火试金法测定金属矿石、精矿及相应物料中银量的校正方法 全流程回收率法(预审稿) 编制说明

火试金法测定金属矿石、精矿及相应物料中银量的校正方法  全流程回收率法(预审稿)  编制说明
火试金法测定金属矿石、精矿及相应物料中银量的校正方法  全流程回收率法(预审稿)  编制说明

标准制修订编制说明

文件名称:《火试金法测定金属矿石、精矿及相应物料中银量的校正方法全流程回收率

法》

文件编号:YS/T ××××—202×

文件类别:推荐性行业标准

制定或修订:制定

计划号:2018-2084T-YS

起止时间:2018年9月1日—

牵头起草单位:长春黄金研究院有限公司

《火试金法测定金属矿石、精矿及相应物料中

银量的校正方法全流程回收率法》编制说明

一、工作简况

1.1 任务来源及分工

2018年11月2日,工业和信息化部办公厅下达2018年第四批行业标准制修订计划(工信厅科〔2018〕73号),立项《火试金法测定金属矿石、精矿及相应物料中银量的校正方法全流程回收率法》推荐性行业标准项目,计划号2018-2084T-YS,技术归口单位全国黄金标准化技术委员会,牵头起草单位为长春黄金研究院有限公司。

全国黄金标准化技术委员会组织长春黄金研究院有限公司牵头成立了《火试金法测定金属矿石、精矿及相应物料中银量的校正方法全流程回收率法》行业标准项目起草工作组,工作组对项目工作进行计划安排。起草单位、主要起草人及其工作分工见表1:

表1 任务安排

1.2 标准修订的目的及意义

火试金法不仅是古老的富集银的手段而且也是银分析的重要手段。国内外的地质、矿山、金银冶炼厂都将它作为最可靠的分析方法广泛应用。我国的金精矿、银精矿、铜精矿及合质金等银量的测定,也多采用火试金法作为国家标准方法,火试金重量法测定银量也是国际上较为通用的方法。为解决火试金分析过程中,银的灰吹损失补正问题,本项目中采用的全流程回收率法的银补正方式,科学合理、可操作性强,为火试金方法银补正问题提供了又一种科学合理的解决方案,有必要作为行业标准应用于本行业,为今后火试金法测定银标准的制修订提供参考。

1.3 工作过程

(1)起草前期准备阶段(2018年9月—2019年4月)

2018年9月,长春黄金研究院有限公司成立《火试金法测定金属矿石、精矿及相应物料中银量的校正方法全流程回收率法》项目工作组。2018年10月至2019年4月,工作组根据标准编制计划要求,展开国内外相关标准和文献资料的查阅工作,并对涉及火试金方法分析金属矿石、精矿及相应物料中银量的校正方法进行调研,经过对收集资料和调研结果的研究分析,初步确定标准方法的技术路线。

(2)起草阶段(2019年5月—2020年4月)

工作组经过调研,认真总结和整理各检测公司以及黄金生产单位的建议和意见,根据所汇总的建议和意见对现有实验方案在原来的基础上作出了适当的修改、调整及补充,最终形成了更为完善的实验方案。

2019年5月至11月,工作组按照标准编制计划,参考标准制定的要求,根据调研结果及实验方案,制备了实验样品,进行了方法的条件实验、精密度及准确度实验等大量的实验研究,确定最佳实验条件,完成实验室内方法验证试验及单位内部技术审核。

2019年12月,项目工作组对前期实验结果进一步整理、反复检查及修改完成了《火试金法测定金属矿石、精矿及相应物料中银量的校正方法全流程回收率法》实验报告。

2020年1月,项目工作组将一验报告(包含了所有的条件试验、精密度试验和准确度试验)及实验说明、实验样品发送给第一验证验证单位,2020年2月收回第一验证报告。项目工作组根据第一验证单位的建议经实验及讨论后,形成二验文本,并于2020年3月将二验文本、验证说明、实验样品发送至所有第二验证单位。

2020年3月至4月,承担《火试金法测定金属矿石、精矿及相应物料中银量的校正方法全流程回收率法》验证任务的各验证单位陆续向长春黄金研究院有限公司返回了相应的验证数据,通过对所有验证数据的初步核查,数据量及数据结果本身与预期期望基本相符。部分起草单位在提交验证数据时,在数据后面附上在验证过程中发现的新问题、解决办法及其他许多中肯的建议和意见,项目工作组对此非常重视,立刻组织人员对其进行了整理和讨论。对于各起草单位提出的问题、建议和意见,项目工作组基本给予采纳。

验证数据来自10家起草单位,一验单位提供了所有条件实验、精密度实验及准确度实验的全部结果,二验单位提供了精密度及准确度的实验结果。数据统计结果经反复检验无误后,由项目工作组统一对《火试金法测定金属矿石、精矿及相应物料中银量的校正方法全流程回收率法》的数据进行了整理及汇总。

二、标准编制的主要原则和内容

2.1 编制原则

按照GB/T 1.1—2020和GB/T 20001.4—2015的规定开展本标准的制定工作。

本标准制定过程遵循的基本原则:

一致性原则。制定行业标准应当贯彻国家的有关方针、政策、法律、法规,标准条款及内容应与现行相关法律法规、引用标准准则之规定保持一致,不可与之抵触;其格式、语言形式等应规范,不能标新立异。

科学适用原则。行业标准的制定过程中一切结论的获得均应有充分的科学论据给予支持,采用的方法、使用设备等应与当前社会发展相协调,制定出的标准应有利于开发和利用国家资源、推广科学技术成果;有利于促进对外经济技术合作与对外贸易的发展;有利于保障人民的安全、身体健康,保护生态环境;有利于维护消费者的利益等,总之应做到“技术先进、经济合理、安全可靠、协调配

套”的科学理念。

2.2 主要内容

《火试金法测定金属矿石、精矿及相应物料中银量的校正方法全流程回收率法》行业标准各部分相关条款的主要技术内容作如下说明:

(1)试样

根据方法的适用范围,选择了银矿石、金精矿及铅阳极泥3个类别的样品进行实验。

(2)测定范围

本文件适用于金属矿石、精矿及相应物料的银修正比率的测定。

(3)条件实验

本标准方法主要考察:金银比例、杂质元素(不含铂钯)、适用范围、纯银回收率实验,通过实验确定样品中金银比例、杂质元素及银量对修正比率的影响。

1)金银比例的考察

称量Au:Ag质量比为1:1、1:3、1:5、1:10、1:20、1:100的纯金属样品各四个,其金和银的总质量为100 mg,其他试剂按火试金标准方法添加,按照实验步骤进行实验。根据结果判定样品中的含金上限。实验后数据见表2。

表2 不同金银比例实验结果

结论:当Ag:Au比例大于3时,银的损失无显著变化,金对银的保护效果可忽略。当样品中Ag:Au比例不足3时,应称量与样品相同金银比例及质量的金银合金,以合金中银的回收率校准样品测定结果。

2)杂质元素的考察(不含铂钯等贵金属)

样品中杂质元素对银的测定存在干扰的情况,可能会影响测量结果的准确度,因此,考察样品中可能存在影响的元素至关重要。对样品中的主要杂质元素铜(Cu)、镍(Ni)、硒(Se)、碲(Te)、锑(Sb)、铋(Bi)、锌(Zn)、铁(Fe)元素进行了考察,称样纯银量50 mg,杂质元素分别按不同比例加入到纯银中,分别用镁砂及骨灰灰皿,按照实验步骤进行实验。实验结果见表3、表4。

表3 镁砂灰皿灰吹后各元素残留量

表4 骨灰灰皿灰吹后各元素残留量

结论:杂质元素的混标经火试金方法熔融、灰吹后,银粒中铜、铋、碲残留较高,会对银的检测值造成影响。对比镁砂灰皿和骨灰灰皿灰吹结果可发现,骨灰灰皿的除杂效果较好,但也会造成银的大量损失,且结果波动较大,经灰皿回收发现,损失的银主要被灰皿吸收。

对铜、铋、碲做梯度实验,其结果见表5、表6。

表5 镁砂灰皿单元素梯度实验

表6 骨灰灰皿单元素梯度实验

结论:火试金法对铋的除杂效果较差,含铋样品不适合用本方法进行修正。样品中铜含量在4 g以内、碲在0.1 g以内时,对银的测定影响可以忽略,该方法适用。

3)纯银回收率的考察

因为随着银质量的减小,其灰吹损失率逐渐增大,为确保修正值得准确性,称取10 mg、20 mg、30 mg、40 mg、50 mg、60 mg、80 mg、100 mg、120 mg、140 mg、170 mg、200 mg纯银,用适量铅箔包裹,在骨灰灰皿和镁砂灰皿中分别进行灰吹实验。灰吹回收率结果见表7。

表7 不同质量纯银灰吹回收率

结论:银粒越大,其相对损失值越小。因此,在对样品中银进行修正时,最好用相同质量的纯银进行修正;若品位未知,应尽量选用与之接近的纯银进行修正。

(4)分析结果的计算及表示

分析结果按标准正文所列的公式计算。

(5)精密度

本标准在含矿石、精矿和相应物料中各选取一类物质进行实验,对样品进行设计见表8。

表8 样品类型

视1#样品品位已知,2#、3#样品品位未知,对2#样品同批纯银称取本方法下限(即10 mg、90 mg),对3#样品同批纯银称取本方法上限(即40 mg、120 mg)。交叉试验后,计算本标准银比率的精密度,实验结果见表9至表11。

表9 矿石精密度实验结果

表10 精矿精密度实验结果

表11 阳极泥精密度实验结果

结论:经本方法修正后,各样品的检测值精密度良好。

(6)准确度

本标准起草的实验中,采用了方法比对和加标回收进行了准确度实验,实验结果令人满意。

1)加标回收率实验

对所有样品进行重复4次加标回收实验,通过经过本方法校正后的纯银回收率结果考察方法的准确度情况,实验结果见表12。

表12 加标回收率实验结果

结论:从表中可以看出,经本方法修正后的结果加标回收率在98.686%~100.80%,准确可靠。

2)方法比对试验

通过经本标准修正过的银结果与现行标准方法GB/T 20899.2—2019、GB/T 7739.1—2019、YS/T 775.5—2011测定值的对比,证明其准确度。

GB/T 20899.2—2019《金矿石化学分析方法第2部分:银量的测定火焰原子吸收光谱法》:试料经盐酸、硝酸、高氯酸、氢氟酸分解,在稀盐酸介质中,于火焰原子吸收光谱仪波长328.1 nm处,以空气—乙炔火焰测量银的吸光度值,按标准曲线法计算银量。

GB/T 7739.1—2019《金精矿化学分析方法第1部分:金量和银量的测定火试金重量法》:试料经配料、熔融,获得适当质量的含有贵金属的铅扣与易碎性的熔渣。为了回收渣中残留的金、银,再次对熔渣进行试金。通过灰吹使金、银与铅扣分离,得到金银合粒,合粒经硝酸分金后,用重量法测定金量和银量。

YS/T 775.5—2011《铅阳极泥化学分析方法第5部分:金量和银量的测定火试金重量法》:试料与适量的熔剂熔融,以铅捕集金、银形成铅扣。其他杂质与熔剂生成易熔性熔渣,利用铅与熔渣的密度不同,使铅扣与熔渣分离,将铅扣灰吹,得到金银合粒,用称量法测定金、银合量。利用金不溶于硝酸的性质,使金、银分离,用称量法测定金量,合量减去金量即得银量。

实验结果见表13。

表13 方法比对实验结果

结论:从表中数据可以看出,经本方法修正后的结果与标准方法测定值比对良好,准确可靠。

三、主要试验(或验证)情况分析、综述报告,技术经济论证,预期的经济效果

我单位邀请了9家单位对标准进行验证,1家单位提供了一验数据,各条件所得结论和我单位一致。9家单位依据提供的标准分析方法草案及验证说明,对上述实验样品分别进行4次独立测定,并按照本标准进行校正提供了验证数据。实验样品全部以编码的形式分发到参加精密度协作试验的单位。我单位依据相关标准规范要求,将检测数据汇总、统计分析。原始数据列于表14至表16中。

表14 矿石样品全流程回收率法校正后原始数据表

表15 精矿样品全流程回收率法校正后原始数据表

表16 阳极泥样品全流程回收率法校正后原始数据表

由表14至表16可以看出,所得各类型、各含量的银测试结果准确,精密度良好,证明该方法适用于金矿石、精矿及相关冶金物料中银含量的校正。

四、验证单位意见处理情况

表17 意见汇总表

五、标准涉及专利说明

本文件不涉及专利。

六、产业化情况、推广应用论证和预期达到的经济效果等情况

通过本次标准文件的制定,满足企业对相关标准的需求,有利于企业优化选矿工艺控制参数,精准控制选矿药剂消耗、减少银元素在金矿石选冶富集过程的干扰、提高各有价元素(包括银)的综合回收率,为国家矿产资源领域的综合回收利用和可持续健康发展提供更强有力的技术支撑。

七、采用国际标准和国外先进标准的情况,与国际、国内同类标准水平的对比情况

本文件在制定过程中做了大量的实验,验证了方法的准确性和可靠性,与国际、国内同类标准对比,总体技术水平属于国内领先水平。

八、与有关的现行法律、法规和强制性国家标准的关系

本文件与相关法律、法规、规章及相关标准协调一致,没有冲突。

九、重大分歧意见的处理经过和依据

本文件在制定过程中未出现重大分歧意见。

十、国家标准作为强制性国家标准或推荐性国家标准的建议

建议《火试金法测定金属矿石、精矿及相应物料中银量的校正方法全流程回收率法》作为推荐性行业标准发布实施。

十一、贯彻标准的要求和措施建议

建议本标准在批准发布6个月后实施。

本文件发布后,应向黄金行业生产单位进行宣贯,向所有从事黄金检测工作的相关人员推荐执行本文件。

十二、废止现行有关标准的建议

本标准为新制定标准,无现行有关标准。

火试金法测定样品中的金操作规程

火试金法测定样品中的金操作规程 1 方法原理 称取一定量的被测试的合质金材料,向试料中定量加入银,包于铅箔中在高温熔融状态下进行灰吹,铅及贱金属被氧化与金银分离,金银合粒以硝酸分金后称重,用随同测定的纯金标样校正后计算金量。 2 试剂和材料 1、硝酸(ρ=1.42g/ml),优级纯 2、硝酸(1+1),优级纯 3、硝酸(2+1),优级纯 4、铅箔:纯铅(99.99%),加工成边长约51mm,厚度约0.1mm的正方形薄片。 5、纯银(99.99%) 6、纯金标样:金含量为99.95%~99.99%的片状电解精炼纯金。 3 仪器、器皿 1、箱式高温电炉(附温度控制装置) 2、微量分析天平:最大称量20g,感量0.01g。 3、碾片机:小型,压延厚度可达0.1mm。 4、灰皿 ①骨灰皿:用动物骨灰制成,牛羊骨灰最佳。将动物骨骼烧成骨灰后碾成粒度0.175mm以下的骨灰粉,加10%~15%的水在灰皿机上压制成灰皿,自然干燥后使用。骨灰皿尺寸:直径30mm,高度23mm,凹面深度10mm。 ②氧化镁灰皿:用煅烧镁砂粉(粒度0.147mm)与525号硅酸盐水泥按85:15混合加入少量水压制成型,风干一个月后使用。氧化镁灰皿尺寸:直径40mm,高度25mm,内径30mm,凹面深度15mm。 5、分金篮:用厚度为0.5mm~1.0mm不锈钢片或铂片制成。 4分析步骤 1、金、银含量的预测定 ⑴称取试料0.5g两份,精确到0.00001g,其中一份包铅箔,另一份根据估计的含金量加2~2.5倍的纯银,然后包铅箔。将两份样品于920±10℃(骨

灰皿)或960±10℃(氧化镁灰皿)在高温电炉内同时灰吹。 ⑵由未加纯银的样品灰吹后的金银合粒重量计算出样品的金银合量预测值。 ⑶将加纯银的样品灰吹后的金银合粒用手锤轻敲两侧,使合粒呈扁圆形,刷去底部的附着物,在高温电炉内于800℃左右退火5min。取出冷却后碾成厚度为0.15±0.02mm的薄片,在高温电炉内于750℃退火3min,取出后卷成空心卷。 ⑷将合金卷放入已加热至90℃的硝酸(1+1)中分金30min,将硝酸溶液倾泻,再加入经预热的硝酸(2+1),继续加热分金30min。 ⑸倒去硝酸溶液,用热水洗5次,将卷金(或已成碎金)移入瓷坩埚中,烘干后在高温电炉内于800℃灼烧5min,取出冷却后称量,计算样品的金含量预测值。根据样品的合金含量⑵和金含量预测值⑸计算样品的银含量预测值。 2、试料 ⑴待测试料 ①根据金、银含量预测值按表1称取试料两份分别放入铅箔中,精确到 0.00001g。 ②每份试料均准确配入纯银,使其金银比例为1:2.5,按表1给出的数字配入铅箔包成球形。 ⑵标准试料 按表1给出的试料含金量称取纯金标样4份,精确到0.00001g,以下操作同(四.2.(1).②)条。取4份标准试料测定结果的平均值作为测得标准试料金卷质量。 3、测定方法、步骤 ⑴灰吹 ①将灰皿在高温电炉内于950℃左右预热20min,然后将待测试料与标准试料以合理顺序放入灰皿中,使每个待测试料都能靠近标准试料,关闭炉门。 ②待试料全部熔化后,稍开炉门通风,在920±10℃(骨灰皿)或960±10℃(氧化镁灰皿)进行灰吹。当熔铢表面出现彩色薄膜时,关闭炉门。保持温度2min后关闭电源,当炉温降至720℃时取出灰皿冷却。 ⑵退火与碾片 ①用镊子将金银合离从灰皿中取出,用手锤轻敲两侧,使之呈扁圆形,刷去

金属材料金相热处理检验方法标准汇编

金属材料金相热处理检验方法标准汇编 一、金属材料综合检验方法 GB/T4677.6—1984金属和氧化覆盖层厚度测试方法截面金相法 GB/T6394—2002金属平均晶粒度测定方法 GB/T6462—2005金属和氧化物覆盖层厚度测量显微镜法 GB/T13298—1991金属显微组织检验方法 GB15735—2004金属热处理生产过程安全卫生要求 GB/T15749一1995定量金相手工测定方法 GB/T18876.1—2002应用自动图像分析测定钢和其他金属中金相组织、夹杂物含量和级别的标准试验方法第1部分:钢和其他金属中夹杂物或第二相组织含量的图像分析与体视学测定 二、钢铁材料检验方法 GB/T224一1987钢的脱碳层深度测定法 GB/T225—1988钢的淬透性末端淬火试验方法 GB/T226—1991钢的低倍组织及缺陷酸蚀检验法 GB/T227—1991工具钢淬透性试验方法 GB/T1814—1979钢材断口检验法 GB/T1979—2001结构钢低倍组织缺陷评级图 GB/T4236一1984钢的硫印检验方法 GB/T4335—1984低碳钢冷轧薄板铁素体晶粒度测定法 GB/T4462—1984高速工具钢大块碳化物评级图 GB/T6401—1986铁素体奥氏体型双相不锈钢中а-相面积含量金相测定法 GB/T7216—1987灰铸铁金相 GB/T9441—1988球墨铸铁金相检验 GB/T9451—2005钢件薄表面总硬化层深度或有效硬化层深度的测定 GB/T10561—2005钢中非金属夹杂物含量的测定标准评级图显微检验法 GB/T11354—2005钢铁零件渗氮层深度测定和金相组织检验 GB/T13299—1991钢的显微组织评定方法 GB/T13302—1991钢中石墨碳显微评定方法 GB/T13305—1991奥氏体不锈钢中а-相面积含量金相测定法 GB/T13320—1991钢质模锻件金相组织评级图及评定方法 GB/T13925—1992铸造高锰钢金相 GB/T14979—1994钢的共晶碳化物不均匀度评定法 GB/T15711—1995钢材塔形发纹酸浸检验方法 GB/T16923—1997钢件的正火与退火 GB/T16924—1997钢件的淬火与回火 GB/T18683—2002钢铁件激光表面淬火 YB/T130—1997钢的等温转变曲线图的测定 YB/T153一1999优质碳素结构钢和合金结构钢连铸方坯低倍组织缺陷评级图 YB/T169一2000高碳钢盘条索氏体含量金相检测方法 YB/T4002—1991连铸钢方坯低倍组织缺陷评级图 YB/T4003—1997连铸钢板坯低倍组织缺陷评级图 YB/T4052—1991高镍铬无限冷硬离心铸铁轧辊金相检验 YB/T5127—1993钢的临界点测定方法(膨胀法) YB/T5128—1993钢的连续冷却转变曲线图的测定方法(膨胀法)

金银火试金法

金银火试金法Newly compiled on November 23, 2020

金银的火试金方法 火试金方法(The fire assay method)是将冶金学原理和技术运用到分析化学中的一种经典的分析方法,是分析化学中最古老的方法之一。 火试金方法是用加熔剂熔炼矿石和冶金产品的办法来定量测定其中贵金属的含量。该方法具有取样代表性好、方法适用性广、富集效果好等优点,是金银及贵金属化学分析的重要手段。 一、火试金法的特点(Features of The Fire Assay Method) 火法试金不仅是古老的富集金银的手段,而且是金银分析的重要手段。国内外的地质、矿山、金银冶炼厂都将它作为最可靠的分析方法广泛应用于生产。一些国家已将该方法定为标准方法,我国在金精矿、铜精矿及首饰金、合质金中金的测定上,也定为国家标准方法。随着科学技术的发展,分析金银的新技术越来越多,分析仪器也愈来愈先进,火试金法与其它方法比较,其操作程序较长并需要一定技巧,有许多分析工作者试图使用其它分析方法来代替火试金法。然而,火试金法是不可替代的,对于高含量金原料或纯金中金成份的测定,其精确度和准确度为其它直接测定法所不及,在有关金银含量的仲裁分析中,火试金分析可以给出令争议各方信服的结果。这是由于火试金法有许多其它分析手段所不具备的独特的优点: (一)取样代表性好。金银常以<g/t量级不均匀地存在于样品中,火试金法取样量大, 一般取20~40g,甚至可取多至100g或100g以上的样品,因此,样品代表性好,可把取样误差减小到最低限度。 (二)适应性广。几乎能适应所有的样品,从矿石、金精矿到合质金,火试金法都能准确地进行金银的测定,包括那些目前用湿法分析还解决不了的辉锑矿在内。对于纯

火试金法测定金属矿石、精矿及相应物料中银量的校正方法 熔渣和灰皿回收法(预审稿) 编制说明

标准制修订编制说明 文件名称:《火试金法测定金属矿石、精矿及相应物料中银量的校正方法熔渣和灰皿回 收法》 文件编号:YS/T ××××—202× 文件类别:推荐性行业标准 制定或修订:制定 计划号:2018-2085T-YS 起止时间:2018年9月1日— 牵头起草单位:长春黄金研究院有限公司

《火试金法测定金属矿石、精矿及相应物料中 银量的校正方法熔渣和灰皿回收法》编制说明 一、工作简况 1.1 任务来源及分工 2018年11月2日,工业和信息化部办公厅下达2018年第四批行业标准制修订计划,立项《火试金法测定金属矿石、精矿及相应物料中银量的校正方法熔渣和灰皿回收法》推荐性行业标准项目,计划号2018-2085T-YS。技术归口单位全国黄金标准化技术委员会,起草单位为长春黄金研究院有限公司。 全国黄金标准化技术委员会组织长春黄金研究院有限公司牵头成立了《火试金法测定金属矿石、精矿及相应物料中银量的校正方法熔渣和灰皿回收法》行业标准项目起草工作组,工作组对项目工作进行计划安排。起草单位、主要起草人及其工作分工见表1。 表1 任务安排 1.2 标准修订的目的及意义

火试金法不仅是古老的富集银的手段而且也是银分析的重要手段。国内外的地质、矿山、金银冶炼厂都将它作为最可靠的分析方法广泛应用。我国的金精矿、银精矿、铜精矿及合质金等银量的测定,也多采用火试金法作为国家标准方法,火试金重量法测定银量也是国际上较为通用的方法。为解决火试金分析过程中,银的灰吹损失补正问题,本项目中采用的熔渣和灰皿回收法的银补正方式,科学合理、可操作性强,为火试金方法银补正问题提供了又一种科学合理的解决方案,有必要作为行业标准应用于本行业,为今后火试金法测定银标准的制修订提供参考。 1.3 工作过程 (1)起草前期准备阶段(2018年9月—2019年4月) 2018年9月,长春黄金研究院有限公司成立《火试金法测定金属矿石、精矿及相应物料中银量的校正方法熔渣和灰皿回收法》项目工作组。2018年10月至2019年4月,工作组根据标准编制计划要求,展开国内外相关标准和文献资料的查阅工作,并对涉及火试金方法分析金属矿石、精矿及相应物料中银量的校正方法进行调研,经过对收集资料和调研结果的研究分析,初步确定标准方法的技术路线。 (2)起草阶段(2019年5月—2020年4月) 工作组经过调研,认真总结和整理各检测公司以及黄金生产单位的建议和意见,根据所汇总的建议和意见对现有实验方案在原来的基础上作出了适当的修改、调整及补充,最终形成了更为完善的实验方案。 2019年5月至11月,项目工作组按照标准编制计划,参考标准制定的要求,根据调研结果及实验方案,制备了实验样品,进行了方法的条件实验、精密度及准确度实验等大量的实验研究,确定最佳实验条件,完成实验室内方法验证试验及单位内部技术审核。 2019年12月,项目工作组对前期实验结果进一步整理、反复检查及修改完成了《火试金法测定金属矿石、精矿及相应物料中银量的校正方法熔渣和灰皿回收法》实验报告,一验报告包含了所有的条件试验、精密度试验和准确度试验,二验仅包含精密度试验。 2020年1月,项目工作组将一验报告(包含了所有的条件试验、精密度试

中国古代的火试金法

万方数据

万方数据

万方数据

万方数据

中国古代的火试金法 作者:杨丙雨, 冯玉怀, YANG Bingyu, FENG Yuhuan 作者单位:杨丙雨,YANG Bingyu(长安大学,陕西,西安,710061), 冯玉怀,FENG Yuhuan(西北有色地质研究院,测试中心,陕西,西安,710054) 刊名: 贵金属 英文刊名:PRECIOUS METALS 年,卷(期):2009,30(1) 被引用次数:4次 参考文献(8条) 1.丘光明我国古代权衡器简论 1984(10) 2.朱晟我国古代关于铅的化学知识 1983(04) 3.<化学发展简史>编写组化学发展简史 1980 4.夏湘蓉;李仲均;王根元中国古代矿业开发史 1980 5.一冰唐代冶银初探 1972(06) 6.赵匡华狐刚子及其对中国古代化学的卓越贡献 1984(03) 7.国家金银及制品质量监督检验中心GB/T 20899.2-2007.金矿石化学分析方法第2部分:银量的测定 2007 8.国家金银及制品质量监督检验中心GB/T 20899.1-2007.金矿石化学分析方法第1部分:金量的测定 2007 引证文献(4条) 1.冯玉怀.杨丙雨.马亚丽2009年中国银分析测定概况[期刊论文]-黄金 2011(1) 2.杨丙雨.马亚丽近代火试金分析在中国的传播[期刊论文]-贵金属 2010(1) 3.张凤霞.程佑法.张志刚.燕菲二次资源贵金属回收及检测方法进展[期刊论文]-黄金科学技术 2010(4) 4.郭跃安.杨丙雨.赵玉娥2009年中国金分析测定的进展[期刊论文]-黄金 2010(12) 本文链接:https://www.360docs.net/doc/a93059568.html,/Periodical_gjs200901012.aspx

火试金题目

一、选择题: 1. 二氧化硅(SiO 2 )即石英粉,是一种很强的(A)。 A.酸性溶剂 B.碱性溶剂 C.中性溶剂 D.不确定 2. 硼砂(Na 2B 4 O 7 ·10H 2 O)是一种活泼而易熔的(A),它在熔炼中在350℃时开始失去其中的 结晶水,并迅速膨胀。 A.酸性溶剂 B.碱性溶剂 C.中性溶剂 D.不确定 3. 碳酸钠(Na 2CO 3 )是一种便宜的,常用的(B),可与酸性物质化合而生成盐类。 A.酸性溶剂 B.碱性溶剂 C.中性溶剂 D.不确定 4. 火试金法应用氧化铅的目的是(C),加入的氧化铅定量地被还原为铅。 A.作为溶剂 B.覆盖剂 C. 捕集金银 D.指示剂 5. 面粉(C 6H 10 O 5 )是试金分析中常用的(B),它受热后失去水分,生成颗粒细微的无定形碳, 能均匀地分布在坩埚物料中。 A.指示剂 B.还原剂 C.覆盖剂 D.氧化剂 6. 在高温具有萃取贵金属能力的物质,称为(D),它们一般是金属、合金或者是锍。 A.指示剂 B.还原剂 C.覆盖剂 D.捕集剂 7. 熔渣的硅酸度应控制在一定范围内,如果硅酸度过高其熔渣的流动性差,会产生半熔融状态,矿渣中易残留铅粒,使分析结果(A); A.偏低 B.偏高 C.没有变化 D.不确定 8. 一般对于熔渣的硅酸度面粉法要求硅酸度为(D),硝石法要求在(B)。 A.0.0~0.5 B.0.5~1.0 C.1.0~1.5 D.1.5~2.0 9. 硅酸度大于1的熔渣为(C)。 A.碱性熔渣 B.中性熔渣 C.酸性熔渣 D.不确定 10. 硅酸度小于1的熔渣为(A)。 A.碱性熔渣 B.中性熔渣 C.酸性熔渣 D.不确定 11.(B)是指硅酸度等于1的熔渣。 A.碱性熔渣 B.中性熔渣 C.酸性熔渣 D.不确定 12. 配料前须测定试样的还原力,确定硝酸钾的加入量,硝石加入量最好不超过(D)g。 A.20 B.30 C.35 D.25 13. 配料后物料总体积不超过坩埚容积的(C),过满熔炼时易溢出。

金属材料检测检验检测标准

金属材料检测检验检测标准 金属材料检测范围涉及对黑色金属、有色金属、合金、铸件、机械设备及零部件等的机械性能测试、化学成分分析、金相分析、精密尺寸测量、无损探伤、耐腐蚀试验和环境模拟测试等。青岛科标检测中心出具权威资质认证国家认可的检测报告。 检测项目: 常规元素分析 品质(成份分析)、硅(Si)、锰(Mn)、磷(P)、碳(C)、硫(S)、镍(Ni)、铬(Cr)、铜(Cu)、镁(Mg)、钙(Ca)、铁(Fe)、钛(Ti)、锌(Zn)、铅(Pb)、锑(Sb)、镉(Cd)、铋(Bi)、砷(As)、钠(Na)、钾(K)、铝(Al)、牌号测定等 贵金属元素分析 银(Ag)、金(Au)、钯(Pd)、铂(Pt)、铑(Rh)、钌(Ru)、铱(Ir)、锇(Os) 物理性能:磁性能、电性能、热性能、抗氧化性能、耐磨、盐雾、腐蚀、密度、热膨胀系数、弹性模量、硬度; 化学性能:大气腐蚀、晶间腐蚀、应力腐蚀、点蚀、腐蚀疲劳、人造气氛腐蚀; 力学性能:拉伸、弯曲、屈服、疲劳、扭转、应力、应力松弛、冲击、磨损、硬度、耐液压、拉伸蠕变、扩口、压扁、压缩、剪切强度等; 工艺性能:细丝拉伸、断口检验、反复弯曲、双向扭转、液压试验、扩口、弯曲、卷边、压扁、环扩张、环拉伸、显微组织、金相分析; 检测产品: 钢铁材料:结构钢、铜、铝、铁、不锈钢、耐热钢、高温合金、精密合金等 金属及其合金:轻金属、重金属、贵金属、半金属、稀有金属和稀土金属等; 特种金属材料:功能合金、金属基复合材料等; 金属材料制品:生铁、铝管、铁板、铁管、钢锭、钢坯、型材、线材、金属制品、有色金属及其制品等。 检测标准: 978-7-5066-5282-7 无机非金属材料检测标准手册胶凝材料卷 CB 1369-2002 舰船用金属材料进货检验及验收规则 CB 1370-2002 舰船用非金属材料进货检验及验收规则 CB/Z 264-1998 金属材料低周疲劳表面裂纹扩展速率试验方法

火(铅)试金重量法(填空题)

火(铅)试金重量法(填空题) 1.火试金分析实际上是以坩埚或者灰皿为容器的一种试金方法,种类繁多,操作程序不一,有铅试金、铋试金、锡试金等。 2.火法试金过程中同时起了分解样品和富集贵金属的两个作用。 3. 火试金法中常用的器皿有熔炼坩埚和灰皿。 4. 在熔炼过程中所发生的反应可分为四类:还原反应、氧化反应、硫化反应和熔渣的生成。 5. Cu 2 O要比PbO更容易还原,所以,当用铅试金法熔炼含铜样品时(比如铜精矿),为了阻止 Cu 2O的还原,配料中要加入大量的PbO,使Cu 2 O溶解在PbO内而排入渣中。 6.每单位(克)物质所能还原出来的铅量(克)称为该物质的还原力。1克碳能还原出34.5克的铅,碳的理论还原力就是34.5。 7.氧化力的含义是指1克氧化剂能够直接的或间接的将若干克融铅氧化成氧化铅的能力。 8.在铅、锡试金过程中,如配料不当,试样中的硫和铜、镍、铁、容易形成锍(即冰铜)。 9.硅酸度的含义是熔渣中酸性氧化物中氧的总量与碱性氧化物中氧的总量的比值。 10.按一般惯例,称硅酸度等于1的为中性熔渣,硅酸度大于1的熔渣是酸性熔渣,硅酸度小于1的为碱性熔渣,硅酸度越大,酸性越强。 11.用铅做捕集剂的试金方法叫铅试金法。除了用铅之外,还可以用其他金属做捕集剂。 12.铅是最常用的,也是最有用的捕集剂之一。它的比重大,易与渣分离,捕集贵金属后的金属铅,能用简便的灰吹法使铅与贵金属分离,得到一颗组分简单的贵金属合粒,为下步测定提供了方便的条件。 13.火试金配料方法有:面粉法、硝石法等。 14. 试金中所用的试剂和试样要充分混匀,增加它们之间的接触面,以便熔炼时试剂与试样之间的反应顺利地进行。 15. 冶金学中高于金属氧化物熔点的氧化熔炼过程叫做灰吹,因此我们称这种将金银合粒和铅分离的手段为灰吹。 16. 将从熔炼过程得到的铅扣置于灰皿中,控温900℃进行熔炼,此时熔融状态的铅与空气中的氧接触变成氧化铅,由于表面张力的作用,大部分氧化铅被多孔的灰皿所吸收,小部分挥发掉,金银不被氧化,变成合粒留在灰皿之中。 17.灰吹过程使用的灰皿,必须先预热。 18. 灰吹过程可以分为三个阶段:熔融和脱皮;氧化和吸收;炫色和闪光。

浅析火试金法测定铜精矿中金银含量的影响因素

浅析火试金法测定铜精矿中金银含量的影响因素 娄宗文 (楚雄滇中有色金属有限责任公司) 摘要:本文主要从灰皿材料的选择、硅酸度比、灰吹温度、覆盖剂及贱金属等几个 主要影响因素进行讨论,通过讨论研究找到对测试结果的影响因素,从而确定最佳条 件,保证实验的准确度。 关键词:火试金法;金、银;影响因素 火法试金分析方法具有取样代表性好、方法适用性强、应用广泛、富集分离效果好、分析结果准确度高等优点, 是分析测定金银的经典方法。我公司公司进厂的部分铜精矿原料, 大部分为混合矿,其成分复杂, 在金银分析过程中,研究灰皿材料、助熔剂配比、灰吹温度、氧化剂及贱金属等对实验的影响,从而加强对过程控制和优化。 1、分析过程 根据试样中硫、砷等含量, 按下列原则于黏土坩埚中配料并搅匀, 覆盖 10mm 厚的覆盖剂。 将15 g样品与固体试剂按照配料比例混合后置于坩埚中,放入试金高温电炉中加热熔融至1185 ℃,恒温10-15分钟,高温熔融体倒入铁铸模中,冷却后的到铅扣。把铅扣放在灰皿中,在850?900℃进行灰吹除铅,灰吹时铅被氧化成氧化铅,渗透于多孔的灰皿中,从而除去铅扣中的铅及少量贱金属,金银及贵金属不被氧化而保留在灰皿中,形成金银合粒[4]。 2、分析条件 在火试实验中,灰皿材料、助熔剂配比、灰吹温度等对实验结果都有至关重要的影响。因此优化实验条件成为实验最重要的部分。 2.1 灰皿 骨质灰皿中含硅酸盐多,用这种灰皿灰吹后,吸铅效果较差,且灰皿表面会出现小坑,导致了贵金属的损失。而使用镁砂灰皿,灰吹后无此现象,灰皿表面光滑。表1列出了两种灰皿的组成成分。 表1两种灰皿组成成分(%)对比 表2列出了使用两种灰皿灰吹金银合粒后,分金的结果比对。质检中心通过抽样到北矿院进行结果比对,证明使用镁砂灰皿灰吹误差最小,骨质灰皿误差最大 2.2 温度对灰吹的影响很大,应控制在835?900 ℃,温度太低会产生冻结,温度太高又导致金银容易氧化。金银氧化后,其氧化物随氧化铅被吸收到灰皿中或散落在灰皿表面。另一方面,金银在高温下易蒸发,温度越高,越易蒸发。表3为使用镁砂灰皿时,灰吹温度[3]对测试结果的影响。由表3表2两种灰皿测试银样品值(g/t)比对

火试金方法

火试金方法(The fire assay method)是将冶金学原理和技术运用到分析化学中的一种经典的分析方法,是分析化学中最古老的方法之一。 火试金方法是用加熔剂熔炼矿石和冶金产品的办法来定量测定其中贵金属的含量。该方法具有取样代表性好、方法适用性广、富集效果好等优点,是金银及贵金属化学分析的重要手段。 5.1火试金法的特点(Features of The Fire Assay Method) 火法试金不仅是古老的富集金银的手段,而且是金银分析的重要手段。国内外的地质、矿山、金银冶炼厂都将它作为最可靠的分析方法广泛应用于生产。一些国家已将该方法定为标准方法,我国在金精矿、铜精矿及首饰金、合质金中金的测定上,也定为国家标准方法。随着科学技术的发展,分析金银的新技术越来越多,分析仪器也愈来愈先进,火试金法与其它方法比较,其操作程序较长并需要一定技巧,有许多分析工作者试图使用其它分析方法来代替火试金法。然而,火试金法是不可替代的,对于高含量金原料或纯金中金成份的测定,其精确度和准确度为其它直接测定法所不及,在有关金银含量的仲裁分析中,火试金分析可以给出令争议各方信服的结果。这是由于火试金法有许多其它分析手段所不具备的独特的优点:

(1)取样代表性好。金银常以<g/t量级不均匀地存在于样品中,火试金法取样量大,一般取20~40g,甚至可取多至100g或100g以上的样品,因此,样品代表性好,可把取样误差减小到最低限度。 (2)适应性广。几乎能适应所有的样品,从矿石、金精矿到合质金,火试金法都能准确地进行金银的测定,包括那些目前用湿法分析还解决不了的辉锑矿在内。对于纯金主成份的分析,火试金的分析同样可以获得满意的结果,除了极个别的样品外,此法几乎能适应所有的矿种。 (3)富集效率高,达万倍以上,能将少量金银从含有大量基体元素的几十克样品中定量地富集到试金扣中,即使富集微克量的金银,损失也很小,一般仅百分之几。由于合粒(或富集渣)的成分简单,有利于以后用各种测试手段进行测定。 (4)分析结果可靠、准确度高。南非兰德公司对纯金(>99.9%)的常规分析,同一个样品的74次分析结果,标准偏差(S)0.0058%。国内同类产品10次分析结果的S也在0.005%左右。多年来,国内外一些学者企图用新的湿法化学分析或仪器分析去完全取代火试金法,但至今未能成功。Werbicki等比较了溶液中Au的三种分析方法——AAS、ICP-AES和试金法,给出了18个实验室分析的每一种方法的标准偏差S,结果是ICP-AES和AAS法基本一致,但都比试金法稍差。Wall指出火试金法适用于金量<1μg~1g的样品,且准确度和精密度优于其它仪器分析。 5.2 火试金法的基本原理(Principle of Method)

火试金方法

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 火试金方法 火试金方法(The fire assay method)是将冶金学原理和技术运用到分析化学中的一种经典的分析方法,是分析化学中最古老的方法之一。 火试金方法是用加熔剂熔炼矿石和冶金产品的办法来定量测定其中贵金属的含量。 该方法具有取样代表性好、方法适用性广、富集效果好等优点,是金银及贵金属化学分析的重要手段。 5.1 火试金法的特点(Features of The Fire Assay Method)火法试金不仅是古老的富集金银的手段,而且是金银分析的重要手段。 国内外的地质、矿山、金银冶炼厂都将它作为最可靠的分析方法广泛应用于生产。 一些国家已将该方法定为标准方法,我国在金精矿、铜精矿及首饰金、合质金中金的测定上,也定为国家标准方法。 随着科学技术的发展,分析金银的新技术越来越多,分析仪器也愈来愈先进,火试金法与其它方法比较,其操作程序较长并需要一定技巧,有许多分析工作者试图使用其它分析方法来代替火试金法。 然而,火试金法是不可替代的,对于高含量金原料或纯金中金成份的测定,其精确度和准确度为其它直接测定法所不及,在有关金银含量的仲裁分析中,火试金分析可以给出令争议各方信服的结 1/ 25

果。 这是由于火试金法有许多其它分析手段所不具备的独特的优点:(1)取样代表性好。 金银常以<g/t 量级不均匀地存在于样品中,火试金法取样量大,一般取 20~40g,甚至可取多至 100g 或 100g 以上的样品,因此,样品代表性好,可把取样误差减小到最低限度。

金属材料的力学性能测试题.doc

一、填空题(60 分) 1. 金属材料的性能的性能包括和。 2. 力学性能包括、、、、。 3. 圆柱形拉伸试样分为和两种。 4. 低碳钢拉伸试样从开始到断裂要经过、 、、四个阶段。 5. 金属材料的强度指标主要有和。 6. 金属材料的塑性指标主要有和。 7. 硬度测定方法有、、。 8. 夏比摆锤冲击试样有和两种。 9. 载荷的形式一般有载荷、载荷和载荷三种。 10. 钢铁材料的循环基数为,非铁金属循环基数为。 11. 提高金属疲劳强度的方法有和 。 表示用“ C”标尺测定的1000/30 表示用压头直径为 kgf 试验力作用下,保持为。硬度值为。 的硬质合金球,在s时测得的布氏硬度值 14. 金属材料的工艺性能包括、、 、、。

二、判断题(25 分) 1.金属的工艺性能是指金属在各种加工中所表现出的性能。() 2.金属的力学性能是指在力作用下所显示的与弹性和非弹性反 应相关或涉及应力 - 应变关系的性能。() 3.拉伸试验时,试样的伸长量与拉伸力总成正比。() 4. 屈服现象是指拉伸过程中拉伸力达到Fs 时,拉伸力不增加, 变形量却继续增加的现象。() 5. 拉伸试样上标距的伸长量与原始标距长度的百分比,称为断后伸长率,用符号 A 表示。() 6.现有标准圆形截面长试样 A 和短试样 B,经拉伸试验测得δ 10、δ5 均为 25%,表明试样 A 的塑性比试样 B 好。 ( ) 7.常用的硬度试验方法有布氏硬度、洛氏硬度和维氏硬度。() 8.做布氏硬度试验,当试验条件相同时,压痕直径越小,则材料 的硬度越低。() 9.洛氏硬度值是根据压头压入被测材料的的深度来确定的。() 10.洛氏硬度 HRC测量方便,能直接从刻度盘上读数,生产中常 用于测量退火钢、铸铁和有色金属件。() 11.一般来说,硬度高的金属材料耐磨性也好。() 12.韧性是指金属在断裂前吸收变形能量的能力。() 13.金属的使用性能包括力学性能、物理性能和铸造性能。( ) 14.拉伸试验中拉伸力和伸长量的关系曲线称为力一伸长曲线,

火试金方法完整版

火试金方法 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

火试金方法(The fire assay method)是将冶金学原理和技术运用到分析化学中的一种经典的分析方法,是分析化学中最古老的方法之一。 火试金方法是用加熔剂熔炼矿石和冶金产品的办法来定量测定其中贵金属的含量。该方法具有取样代表性好、方法适用性广、富集效果好等优点,是金银及贵金属化学分析的重要手段。 5.1火试金法的特点(Features of The Fire Assay Method) 火法试金不仅是古老的富集金银的手段,而且是金银分析的重要手段。国内外的地质、矿山、金银冶炼厂都将它作为最可靠的分析方法广泛应用于生产。一些国家已将该方法定为标准方法,我国在金精矿、铜精矿及首饰金、合质金中金的测定上,也定为国家标准方法。随着科学技术的发展,分析金银的新技术越来越多,分析仪器也愈来愈先进,火试金法与其它方法比较,其操作程序较长并需要一定技巧,有许多分析工作者试图使用其它分析方法来代替火试金法。然而,火试金法是不可替代的,对于高含量金原料或纯金中金成份的测定,其精确度和准确度为其它直接测定法所不及,在有关金银含量的仲裁分析中,火试金分析可以给出令争议各方信服的结果。这是由于火试金法有许多其它分析手段所不具备的独特的优点: (1)取样代表性好。金银常以<g/t量级不均匀地存在于样品中,火试金法取样量大,一般取20~40g,甚至可取多至100g或100g以上的样品,因此,样品代表性好,可把取样误差减小到最低限度。 (2)适应性广。几乎能适应所有的样品,从矿石、金精矿到合质金,火试金法都能准确地进行金银的测定,包括那些目前用湿法分析还解决不了的辉锑矿在内。对于纯金主成份

火试金法中配料、试剂及作用:

火试金法中配料、试剂及作用及注意事项: 灰皿:将牛、羊骨灰过40网目与水泥500#按重量比3:7混匀(或纯水泥),加入适量水(约12%)充分拌匀,压制(干燥时约50~60g)成灰皿,于阴处 风干,最好放置三个月以后使用,不能烘烤或曝晒。 氧化铅:在熔融过程中还原成金属铅,并使金、银等贵金属聚集。 二氧化硅或玻璃粉:强酸性熔剂。熔融时能与金属氧化物生成硅酸盐成为熔渣中 的主要组分。 碳酸钠:强碱性助熔剂。对硅酸盐及金属氧化物有熔解作用,同时也有脱硫作用。硼砂:既是酸性熔剂,又能与硅酸结合而呈盐基性熔剂,可以降低造渣熔点。 硝酸钾:强氧化剂。熔点339℃,1克硝酸钾可氧化3.5~4g铅成氧化铅。 小麦粉:常用还原剂。1克小麦粉可还原出10~12g金属铅。 焦炭粉:还原剂,1克焦炭粉可还原出22~24g金属铅。 铁钉:脱硫剂和还原剂。 食盐:被复制。盖在矿料最上层,其作用是隔绝空气,防止已被还原了的物质再被空气氧化,以及防止试料沸腾时溅失。 讨论:合粒中银与金必须大于3:1,银才能完全溶解,否则银结果偏低,金结果偏高。为了合银、金比例达到要求,可用以下方法: 一种是包铅灰吹法,将合粒与4~5倍的纯银用5~10克铅皮包好,重新灰吹,得到合粒再分金;一种配料时加入适量的银;一种是吹管加银法,将合料与4~5倍纯银放在钻有小孔的木炭上,用吹管(套有橡皮管的尖嘴玻璃管)将酒精灯的火焰吹入孔穴,使合粒与纯银熔合,取下再分金。 灰吹时当熔化的铅全部“脱皮”后,稍开炉门,并控制温度在800~850℃(炉温不能低于800℃,以免氧化铅发生凝固),当氧化铅全部被灰皿吸收后,立即出现金、银合粒闪光,应迅速将灰皿取出,冷却。测定银时灰吹过程应注意观察,灰吹温度应严格控制在760~800℃,使其吹出羽毛状物为最好,否则银易损失,结果偏低。 灰吹温度最高不得超过1050℃,否则金等将氧化损失。 所加硝酸必须加热至近沸,先稀后浓。否则金粒易分散。

金属材料外观缺陷的检验与处理

金属材料外观缺陷的检验与处理 金属材料外观缺陷的检验 钢材表面缺陷:结疤、裂缝、气泡、夹杂(非金属夹杂)、折叠、麻面、分层、拉裂、辊印、粘结等不得超出相应标准规定。 有色金属材料表面缺陷:裂缝、起皮、起泡、针孔、夹杂、起刺、压折、划伤、擦伤、斑点、凹坑、压灰、辊印等不得超出相应标准规定。 金属材料形状缺陷:弯曲、波浪弯、镰刀弯、瓢曲、扭转、外缘斜度(工字钢)、弯腰挠度(工字钢、槽钢)、椭圆、凹面(钢管)、剪切偏斜,锯齿形边(钢板)、剪切宽窄、塌肩(槽钢)、厚薄不均、厚边(钢板)、缺角(钢板)等不得超出相应标准规定。 金属材料外观缺陷的处理 金属材料的外观缺陷,在验收中除根据相应标准判别外,还应根据实际情况做好文字记录,必要时照像摄影留存,作为综合判断处理的依据。 金属材料的锈蚀 金属材料锈蚀的分类 分轻锈(浮锈)、中锈(迹锈)、重锈(层锈)、水渍、粉末锈、破锡(锌)锈 金属材料锈蚀的计算 板材锈蚀的计算:两面锈蚀在相对的同一部位,按较重的一面锈蚀面积计算,不在同一部位的,按两面锈蚀面积之和计算。 管材锈蚀的计算:内外壁锈蚀在相对的或同一长度的同一部位,按较重的一面锈蚀长度计算,不在同一部位的或不在同一长度内的,按两面锈蚀之和计算。 型材锈蚀的计算:按锈蚀长度计算,在已计算的长度内,各点、段处不重复加以计算。金属材料锈蚀等级的划分

金属材料锈蚀的处理 一般一、二级锈蚀要根据情况做贬值处理,三级锈蚀的材料拒收。贬值处理后入库的材料要及时做好除锈、防锈处理,以免锈蚀程度增加。 部分常用金属材料的外观质量检验 圆钢、方钢、条钢、槽钢、工字钢、角钢、扁钢的外观质量检验 圆钢、方钢、工字钢、角钢不应有扭转、弯折。条钢表面用肉眼检查,不应有裂缝、折迭、结疤和夹杂,两端不应有分层和6mm以上的毛刺。扁钢不应有显著的扭转,侧边不应有显著弧形凸起或凹入。 线材的外观质量检验 盘条表面不能有裂缝、折迭、结疤、分层及杂夹。钢筋表面不应有裂缝、结疤和折迭;钢筋表面可有凸块,但不应超过螺纹筋的高度,钢筋的螺纹筋与纵筋应相连接。 钢板、钢带的外观质量检验 钢板、钢带的表面不应有裂纹、结疤、折叠、气泡和夹渣;不应有分层;表面可有深度和高度小于或等于厚度公差之半的折印、麻点、划伤、小拉痕,以及氧化铁皮脱落所造成的表面粗糙等局部缺陷;表面的局部缺陷,可用修磨方法清除,但清除深度小于或等于钢板、钢带厚度公差之半。 无缝钢管的外观质量检验 钢管的外表面不应有裂缝、折迭、轧折、离层、发纹和结疤等缺陷,缺陷清除深度不能超过公称壁厚的负偏差,清除处的实际壁厚大于或等于壁厚的最小值。 焊接钢管的外观质量检验 钢管内外表面应光滑,不应有折迭、裂缝、分层、搭焊等缺陷,表面可有不超过壁厚负偏差的划道、刮伤、焊缝错位、烧伤和结疤等缺陷存在,允许焊缝处壁厚增厚和内缝焊筋存在。 镀锌钢管的外观质量检验 镀锌钢管的内外表面应有完整的镀锌层,不应有未镀上锌的黑斑和气泡存在,局部可有微小的粗糙和不明显的锌瘤存在。 套管、油管的外观质量检验 套管、油管的管体内外表面及接箍外表面不应有折迭、发纹、离层、裂缝、轧折和结疤等缺陷;套管、油管及其接箍外表面应有一层透明光滑、致密、防锈的涂层;管体、接箍不能有碰伤变形、管体弯曲;从靠近接箍的管体表面查漆印、钢印,识别钢级、查壁厚;成捆油管拆捆后不应有明显弯曲。 钻杆的外观质量检验 杆体表面外观检验与套管、油管要求相同;所有加厚钻杆的管体表面加厚过渡段结构应平整,不应有直台肩、折皱、表面凹凸尖角。 钻铤的外观质量检验 钻铤管体内外表面不应有裂纹、分层和结疤等缺陷,若有缺陷应修磨消除。修磨处与钻铤表面呈圆弧过渡。钻铤表面的任何部位不能焊补。

【精品】火法试金步骤

火法试金步骤 测定金矿品位的方法简谈: 实践证明取样代表性的问题在金矿测定中很重要,在(一)中简谈了制备具有代表性的化验样品的问题。既是制备好的化验样,在测定时取样代表性也是不能忽略的,由于金矿中金的不均匀的特点,为保证测定结果的准确性和可靠性需大取样量.一般湿法试金取样量在10~30g,(当品位为Au≥0。5×10—6时,取样量≥25g,只有当品位Au≥10×10—6时才可以减少,但最少也不能低于10g,分散流化学探矿样品在5~10g).火试金取样量为30~50g。 众所周知,不同含量的样品,由于方法的灵敏度不同,需用不同的测定手段。金矿测定更应重视测定手段的选择,需适当,否则会造成偏差或失败。举例见表3 金的品位与常选用的分析手段表3 含金量的范围 (单位10-6) 常选用的分析手段 0.0005~2。0

分光光度法.发射光谱法、原子吸收光谱法〉2.0~30.0分光光度法、 原子吸收光谱法、 滴定(碘量)法、火试金称量法 〉30。0~100。0原子吸收光谱法、

滴定(碘量)法、火试金称量法 〉100.0 滴定(碘量)法、火试金重量法 金矿测定时,试样的分解方法目前大体分为两种:一是干法即火法试金法;另一是湿法试金,下面分别简谈一下: 1。干法—火试金法 火试金法是一种液-液高温萃取浓聚法,既是样品熔解也是富集的方法.火试金虽然因一般实验室条件达不到,在我国使用并不普遍。但它是一个测定金品位的很好的、经典的、很成熟的、很准确的、速度快的方法,也是国标及世界各国普遍采用的标准方法,世界各国在商品交易时都确信火试金测定的结果,它不仅适用于金矿的测定,也适用于需要测定金的各种其它原材料和产品。用火试金测定矿石中金的含量,一般含量高的较准确,低含量误差较大。许多规程提到〉1g/t的样品都可用火试金准确测定品位。火试金在我国不易普遍主要障碍是设备投入的费用高,实际上火试金所必须的两个设备:①高温炉(要求最高使用温度为1350℃)②感量十万分之一的精密天平.现已有很好的国产货供应,价格一般化验室也可接受,建议中型以上的专业金矿化验室,应该具有火试金测定金的能力。含金量>2×10—6时,一般火试金都可得到准确测定结果。 火试金有铅试金、锍试金、锑试金、铋试金等方法,常用铅试金和锑试金.

火试金重量法测定载金炭中金的方法优化分析

火试金重量法测定载金炭中金的方法优化分析 摘要:火试金重量法在测定载金炭中金、银、铜含量中运用最广泛的一种方法,火试金法在公元60年左右,古罗马博物学者老普林尼就用过火试金重量法鉴定金,中国东汉时期炼丹家魏伯阳在《周易参同契》和明代谷应泰在《博物要览》 都曾提到火试金重量法。火试金重量法测定载金炭中金的含量经过方法改进后, 与传统的火试金法得到的结果相比更加严谨、更准确、操作更加便捷。本文主要 介绍的是火试金重量法测定载金炭中金含量的方法优化分析。 关键词:火试金;重量法;载炭金;方法优化;金; 前言 随着经济的发展,带动了科学技术水平的进步,也带动了金行业的发展,目 前金应用于多个领域的行业中,如航空航天天工程领域、电气领域、通讯领域和 医学领域等。趋于这形势就需要纯度更高的金,得到纯度更高的金就需要对载炭 金中的金含量最出最准确、最便捷的测定。针对于载金炭中金含量的测定当前主 要使用的方法是传统的火试金法和优化之后的火试金重量法,火试金重量法对载 金炭中金的测定的结果更加的准确、无需大量的制备取样、操作步骤更加方便。 一、载金炭的简介 从金矿石加工至黄金需要进行多道的工序,对于加工至黄金半成品的这个步 骤所得到的产品就称为载金炭。载金炭中还含有其他的矿物,主要有金、银、铜等。载金炭还需进行最后一道工序才能得到纯度高的黄金。对载金炭中的金进行 含量测定,所得到金的含量是趋于成品金的含量,所以使用载金炭进行金的含金 量测定是科学的、更是准确的。 二、传统火试金法测定载金炭中金含量的步骤 传统的火试金进行载金炭中金含量的测定主要使用到的步骤是,取样制备, 取样的质量控制在20-30g之间,将样品进行焙烧,后按照面粉法得要求进行配料,最后的一个步骤是将样品溶解分离测定金的含量。传统火试金法得主要具备以下 的特点:生产工艺历史悠久,生产技艺成熟,按照规定的步骤进行测定所得到的 结论是准确的;但使用传统的火试金法进行测定需要用到的样品多,这就造成测 定得成本较高,测定的步骤多且繁琐,测定耗时长需要动用大量的劳动力。因此,经过长期的实践,目前改进了传统的火试金测定法,且改进后的方法对载金炭进 行测定,能有效的解决传统火试金法所具备的缺陷,有利于提高测定的效率和准 确性。 三、改进后的火试金重量法对载金炭中金的测定 (一)前期准备。试验仪器准备阶段,火试金重量法测定所需用到的仪器主 要是载金炭进行熔样的熔样电阻炉(型号:RX2-25-13)、灰吹电阻炉(型号: SX2-10-13)、分析天平(型号:BP-211D)、压片机(型号:TSK)等;所需使用 的主要试剂为:纯度为100%的HNO3(硝酸)、Al2O3(氧化铝)、纯度为 99.99%的Ag(银);熔化载金炭的试剂主要分为面粉法和硝石法,其中面粉法 和硝石法所用到的材料最主要的区别在于主材料的不同,面粉法用到的主材料是 二十克的面粉,硝石法所用到的主材料就是二十五克的硝酸钾(KNO3),两者相同的材料为二十克的碳酸钠(Na2CO3),八克的硼砂(Na2B4O7·10H2O),十克 的二氧化硅(SiO2)。这就是进所谓的控制变量法进行试验,控制单一变量,这 就体现了试验的对照,确保试验的科学性及严谨性。

金属材料检测标准大汇总

金属材料检测标准大汇 总 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

金属材料化学成分分析 GB/T 222—2006钢的成品化学成分允许偏差 GB/T 系列钢铁及合金X含量的测定 GB/T 4336—2002碳素钢和中低合金钢火花源原子发射光谱分析方法(常规法) GB/T 系列海绵钛、钛及钛合金化学分析方法X量的测定 GB/T 系列铜及铜合金化学分析方法第X部分:X含量的测定 GB/T 5678—1985铸造合金光谱分析取样方法 GBT 系列铝及铝合金化学分析方法 GB/T 7999—2007铝及铝合金光电直读发射光谱分析方法 GB/T 11170—2008不锈钢多元素含量的测定火花放电原子发射光谱法(常规法) GB/T 11261—2006钢铁氧含量的测定脉冲加热惰气熔融-红外线测定方法 GB/T 系列镁及镁合金化学分析方法第X部分X含量测定 金属材料物理冶金试验方法 GB/T 224—2008钢的脱碳层深度测定法 GB/T 225—2006钢淬透性的末端淬火试验方法(Jominy 试验) GB/T 226—2015钢的低倍组织及缺陷酸蚀检验法 GB/T 227—1991工具钢淬透性试验方法 GB/T 1954—2008铬镍奥氏体不锈钢焊缝铁素体含量测量方法 GB/T 1979—2001结构钢低倍组织缺陷评级图 GB/T 1814—1979钢材断口检验法 GB/T 2971—1982碳素钢和低合金钢断口检验方法 GB/T —2012变形铝及铝合金制品组织检验方法第1部分显微组织检验方法

GB/T —2012变形铝及铝合金制品组织检验方法第2部分低倍组织检验方法GB/T 3488—1983硬质合金显微组织的金相测定 GB/T 3489—1983硬质合金孔隙度和非化合碳的金相测定 GB/T 4236—1984钢的硫印检验方法 GB/T 4296—2004变形镁合金显微组织检验方法 GB/T 4297—2004变形镁合金低倍组织检验方法 GB/T 4334—2008金属和合金的腐蚀不锈钢晶间腐蚀试验方法 GBT 4335—2013低碳钢冷轧薄板铁素体晶粒度测定法 GB/T —2015不锈钢5%硫酸腐蚀试验方法 GB/T 4462—1984高速工具钢大块碳化物评级图 GB/T 5058—1985钢的等温转变曲线图的测定方法(磁性法) GB/T 5168—2008α-β钛合金高低倍组织检验方法 GB/T 5617—2005钢的感应淬火或火焰淬火后有效硬化层深度的测定 GB/T 8359—1987高速钢中碳化物相的定量分析X射线衍射仪法 GB/T 8362—1987钢中残余奥氏体定量测定X射线衍射仪法 GB/T 9450—2005钢件渗碳淬火硬化层深度的测定和校核 GB/T 9451—2005钢件薄表面总硬化层深度或有效硬化层深度的测定 GB/T 10561—2005钢中非金属夹杂物含量的测定标准评级图显微检验法GB/T 10851—1989铸造铝合金针孔 GB/T 10852—1989铸造铝铜合金晶粒度 GB/T 11354—2005钢铁零件渗氮层深度测定和金相组织检验 GB/T 13298—2015金属显微组织检验方法

相关文档
最新文档