项目获得立项批复,该飞行汽车项目属于新建项目,规划用地约4200亩,整个项目建设周期约两年。
一、项目建设必要性项目打造建设的飞行汽车制造基地,必将形成巨大的产业聚集效应,带动四川省乃至全国飞行器产业及相关配套产业的整合、转型、提档升级,促进产业规模化,并且能够带动与本项目相关各配套产业的发展。
四川省政府出台方案明确今年推动制造业快速健康发展的目标、重点领域以及相关重点工作等。
方案明确三方面目标:规模质效目标,今年规模以上制造业增加值同比增长7.5%以上,占工业的比重稳步提升;创新能力方面,组织培育、认定60家以上制造企业省级技术中心,全省省级以上企业技术中心达到800家;“两化”融合方面,要培育5—10家智能制造示范企业,建设一批具有示范性的智能生产线、数字化车间、智慧工厂。
方案明确,要编制新一代信息技术、航空航天与燃机、高效发电与核技术应用、高档数控机床和机器人、轨道交通装备、节能环保装备和新能源汽车、新材料、生物医药和智能医疗设备、农机装备、油气钻采及海洋工程装备等十大重点领域的路线图,并分类推进十大重点领域稳步发展。
中央财政设立专项资金拨款,支持提升飞行器制造工艺专业。
这也为我项目就近定向吸引人才提供了有利的技术人才保障。
二、项目市场前景广阔1、飞行爱好者消费市场前景权威数据显示,美国约有22.8万架通用航空飞行器,其中85%为中小型机型。
欧盟市场目前已经拥有的通航飞行器也高达19万架次。
全球飞行俱乐部人均注册会员费每年约300-500万元人民币,目前,全球飞行俱乐部产业规模已经超过2000亿美元,而更加巨大的潜在市场则是那些将飞行体验当做一次性消费娱乐项目的游客群体。
在中国,现在800元就可以体验飞行,这也开打了低端飞行消费市场。
未来,飞行汽车所能占据的通航市场,不仅仅是高端的飞行俱乐部,更能走进每一个有一定经济实力的飞行爱好者生活之中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(此文档为word格式,可任意修改编辑!)正文目录绵延百余年的飞行汽车梦 (4)飞行汽车渐行渐近,多国“飞车”展翅翱翔 (5)斯洛伐克后折叠翼飞行汽车——Aeromobil (5)荷兰PAL-V旋翼式“飞行摩托”——Liberty (10)美国两侧折叠翼飞行汽车——Transition (13)核心设计:总体布局、气动、结构、动力、操纵 (14)核心之一:总体布局设计 (14)机翼收展设计 (15)起落架、车轮布局设计 (16)尾翼布局设计 (17)核心之二:气动设计 (17)核心之三:结构设计 (18)核心之四:动力系统设计 (19)核心之五:操纵系统设计 (20)当代飞行汽车的优势与瓶颈 (20)核心优势:更快捷、更便利、更灵活、适用性更强 (20)飞行汽车不得不面对的“四道坎儿” (22)性能:基本动力学性能矛盾+起飞降落需要平直滑道+受天气影响严重 (22)造价:飞行汽车机身使用碳纤维复合材料、钛合金制成 (23)审批:上路与飞行需要通过各国的监管部门与法律部门的审批 (23)技能:对驾驶者与管制者的要求均非常高,需要拥有飞行员执照以及汽车驾照 (23)放眼未来:摆脱水平滑道,垂直升降+自动驾驶或是大势所趋 (24)图表目录图表1:1841年发明的单翼机飞行汽车 (4)图表2:康维尔公司Model 118飞行汽车 (4)图表3:波音公司空中通勤车 (5)图表4:三种飞行汽车的主要参数性能对比 (5)图表5:The AeroMobil 3.0设计构想 (6)图表6:The AeroMobil 3.0陆地状态 (6)图表7:The AeroMobil 3.0飞行状态 (7)图表8:The AeroMobil 3.0试飞 (7)图表9:The AeroMobil 3.0试飞 (7)图表10:AeroMobil 展出日记 (8)图表11:The AeroMobil 4.0 (8)图表12:The AeroMobil 4.0动力装置 (9)图表13:The AeroMobil 三模式悬挂装置 (9)图表14:The AeroMobil 4.0复合材料车轮 (9)图表15:荷兰PAL-V公司飞行汽车Liberty (11)图表16:荷兰PAL-V公司飞行汽车Liberty (11)图表17:Liberty路面行驶状态倾斜车身实现小半径转弯 (11)图表18:Liberty飞行状态 (12)图表19:Liberty试飞起飞瞬间 (12)图表20:Liberty试飞过程 (12)图表21:Transition陆地行驶状态 (13)图表22:Transition空陆转换过程 (14)图表23:飞行汽车主要技术路径 (14)图表24:The AeroMobil 3.0后折叠方式机翼收展 (16)图表25:伸缩翼方式机翼收展 (16)图表26:飞行汽车受天气影响使用度较传统飞机强 (22)图表27:更优异的空气动力学性能 (22)图表28:模块化四旋翼飞行汽车pop.up (24)图表29:四旋翼飞行概念汽车pop.up亮相日内瓦车展 (25)图表30:美国的Terrafugia公司TF-X飞行汽车 (25)图表31:军事化飞行卡车“黑骑士”起飞状态 (26)图表32:军事化飞行卡车“黑骑士”驾驶状态 (26)绵延百余年的飞行汽车梦飞行汽车的梦想几乎完整贯穿了百余年来的汽车发展历史。
自从汽车被发明出来之后,人们总是梦想着有一天能把他带到天上去,现代意义的飞行汽车有望能够从在科幻小说中的交通工具变成现实。
早在1841年William Samuel Henson 和John String fellow兄弟就发明了单翼机飞行汽车的相关技术,可谓是飞行汽车最早的构想已经尝试;1947年11月,康维尔公司生产的Model 118飞行汽车在加利福尼亚州测试之后得到了证实,在计划一个小时的飞行中,由于燃料不足导致了紧急降落,车辆和机翼均损毁严重,索性无人员伤亡;1966年,Aero-Car 利用折叠翼技术,打造了第一架确保能够陆空两用的汽车,原型车可以在陆地达到96km/h的速度,起飞之后速度可以达到177km/h。
图表1:1841年发明的单翼机飞行汽车图表2:康维尔公司Model 118飞行汽车图表3:波音公司空中通勤车发展至今,目前较为有市场竞争力并且已经投入生产飞行汽车主要有:斯洛伐克的AeroMobil公司,旗下产品The Aeromobil 3.0此前被誉为“最接近实现可能的的飞行汽车原型”;美国的Terrafugia公司,旗下飞行汽车Transition被誉为是“世界上第一款真正意义上的飞行汽车”;荷兰的PAL-V公司,其产品Liberty的原型机在2012年首飞成功。
图表4:三种飞行汽车的主要参数性能对比飞行汽车渐行渐近,多国“飞车”展翅翱翔斯洛伐克后折叠翼飞行汽车——Aeromobil斯洛伐克的Aeromobil公司从1990年至今始终专注研发飞行汽车。
经过了20多年的发展,Aeromobil 2.5的原型机于2013年成功首飞;2014年,公司以陆地上尽可能与汽车相似,包括体积、速度以及油耗等以实现空陆转换的设计概念设计了The Aeromobil 3.0,并被广泛评价为是最有可能实现的飞行汽车,在维也纳亮相并于同年 10月试飞;2017年AeroMobil官方推出The Aeromobil 4.0,并计划于2017年底开始接收飞行汽车的预订,正式上市将在2018年。
图表5:The AeroMobil 3.0设计构想图表6:The AeroMobil 3.0陆地状态图表7:The AeroMobil 3.0飞行状态图表8:The AeroMobil 3.0试飞图表9:The AeroMobil 3.0试飞目前Aeromobil飞行汽车4.0版本已然能够出色地完成汽车与飞机的双重任务。
使用普通汽油燃料而非航空燃油,可在普通加油站实现燃补给,左右机翼分别向前展开,尾撑后部螺旋桨提供动力,可在3mins内从汽车形态变成飞机形态。
在陆地形态时宽2.24米,AeroMobil可停入正常停车位;而变为飞机形态时,机翼可达8.32米。
在处于汽车模式时,时速可达161公里,进入飞行模式时,汽车双翼打开,时速可达200公里。
满燃料状态下,在汽车模式和飞行模式下可分别行驶875公里和700公里。
图表10:AeroMobil 展出日记图表11:The AeroMobil 4.0图表12:The AeroMobil 4.0动力装置图表13:The AeroMobil 三模式悬挂装置图表14:The AeroMobil 4.0复合材料车轮荷兰PAL-V旋翼式“飞行摩托”——Liberty荷兰PAL-V公司设计和制造的三轮飞行汽车Liberty是一款单座混合动力汽车和旋翼机结合的个人飞行汽车。
Liberty于2012年首飞成功,并于2014年5月开始投入生产,现已开始接受预定,首批飞行汽车预计能于2018年底交付。
Liberty飞行汽车主要由轻质材料碳纤维、钛及铝打造,是一款拥有双动力推进系统、三车轮、两旋翼桨叶的飞行汽车,并且配备一款以汽油(生物柴油或生物乙醇亦可使用)为燃料的转子发动机,该发动机具有良好的燃油经济性。
PAL-V具备卓越的陆空运行能力。
空陆转换大约需要10mins,在地面行驶时,其旋翼、螺旋桨及尾翼等气动部件均处于折叠收起状态,转变为一辆三轮汽车并且可以通过倾斜车身以实现格外优异的转弯性能,此自动倾斜控制专利技术是PAL-V公司的专利技术,能够像两轮摩托车一样自动调整倾斜角度从而实现灵活转向,能够实现最小的转弯半径;Liberty外观看起来尽管非常类似一架直升飞机,但其驱动力主要来自于座舱后部的螺旋桨,因此Liberty依旧需要一条长约165m,Liberty搭载了一台230马力的四缸汽油发动机,百公里加速时间也只需8秒钟,最高时速180公里/时,油箱容积122升,可以支持350公里的飞行或1200公里的陆地行驶。
据悉,Liberty飞行汽车现已经通过了美国、欧洲的道路以及航空相关安全管理规定。
此外,PAL-V为了瞄准潜在客户,早已在2016年美国罗斯福市设立了北美第一个飞行驾校,希望未来能够驾驶飞行汽车的普通人能够在此飞行驾校之中先考取普通机动车驾照,再考取飞行员执照。
图表15:荷兰PAL-V公司飞行汽车Liberty图表16:荷兰PAL-V公司飞行汽车Liberty图表17:Liberty路面行驶状态倾斜车身实现小半径转弯图表18:Liberty飞行状态图表19:Liberty试飞起飞瞬间图表20:Liberty试飞过程美国两侧折叠翼飞行汽车——TransitionTerrafugia公司的初始成员是5个美国麻省理工大学的毕业生,成立于2006年,其飞行汽车产品 Transition 被誉为“世界上第一款真正意义上的飞行汽车”,美国国家公路交通安全管理局(National Highway Traffic Safety Administration)已经宣布免税准许其行驶在美国的道路上。
Transition使用标准无铅汽油,机身材料以碳纤维为主,同时使用铝合金等材料,其主要目的是车辆的减重,Transition在足够大的平坦场地30s内可展开翼,启动后部螺旋桨后即可起飞,可快速实现空陆转换。
2010年3月,此款飞车在纽约首次起飞。
它的机翼折叠展开,便可变身作为飞行使用,Transition 翼展可达8米,可以连续飞行800km,但它也需要滑行才能起飞。
在公路上的时速可达113km,飞行时速则可达185km。
Transition的油箱可容纳23加仑汽车燃料,在空中每小时耗油5加仑。
在地面上行驶时,每加仑燃料可支持Transition 行驶56km。
在公路上时,Transition使用后轮驱动,配备有2个乘客安全气囊以及全车降落伞。
Transition使用标准飞行操纵系统和标准汽车驾驶系统,且两套系统完全独立,驾驶舱的双荧屏显示器通过模式转换按钮自动切换为飞行显示器或汽车仪表。
并且Transition配备有全球卫星定位系统等高端科技设备,具备一定的驾驶安全性。
图表21:Transition陆地行驶状态图表22:Transition空陆转换过程核心设计:总体布局、气动、结构、动力、操纵飞行汽车是汽车和飞机的结合体而又有别于这两种交通工具,是一种新型的交通工具。
因此不能仅仅依赖于传统的飞机设计或者汽车设计方法。
图表23:飞行汽车主要技术路径核心之一:总体布局设计根据传统成熟的飞机的总体设计思路可以大致演化出飞行汽车的总体布局设计思路。
从飞机的角度讲,飞行汽车属于低速轻型飞机,因此多采用正常式气动布局,机翼平面多为平直翼。