移动通信技术(第2版)薛晓明期末复习材料(终极版)第二版课后答案
《移动通信(第2版)》试题库 移动通信C 答案

装订线窃听。
A 跳频B 鉴权C 直接扩频D 加密二、判断题(每题2分,共20分)1.所谓上行信道是指由基站发射,移动台接收这一方向的信道。
2.基站天线的有效高度是指基站天线距地面的实际高度。
3.GMSK信号在码元转换时刻相位是连续的,但不平滑。
4.GPRS采用按流量计费的方式。
5.基站子系统中的BSC和BTS之间的通信接口为A-bis接口。
6.GSM系统采用MSK调制技术。
7.实际系统中,位置登记区越大,位置更新的频率越低,但每次呼叫的基站数目就越多。
8.隐分集所采用的技术主要有交织编码技术。
9.7号信令主要应用于交换机之间以及交换机与数据库之间交换信息。
10.CDMA网络中的切换都是软切换,切换成功率高。
1 2 3 4 5 6 7 8 9 10错错错对对错错对对错三、填空题(每空1分,共20分)1. GSM系统采用的是 FDMA 和 CDMA 结合的多址接入方式。
2. ITU规定的3G的三大技术标准有 WCDMA 、 CDMA2000 和 TD-SCDMA 。
3. 根据基站设在小区位置的不同,可分为顶点和中心两种激励。
4. GSM系统中逻辑信道分为业务信道和控制信道两类,在这其中控制信道又分为广播控制信道、公共控制信道、专用控制信道三类。
5. 若某GSM 用户上行频率为891.2MHz ,则其对应的下行频率为 936.2 MHz 。
6. GPRS 网络结构较GSM 网络相比,增加了三个关键组件,分别为___PCU_____、___SGSN____和 GGSN 。
7. IMT-2000移动通信系统的宗旨是建立全球的综合个人通信系统,要求高速移动业务速率为 144kbps ,室内室外低速率移动业务速率为 384kbps ,室内固定业务速率为 2000kbps 。
四、综合题(40分)1. 简要叙述GPRS 技术的特点。
(5分)答:○1GPRS 的目的是提供较高速率的分组数据业务,它是对目前GSM 网络的补充,它不会取代GSM 网络。
《移动通信技术第2版》电子教案(2024)

24
加密技术在移动通信中的应用
加密技术原理
通过加密算法将明文转换为密文,确保数据传输过程中的机密性和完整性。
在移动通信中的应用
包括端到端加密、传输层加密等,这些加密技术可以保护用户通信内容不被窃 取或篡改。
2024/1/26
25
用户隐私保护策略探讨
2024/1/26
隐私泄露风险
在移动通信过程中,用户隐私泄 露的风险较高,如位置信息、通 信内容等可能被非法获取。
大数据分析应用
利用移动通信网络收集的海量数据进行分析和挖掘,为用户提供个性 化推荐和精准营销等服务。
5G及未来通信技术
5G及未来的移动通信技术将进一步提高数据传输速率、降低时延、提 升网络容量和覆盖范围,为各种新兴应用提供更好的支持。
22
PART 06
移动通信网络安全与防护 策略
REPORTING
了解电磁波在自由空间中的传播方式,包括直射 、反射、折射和衍射等现象。
无线通信频段划分
掌握无线通信中不同频段的划分及其特点,如长 波、中波、短波、超短波和微波等。
调制与解调技术
3
理解调制与解调的基本原理,及其在无线通信中 的应用,如振幅调制(AM)、频率调制(FM) 和相位调制(PM)等。
2024/1/26
移动通信终端设备
REPORTING
2024/1/26
15
手机发展历程及趋势
第一代模拟手机
采用模拟信号传输,通话质量 较差,且安全性低。
2024/1/26
第二代数字手机
采用数字信号传输,提高了通 话质量和安全性,同时实现了 短信功能。
第三代智能手机
具备操作系统和多种应用软件 ,可实现拍照、上网、游戏等 多种功能。
移动通信技术复习题

移动通信技术复习题第一章:移动通信技术概述1.1 移动通信技术的定义和发展历程1.2 移动通信系统的组成和基本原理1.2.1 移动通信系统的三大组成部分 1.2.2 移动通信系统的基本原理1.3 移动通信技术的分类和特点1.3.1 移动通信技术的分类1.3.2 移动通信技术的特点第二章:无线信道特性和调制技术2.1 无线信道特性2.1.1 多径传播和多径干扰2.1.2 自由空间传播模型2.1.3 阴影衰落和快衰落2.2 调制技术2.2.1 数字调制技术2.2.2 模拟调制技术2.2.3 调制方式的选择第三章:蜂窝网络与网络架构3.1 蜂窝网络的基本概念和特点3.2 移动通信网络架构3.2.1 GSM网络架构3.2.2 UMTS网络架构3.2.3 LTE网络架构第四章:移动通信系统的关键技术4.1 多址技术4.1.1 FDMA4.1.2 TDMA4.1.3 CDMA4.2 频谱的分配与管理4.2.1 频率重用原则4.2.2 频率规划4.3 扩频技术4.3.1 DS-CDMA4.3.2 CDMA20004.3.3 WCDMA第五章:移动通信系统的安全与隐私保护5.1 通信系统的安全需求5.1.1 机密性5.1.2 完整性5.1.3 可用性5.2 移动通信系统的安全机制5.2.1 身份认证与鉴别5.2.2 数据加密与解密5.2.3 密钥管理第六章:移动通信系统的性能评估与优化6.1 无线信道容量的计算6.1.1 理论容量计算6.1.2 实际容量计算6.2 移动通信系统的性能评估6.2.1 信噪比的计算与分析6.2.2 误码率与比特错误率的计算6.3 移动通信系统的优化策略6.3.1 增强覆盖与容量6.3.2 减少干扰与噪声附件:1、移动通信技术复习题答案(附件1)2、移动通信技术相关参考资料(附件2)法律名词及注释:1、频率重用原则:一种在蜂窝网络中,为多个小区分配不同频率的原则,以增加系统容量并减少干扰。
移动通信技术复习资料

移动通信技术复习资料第一篇:移动通信技术复习资料一、选择题1.3G的主要目标:全球同一频段、统一标准、无缝隙覆盖、全球漫游;提供音频、视频等多媒体业务;便于过渡、演进;高服务质量;高频谱利用率;低电磁辐射CDMA手机。
2.构成BTS与MS与之间的信号传输采用Um无线接口,BSC与B TS之间采用Abis有线接口,BSC与MSC之间采用A有线接口。
3.移动通信的蜂窝小区采用六边形形状最好。
功耗小,但操作仍不方便。
2.移动通信为什么要采用多址技术?常见的多址技术有哪几种?答: 对于移动通信系统而言,由于用户数和通信业务量激增,一个突出的问题是在频率资源有限的条件下,如何提高通信系统的容量。
由于多址方式直接影响到通信系统的容量,所以一个移动通信系统选用什么类型的多址技术直接关系到4.调制码片速率是3.84 Mc/s5.码片速率:通过编码形成比特数据流,第二次交织后就是物理信道影射,经过物理信道映射后的数据还要进行数据调制形成符号,扩频调制后的速率就是码片速率。
6.GSM调制方式:一般是GMSK,后也有用EDGE。
二、填空题1.GSM900系统采用频分双工通信方式,手机发射频率(上行)为 890-915MHz ,接收频率(下行)为 935-960MHz,各占25 MHz,每一个载频的间隔为0.2 MHz,共分124个载频,双工收发间隔为45 MHz。
2.GSM: 第二代主流数字蜂窝移动通信系统CDMA:码分多址WCDMA:宽带码分多址TD-SCDMA:时分同步码分多址NSS:移动交换子系统BTS:基站无线收发信台BSC:基站控制器OSS:操作维护子系统 BSS:基站分系统MSC:移动交换中心3.半波振子长度(f=900MHz)4.扩频通信原理:在发端输入的信息先调制形成数字信号,然后由扩频码发生器产生的扩频码序列去调制数字信号以展宽信号的频谱,展宽后的信号再调制到射频发送出去。
在接收端收到的宽带射频信号,变频至中频,然后由本地产生的与发端相同的扩频码序列去相关解扩,再经信息解调,恢复成原始信息输出。
移动通信技术复习题

移动通信技术复习题第一点:移动通信技术的基本原理与发展历程移动通信技术是一种利用无线电波在空间中传输信号的技术,使得用户可以在任何地点、任何时间进行通信。
自从20世纪80年代第一代移动通信技术(1G)出现以来,移动通信技术已经经历了多次迭代,不断完善和发展。
1G采用的是模拟技术,其通信质量和安全性较低,同时受到干扰和信号覆盖的限制。
2G则引入了数字技术,提高了通信质量和安全性,同时也为短信等数据业务打下了基础。
3G时代,移动通信技术开始支持宽带数据传输,使得视频通话和高速互联网接入成为可能。
4G进一步提高了数据传输速率,使得移动网络和固定网络的界限越来越模糊。
当前,5G技术已经在全球范围内逐步推广,其峰值下载速率可达数十Gbps,几乎相当于光纤的传输速率。
5G技术不仅能够支持更加丰富的应用场景,如自动驾驶、远程医疗等,还能够实现更广泛的应用范围,如智能家居、智慧城市等。
第二点:移动通信技术的应用与挑战随着移动通信技术的不断发展,其在各个领域的应用也越来越广泛。
例如,在智能交通领域,移动通信技术可以用于车辆与路边的通信,实现智能导航和自动驾驶;在医疗领域,移动通信技术可以用于远程诊断和远程手术,使得医疗资源得到更加充分的利用;在工业领域,移动通信技术可以用于实现智能工厂和智能制造,提高生产效率和产品质量。
然而,移动通信技术的发展也面临着一些挑战。
首先,随着移动通信网络的不断扩展,如何保证网络的稳定性和可靠性成为一个重要的问题。
其次,移动通信技术在应用过程中,用户隐私和数据安全问题也需要得到充分的关注和解决。
此外,随着5G技术的推广,如何实现不同网络和设备之间的无缝连接和协同工作,也是一个需要解决的难题。
总的来说,移动通信技术的发展为人类社会带来了巨大的便利,但同时也带来了新的挑战。
我们需要在享受移动通信技术带来的便利的同时,也要关注和解决其带来的问题,推动移动通信技术的持续发展。
第三点:移动通信技术的未来发展趋势随着科技的不断进步,移动通信技术也在持续发展中。
移动通信课后答案

移动通信课后答案移动通信是一门涵盖了移动通信技术、网络架构、无线传输等多个领域的学科,通过学习这门课程,我们能够了解移动通信系统的原理、技术和运营等方面的知识。
以下是对移动通信课后习题的答案,帮助大家更好地理解并掌握相关内容。
第一章:移动通信系统概述1. 移动通信系统的基本组成是什么?移动通信系统基本由移动终端设备、无线接入网络、传输网和核心网组成。
2. 什么是移动通信系统的覆盖范围?移动通信系统的覆盖范围指的是网络服务可以提供的区域范围,包括室内、室外、城市、农村等不同区域的覆盖。
3. 列举几个常见的移动通信系统标准?常见的移动通信系统标准包括GSM、CDMA2000、WCDMA、LTE 等。
第二章:无线传输基础知识1. 什么是移动通信系统中的小区?移动通信系统中的小区是指将整个通信区域划分为不同的区域,每个小区由一个或多个基站负责信号的接收和发送。
2. 什么是频率复用?频率复用是指将一定范围的频谱资源按照一定规则进行划分和分配,使得不同小区的信号能够在同一时间、相同频段内进行传输。
3. 请解释下面几个常见的无线传输技术的缩写:CDMA、TDMA、FDMA。
- CDMA:码分多址技术,是一种采用不同的码型来对用户信号进行编码和解码的技术。
- TDMA:时分多址技术,是一种将时间划分为若干个时隙的技术,不同用户在不同时隙里进行通信。
- FDMA:频分多址技术,是一种将频率划分为不同的信道的技术,不同用户在不同频道上进行通信。
第三章:移动通信网络架构1. 简述移动通信系统中的核心网的作用。
移动通信系统中的核心网是连接无线接入网络和传输网的重要环节,它负责处理用户的信号传输、用户鉴权和计费等功能。
2. 什么是移动通信系统中的漫游?漫游指的是移动用户在不同地区之间自由切换网络,并且能够正常通信和使用相关服务的能力。
3. 移动通信系统中的位置管理是什么?位置管理是指对移动用户的位置进行管理和跟踪的过程,以确保用户在不同位置能够接收到信号并进行通信。
现代移动通信期末复习题答案

现代移动通信期末复习题答案一、选择题1. 移动通信系统的主要特点是什么?A. 覆盖范围广B. 便携性C. 可靠性高D. 所有上述选项答案:D2. 以下哪项是第三代移动通信技术(3G)的主要特征?A. 语音通信B. 低速数据传输C. 高速数据传输D. 仅支持文本消息答案:C3. 4G网络与3G网络相比,主要改进了哪些方面?A. 覆盖范围B. 数据传输速度C. 通信成本D. 通信频段答案:B4. 移动通信中的“频分多址”技术缩写为:A. FDMAB. TDMAC. CDMAD. OFDMA答案:A5. 以下哪个是5G技术的关键特性?A. 低延迟B. 高数据速率C. 大规模设备连接D. 所有上述选项答案:D二、填空题6. 移动通信系统中,用户设备通常被称为________。
答案:移动台(Mobile Station)7. 在移动通信中,________技术可以有效地减少干扰,提高频谱利用率。
答案:直序扩频(Direct Sequence Spread Spectrum, DSSS)8. 移动通信网络中的基站负责________和________。
答案:信号发射、信号接收9. 5G网络的一个关键应用是________。
答案:物联网(Internet of Things, IoT)10. 移动通信中的________技术可以提高数据传输的安全性。
答案:加密(Encryption)三、简答题11. 简述移动通信系统与传统有线通信系统的主要区别。
答案:移动通信系统与传统有线通信系统的主要区别在于移动通信系统允许用户在移动过程中进行通信,而有线通信系统则需要固定的连接点。
移动通信系统具有更高的灵活性和便携性,但同时也面临着信号覆盖、干扰和频谱资源利用等挑战。
12. 解释什么是多址接入技术,并列举至少两种常见的多址接入技术。
答案:多址接入技术是允许多个用户共享同一通信信道的技术。
常见的多址接入技术包括频分多址(FDMA)、时分多址(TDMA)和码分多址(CDMA)。
移动通信技术 2019— 2020学年第二学期期末试卷及答案

2019—2020学年第二学期期末试卷及答案《移动通信技术》一、单项选择题(共20题,每小题2分,满分40分)1. 爱立信是哪个国家的企业()。
A 、瑞典B 、芬兰C 、荷兰D 、美国2.陆地移动通信系统中把不同时隙分配给用户进行通信的是()。
A、FDMAB、TDMAC、SDMAD、CDMA3.下列不属于移动通信系统特点的是()。
A、电波衰落B、恒定信道C、远近效应D、干扰大4. 电波传播自由空间损耗预测表明发射电波频率越高,场强损耗()。
A.越大B.越小C. 不变D.不确定5. 基站防雷接地电阻合理的是( ) 。
A、 5ΩB、 50ΩC、 100ΩD、1000Ω6. 移动通信中电路的非线性造成的谐波干扰称为()。
A、互调干扰B、邻道干扰C、同频干扰D、噪声干扰7. BSC表示()。
A.移动台B.基站收发机C.基站控制器D.移动交换中心8.蜂窝通信网采用的小区形状是( )。
A、正五边形B、正六边形C、圆形D、正四边形9. GPRS是在第几代通信系统基础上发展而来的()。
A、1B、2C、2.5D、310. 移动蜂窝通信网络的核心是()A 、 MSCB 、BSC C 、MSD 、OMS11.直放站最主要的功能是()。
A 、滤波B 、选频C 、衰减信号D 、放大信号12.下列不属于CDMA优点的是()。
A 、软切换B 、大容量C 、保密性好D 、功率大13. 通过实验证实了电磁波的存在的人物是()。
A 、麦克斯韦B 、赫兹C 、马可尼D 、贝尔14.中国移动GSM采用的通信频段是()。
A 、890-915 MHz B、1880 -1900 MHz C、2010 -2025 MHz D、4800MHz-4900MHz15下列导致手机信号产生短期快衰落的是()。
A 、高铁B 、建筑物C 、山丘D 、树林16. 下面用于移动通信位置管理的是()。
A 、 AUCB 、BTSC 、MSD 、VLR17.基站交流电源采用三相变压器引入时采用()。
移动通信技术期末答案

移动通信技术期末答案移动通信技术期末答案一、引言移动通信技术是一种用于移动设备之间的无线通信技术,已经在现代社会中得到广泛应用。
本文将对移动通信技术进行细致的介绍与分析,以期对读者提供全面的了解和认识。
本文共分为以下几个章节。
二、移动通信技术的基本概念2.1 移动通信技术的定义与分类2.2 移动通信技术的发展历程2.3 移动通信技术的主要特点2.4 移动通信技术的应用领域三、无线传输技术3.1 无线传输技术的基本原理3.2 无线传输技术的主要技术标准3.3 无线传输技术的优缺点3.4 无线传输技术在移动通信中的应用案例四、移动通信系统4.1 移动通信系统的组成结构4.2 移动通信系统的网络架构4.3 移动通信系统的基站与用户设备4.4 移动通信系统中的核心网与边缘网五、移动通信协议5.1 移动通信协议的基本原理5.2 移动通信协议的主要类型5.3 移动通信协议的详细介绍(如GSM、CDMA等)5.4 移动通信协议的特点与应用案例六、移动通信网络安全6.1 移动通信网络安全的意义与挑战6.2 移动通信网络安全的主要威胁6.3 移动通信网络安全的防护措施6.4 移动通信网络安全的案例分析七、移动通信技术的未来发展7.1 移动通信技术的发展趋势7.2 移动通信技术的挑战与机遇7.3 移动通信技术的研究热点7.4 移动通信技术的应用前景分析附件:附件1:移动通信技术相关的案例分析附件2:移动通信技术的发展报告法律名词及注释:1、移动通信技术:指通过无线电波传输数据和信息的技术。
2、通信标准:指用于设备之间相互通信的规范和准则。
3、移动通信协议:指移动通信中用于规定设备之间通信规则的规约。
4、网络安全:指保护计算机网络中信息的隐私和完整性的技术和措施。
5、研究热点:指当前在学术界和工业界受到广泛关注和研究的问题和领域。
移动通信技术》期末复习(1)

第六章 GSM系统
• GSM系统概述与网络构成(第一讲) GSM系统概述与网络构成(移动台 移动台(MS)、基 基
站子系统(BSS)、网络子系统 网络子系统(NSS)及 站子系统 网络子系统 操作维护子系统(OSS)),接口(Um、 操作维护子系统 Abis、A、B、C、D、E、F、G)与接口协 议( MAP(移动应用部分)、BSSAP (BSS的应用部分)、LAPD(数据链路接 入协议)及GSM空中接口专用的LAPDm协 议)
第六章 GSM系统
• GSM系统空中接口与无线帧结构(第二讲)
GSM空中接口参数(频段、带宽、收发频差、 频点、编码方式、调制方式),无线帧结 构(5层结构),突发序列(5种突发), 编号方式(E.212和E.164标准。IMSI、 MSISDN、MSRN、TMSI、IMEI、LAI、 CGI、BSIC)
《移动通信技术》 期末复习思考题
2.设计带宽为7.2MHz的 MRP载频 分组方式。 解:若用于GSM系统, 可用载频数为 7200/200=36个,频道号 60~95,按12-9-8-7分成 4组,MRP配置如图所示。 如此配置后,每个扇区都 配置4个载频(3个扇区成 4/4/4站型)
《移动通信技术》 期末复习思考题
第三章 移动通信信道与天线
① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ 移动信道的地形地物的分类方法。 移动信道有几种衰落?特征各是什么? 移动信道的时域特征与频域特征是什么?是如何描述? 什么是场强中值、时延扩展、相关带宽、衰落深度(相 对于场强中值)和衰落速率(相对于场强中值)? 天线的概念、种类和特性是什么? 抗衰落的方法有几种? 分集的方法有几种?各有什么特点?前提是什么? 隐分集的方法有几种?各有什么特点? 什么是RAKE接收?特点是什么? 什么是分集增益?
移动通信课后习题答案

移动通信课后习题答案移动通信课后习题答案移动通信作为现代通信技术的重要组成部分,已经深入到我们生活的方方面面。
它不仅仅是一种通信方式,更是改变了我们的生活方式和社会结构。
为了更好地理解和掌握移动通信的知识,我们需要通过课后习题的练习来加深对相关概念和原理的理解。
下面是一些移动通信课后习题的答案,希望对大家有所帮助。
1. 移动通信的基本原理是什么?移动通信的基本原理是通过无线电波传输信息。
移动通信系统由移动设备、基站和核心网组成。
移动设备通过无线电波与基站进行通信,基站则负责接收和发送信号,将信息传输到核心网进行处理和转发。
2. 什么是移动通信网络的覆盖范围?移动通信网络的覆盖范围是指网络信号可以覆盖的地理范围。
根据不同的网络技术和频段,移动通信网络的覆盖范围可以从几十米到几十公里不等。
一般来说,城市地区的网络覆盖范围较广,而农村和偏远地区的网络覆盖范围较窄。
3. 什么是移动通信系统的容量?移动通信系统的容量是指系统能够同时支持的用户数量。
容量的大小取决于系统的带宽、频率资源和调制解调技术等因素。
提高容量的方法包括增加基站数量、优化频谱资源分配和改进信号处理算法等。
4. 什么是移动通信中的信道?移动通信中的信道是指无线电波用于传输信息的通道。
根据不同的通信需求和技术标准,移动通信系统可以使用多种不同类型的信道,如语音信道、数据信道和控制信道等。
不同类型的信道有不同的带宽和传输速率。
5. 移动通信中的调制解调技术有哪些?移动通信中常用的调制解调技术包括频分多址(FDMA)、时分多址(TDMA)、码分多址(CDMA)和正交频分多址(OFDMA)等。
这些技术可以将不同用户的信号通过不同的调制方式进行编码和解码,从而实现多用户同时通信的目的。
6. 移动通信中的信号传输速率有哪些?移动通信中的信号传输速率可以通过不同的技术手段进行提高。
常用的技术包括调制解调技术的改进、信道编码和解码技术的优化以及多天线技术的应用等。
移动通信技术(第2版)薛晓明期末复习材料(终极版)第二版课后答案

这是三份真实的试卷题目,至于你信不信,反正我是信了……不管考到哪份卷子,使用者请记住了,不要考得太好了,不然容易出事的,不要太贪心,差不多就好!A卷单项选择:1. 无线小区形状的选择,正六边形小区的临区中心间距离为_____【】A.r B. 1.414r C. 1.732r D. 0.5r2. 3G设备WCDMA载波最小带宽为_____【】A.5MHz B. 1.6MHz C. 1.25MHz D. 1.23MHz3. GSM系统所用的多址方式为_____【】A.码分多址 B. 时分多址 C. 频分多址 D. B与C都用4. 在GSM系统中,BSC与BTS之间的接口称为____接口。
【】A.Abis B. A C. B D. F5. 1992年世界无线电行政大会(W ARC)根据ITU对于IMT-2000的业务量和所需频谱的估计,划分了_____带宽给IMT-2000。
【】A.60MHz B. 230MHz C. 170MHz D. 120MHz填空题1.鉴权的作用是______防止_______,同时通过拒绝_______用户的______而保护GSM移动网络的_______。
2.VLR是存储用户____的动态数据库,当漫游用户进入某个______区域时,必须在MSC相关的VIR中______,VIR分配给移动用户一个_______(MSRN)。
3.信道编码主要包括纠错编码和______。
纠错编码的______是通过对信源编码的数据增加一些________对信源编码的数据进行_______。
以使在接收时能从接收的______中检出由于传送过程中引起的_______从而进行纠错。
4.由于码分多址的码是采用________,这样就给信号带上了伪装,如果对方不知道所用的码,是______破译的。
即便知道码,窃听者也_______靠近_______才能收到_________。
名词解释1.信源编码:信源编码的主要作用是将信源送出的模拟信号取样、量化、编码,并对编码后的信号去掉信源多余的冗余信息,以达到压缩信源信息率,降低信号的传输速率、缩小信号带宽,从而提高通信的有效性2.频分多址(FDMA):把通信系统的总频段划分成若干个等间隔的互不重叠的频道,分配给不同的用户使用3.同频干扰:无用信号的载频与有用信号的载频相同,并对接收同频有用信号的接收机造成的干扰4.位置登记:移动台向基站报告其位区状态、身份标识和其他特征的过程5.归属位置寄存器(HLR):用于移动用户管理的数据库。
移动通信技术习题答案

《移动通信技术》习题答案第一章概论一、名词解释1.单工制:单工制指通信双方的收发信机交替工作2.双工制:双工制指通信双方的收发信机均同时工作3.SDMA:空分多址指通过空间的分割来区别不同的用户。
4.大区制:大区制移动通信系统是早期采用的,它一般设有一个基站,负责服务区内移动通信的联络与控制。
如果覆盖范围要求半径为30km~50km,则天线高度应为几十米至百余米。
发射机输出功率则应高达200W。
在覆盖区内有许多车载台和手持台,它们可以与基站通信,它们之间也可直接通信或通过基站转接通信。
5.小区制:将一个大区制覆盖的区域划分成若干小区,每个小区(Cell)中设立基站(BS),与用户移动台(MS)间建立通信。
6.频率复用:在频分制的蜂窝系统中,每个小区占用一定的频道,而且各个小区占用的频道是不同的。
假设每个小区分配一组载波频率,为避免相邻小区之间产生干扰,各个小区的载波频率应不相同。
因为频率资源是有限的,所以当小区覆盖不断扩大,小区数目不断增加时,将出现频率资源不足的问题。
7.MSC:移动业务交换中心。
是蜂窝通信网络的核心,其主要功能是对于本MSC控制区域内的移动用户进行通信控制与管理。
8.FDMA:总频段分成若干个等间隔频道(信道),不同信号被分配到不同频率的信道里,发往和来自邻近信道的干扰用带通滤波器限制,这些频道互不交叠,其宽度应能传输一路语音信息,而在相邻频道之间无明显的串扰。
9.TDMA:指一个信道由一连串周期性的时隙构成,即把时间分割成周期性的帧,每一帧再分割成若干个时隙(无论帧或时隙都是互不重叠的),然后根据一定的时隙分配原则,使各移动台在每帧内只能按指定的时隙向基站发送信号,在满足定时和同步的条件下,基站可以分别在各个时隙中接收到各移动台的信号而不混扰。
10.CDMA:指用一组正交码区分不同用户,实现多用户共享资源。
每一个信号被分配一个伪随机二进制序列进行扩频,不同信号的能量被分配到不同的伪随机序列里。
移动通信技术考试试题与答案

移动通信技术考试试题与答案一、填空题(每空1分,共计20分)1. 移动通信系统由______、______和______三大部分组成。
2. 在蜂窝移动通信中,一个小区通常被划分为______个扇区。
3. 2G移动通信系统主要包括______、______和______。
4. 3G移动通信技术包括______、______和______。
5. 4G移动通信技术采用______技术,实现更高的数据传输速率。
6. 5G移动通信技术具有______、______和______等优势。
7. NR(New Radio)是5G的______,其关键技术包括______和______。
二、选择题(每小题2分,共计20分)1. 以下哪个不是2G移动通信系统的关键技术?()A. TDMAB. GSMC. CDMA2000D. OFDM2. 以下哪个不是3G移动通信系统的关键技术?()A. WCDMAB. TD-SCDMAC. CDMA2000D. OFDM3. 4G移动通信技术采用的调制技术是?()A. QAMB. OFDMC. TDMAD. FDMA4. 5G移动通信技术采用的频谱范围是?()A. 2G/3G频段B. 4G频段C. 6GHz以下D. 6GHz 以上5. 以下哪个不是5G移动通信技术的应用场景?()A. 4K/8K视频业务B. 物联网C. 智能交通D. 电信级云服务6. NR系统中,gNB-CU与gNB-DU之间的接口是?()A. Xn接口B. X2接口C. X1接口D. X3接口7. 以下哪个不是5G NR系统中的关键技术?()A. MIMOB. OFDMC. SC-FDMAD. mmWave8. 以下哪个不是5G NR系统中的关键技术?()A. NSA组网B. SA组网C. NR-NR双连接D. NR-4G双连接9. 以下哪个不是5G NR系统的帧结构?()A. 10ms帧B. 20ms帧C. 40ms帧D. 5ms帧10. 以下哪个不是5G NR系统的关键技术?()A. NSA组网B. SA组网C. NR-NR双连接D. NR-4G双连接三、简答题(每题5分,共计20分)1. 简述2G、3G、4G和5G移动通信技术的主要区别。
移动通信第二版答案

Solution Manual for Mobile Communications 2nd ed. Jochen H. Schiller, Freie Universität Berlin, Germanyschiller@, www.jochenschiller.de1. Introduction1.1 Good sources for subscriber numbers and other statistics are, e.g.,, , , , , www.regtp.de …1.2 Today’s GSM operators add the new 3G air interfaces of UMTS to their existing GSM/GPRS infrastructure networks. Current GSM/GPRS networks already offer packet and circuit switched data transmission following the Release 99 of UMTS. The operators have to install new radio access networks, i.e., antennas, radio network controller etc. as described in chapter 4. The situation is similar for operators using cdmaOne (IS-95) technology. However, these operators go for cdma2000 as this system allows them to reuse their already existing infrastructure. Thus, based on the separation of the mobile phone systems into (very roughly) CDMA and GSM operators will lead to two different major 3G systems, cdma2000 and UMTS (and their future releases). Right now, it does not seem that there is a place for a third 3G system. Current TDMA operators might move to EDGE enhanced systems or join the UMTS system. However, it is still open what will happen in China – the Chinese system TD-SCDMA was pushed by the government, but networks and devices are still missing. Currently, the majority of Chinese subscribers use GSM, some operators offer CDMA.2. Wireless Transmission2.1 Check also the WRCs that try to harmonize global frequency plans.2.2 Below 2 MHz radio waves follow the ground (ground wave propagation). One factorfor this is diffraction (waves are bound towards obstacles that have sizes in the order of the wavelength), another factor is the curr ent induced in the Earth’s surface, which slows the wavefront near the earth, causing the wavefront to tilt downward. Several reasons make low frequencies unusable in computer networks:Lower frequencies also mean lower data rates according to Nyquist/Shannon as the available bandwidth is less.Lower frequencies also require large antennas for efficient transmission and reception. This might work for submarines, not for mobile phones.Lower frequencies penetrate material more easily. Thus SDM is more difficult –cell size would increase dramatically and frequency reuse would be almost impossible.2.3 Frequencies in the THz range, e.g., infrared, visible light, are easily blocked by obstacles and, thus, do not interfere with other transmissions. In this case, only the standard safety regulations apply (e.g., laser emission). Most radio systems stay well beyond 100 GHz as it is not that simple to generate higher frequencies (in the lowerTHz range).2.4 The classical European approach was based on standardisation and regulation before any products were available. The EU governments founded ETSI to harmonize all national regulations. ETSI created the standards, all countries had to follow. In the US companies develop systems and try to standardize them or the market forces decide upon success. The FCC, e.g., only regulates the fairness among different systems but does not stipulate a certain system. The effects of the two different approac hes are different. Many ―governmental‖ standards in Europe failed completely, e.g., HIPERLAN 1, some succeeded only in Europe, e.g., ISDN, and however, some soon became a worldwide success story, e.g., GSM. For most systems the US approach worked better, first some initial products, then standards. One good example is the wireless LAN family 802.11, a good counter example is the mobile phone market: several different, incompatible systems try to succeed, many features, well established in Europe since many years, are not even known in the US (free roaming, MMS, GPRS roaming, no charges for being called etc.).2.5 Computers, in contrast to, e.g., TV sets, travel around the world as laptops, PDAs etc.Customers want to use them everywhere. Thus it is very important to be able to use built-in WLAN adapters around the globe without reconfiguration and without licensing. Furthermore, it is much cheaper for WLAN manufacturers to design a single common system compared to many different systems for probably small markets. 2.6 No. Loss-free transmission of analogue signals is not possible. Attenuation, dispersion etc. will always distort the signal. Additionally, each digital signal is transmitted as ―bundle‖ of analogue sine waves (think of Fourier!). A perfect digita l signal with rectangular shape requires an infinite number of sine waves to be precisely represented (the digital signal can be represented as infinite sum of sine waves according to Fourier). However, no medium can transmit infinite high frequencies. Thus, the digital signal can never be transmitted without any loss.2.7 Without any additional ―intelligence‖ directional antennas are not useful in standardmobile phones as users may not want to direct the phone to a certain antenna. Users move, rotate, fli p the phones etc. Phones are in bags, pockets, … while operated hands-free. There is no chance of directed transmission. However, new developments comprising fast signal processors and multiple antennas may exploit directed characteristics of antennas (beam forming). There are several ways of improving the gain of an antenna: right dimensioning (e.g., half the wavelength), multiple antennas plus a signal processor combining the signals, active and passive components attached to the antenna (compare with traditional TV antennas, satellite dishes etc.).2.8 Problems: attenuation, scattering, diffraction, reflection, refraction. Except for attenuation all other effects can divert the waves from a straight line. Only in vacuum and without gravitational effects radio waves follow a straight line. Without reflection radio reception in towns would be almost impossible. A line.-of-sight almost never exists. However, reflection is the main reason for multipath propagation causing ISI.2.9 ISI mitigation: large enough guard spaces between symbols/low symbol rate (used inOFDM: distribute the symbol stream on many different carriers), channelestimation/calculate the n strongest paths and adapt the receiver accordingly. Using higher frequencies reduces the effects of multipath propagation and thus ISI (waves more and more behave like light). The higher the symbol rate the stronger the ISI. If senders and/or receivers move fast the chances for ISI are higher because the location of obstacles changes, hence the number, magnitude, and timing of the secondary pulses – it is difficult to follow the signals and adjust the delays for recombination. ISI lowers the bandwidth of a TDM scheme as the guard spaces require some time.2.10 Several mechanisms exist to mitigate narrowband interference (which might be caused by other senders, too):Dynamic Frequency Selection: Senders can sense the medium for interference and choose a frequency range with lower/no interference. HiperLAN2 and802.11h use this scheme. Network operators can also this scheme to dynamically assign frequencies to cells in mobile phone systems. DFS has a relatively low complexity.Frequency hopping: Slow frequency hopping (several symbols per frequency)may avoid frequencies with interference most of the time with a certain probability. This scheme may be used in GSM. Furthermore, wireless systems can use this principle for multiplexing as it is done in Bluetooth systems (still slow hopping as Bluetooth sends many symbols, indeed a whole packet, on the same frequency). Fast hopping schemes transmit a symbol over several frequencies, thus creatinga spread spectrum. FH systems have medium complexity. Main topic is synchronisation of the devices.Direct sequence spread spectrum: Data is XORed with a chipping sequence resulting in a spread signal. This is done in all CDMA systems, but also in WLANs using, e.g., Barker sequences for spreading (e.g., 802.11b). The signal is spread over a large spectrum and, thus, narrowband interference only destroys a small fraction of the signal. This scheme is very powerful, but requires more powerful receivers to extract the original signal from the mixture of spread signals.2.11 Worldwide regulation always uses FDM for separating different systems (TV, WLAN,radio, satellite, …). Thus, all radio systems must modulate the digital signal onto a carrier frequency using analogue modulation. The most prominent system is the traditional radio: all music and voice use frequencies between, e.g., 10 Hz and 22 kHz. However, many different radio stations want to transmit at the same time. Therefore, all the original signals (which use the same frequency range) must be modulated onto different carrier frequencies. Other motivations for digital modulation are antenna and medium characteristics. Important characteristics for digital modulation are spectral efficiency, power efficiency and robustness. Typical schemes are ASK, PSK, FSK.2.12 The receiver may ―check‖ the distance between the received point and theneighbouring points. The receiver then chooses the closest neighbour and assumes that the sender originally transmitted data represented by the chosen point. The more points a PSK scheme uses the higher are chances that interference (noise) shifts a transmitted ―point‖ onto another. If the gaps between the points are too small, in particular smaller than noise added during transmission, chances are very high that the receiver will map received data onto the wrong point in the constellation diagram (please note: data is coded using PSK, the points in the constellation diagram represent codes, these codes are then transmitted – it is just simpler to think in―points‖…).2.13 Main benefits: very robust against interference, inherent security (if the spreadingcode is unknown it is very difficult to tap the transmission), basis for CDMA technologies, can be used in the ―background‖ of existing systems if the signal level is low enough. Spreading can be achieved by XORing a bit with a chipping sequence or frequency hopping. Guard spaces are now the orthogonality of the chipping sequences or hopping patterns. The higher the orthogonality (well, that is not very mathematical, but intuitive), the lower the correlation of spread signals or the lower the collision probability of frequency hopping systems. DSSS system typically use rake receivers that recombine signals travelling along different paths. Recombination results in a stronger signal compared to the strongest signal only.2.14 The main reason is the support of more users. Cellular systems reuse spectrum according to certain patterns. Each cell can support a maximum number of users. Using more cells thus results in a higher number of users per km². Additionally, using cells may support user localisation and location based services. Smaller cells also allow for less transmission power (thus less radiation!), longer runtime for mobile systems, less delay between sender and receiver. Well, the downside is the tremendous amount of money needed to set-up an infrastructure with many cells. Typically, each cell holds a certain number of frequency bands. Neighbouring cells are not allowed to use the same frequencies. According to certain patterns (7 cluster etc.) cellular systems reuse frequencies. If the system dynamically allocates frequencies depending on the current load, it can react upon sudden increase in traffic by borrowing capacity from other cells. However, the ―borrowed‖ frequency must then be blocked in neighbouring cells.2.15 TDM/FDM-systems have a hard upper limit of simultaneous users. The system assigns a certain time-slot at a certain frequency to a user. If all time-slots at all frequencies are occupied no more users can be accepted. Compared to this ―hard capacity‖ a CD M system has a so-called ―soft-capacity‖ (compare filling a box with bricks or tissues). For CDM systems the signal-to-noise-ratio typically limits the number of simultaneous users. The system can always accept an additional user. However, the noise level may then increase above a certain threshold where transmission is impossible. In TDM/FDM systems additional users, if accepted, do not influence other users as users are separated in time and frequency (well, there is some interference; however, this can be neglected in this context). In CDM systems each additional user decreases transmission quality of all other users (the space forthe tissues in the box gets tighter).3. Medium Access Control3.1 Stations in a wired network ―hear‖ each other. I.e., the l ength of wires is limited in away that attenuation is not strong enough to cancel the signal. Thus, if one station transmits a signal all other stations connected to the wire receive the signal. The best example for this is the classical Ethernet, 10Base2, which has a bus topology and uses CSMA/CD as access scheme. Today’s wired networks are star shaped in the local area and many direct connections forming a mesh in wide area networks. In wireless networks, it is quite often the case that stations are able to communicate with a central station but not with each other. This lead in the early seventies to the Aloha access scheme (University of Hawaii). So what is CS (Carrier Sense) good for in wireless networks? The problem is that collisions of data packets cause problems at the receiver – but carrier sensing takes place at the sender. In wired networks this doesn’t really matter as signal strength is almost the same (ok, within certain limits) all along the wire. In wireless networks CS and CD at the sender doesn’t make sense, senders will quite often not hear other stations’ signals or the collisions at the receiver.3.2 In case of Aloha stations do not care about other stations but simply access the medium if they have to send data. There are no stations exposed as stations do not perform carrier sensing. Hidden stations may cause collisions. The same is true for slotted Aloha the only difference being the slotted character of medium access. Reservation schemes typically work with a central reservation station which can be heard by all others. Without this condition or equivalent means of distributing reservations the whole scheme will not work. Thus, there are no hidden or exposed terminals. MACA is designed to handle hidden and exposed terminals in a distributed WLAN without central reservation station. However, MACA may fail in case of asymmetric communication conditions or highly dynamic topologies (stations may move fast into collision range).3.3 As long as a station can receive a signal and the signal arrives at the right time to hitthe right time-slot it does not matter in TDMA systems if terminals are far or near. In TDMA systems terminals measure the signal strength and the distance between sender and receiver. The terminals then adapt transmission power and send signals in advance depending on the distance to the receiver. Terminals in CDMA systems have to adapt their transmission power very often (e.g., 1500 times per second in UMTS) so that all signals received, e.g., at a base station, have almost the same strength. Without this one signal could drown others as the signals are not separated in time.3.4 Typically, SDMA is performed or supported by a network provider. The provider plansthe network, i.e., places the base stations according to certain topologies, geographic situations, capacity planning etc. If the system is running, base stations support theinfrastructure in the decision of assigning a certain base station to a terminal. This is often based on received signal strength or the current capacity. The mobile terminal supports the infrastructure by transmitting information about the received signal strengths. The terminal can furthermore initiate the change of the access point.3.5 Modulation – Transmitters must shift all baseband signals to a carrier frequency. Thisis typically an analogue process and requires analogue components. Classical receivers also need filters for receiving signals at certain frequencies. Depending on the carrier frequency different antennas may be needed. Pure TDMA systems stay on one frequency, all receivers can wait on the same frequency for data. In FDMA systems receivers have to scan different carrier frequencies before they can receive signals. MAC is performed on many different layers. The WRCs (World Radio Conferences) are used for worldwide frequency assignments such as the 2 GHz range for IMT-2000. ITU controls worldwide frequency usage. National authorities regulate frequencies in different nations. On the next lower layers network operators perform MAC: frequencies usage is controlled by network planning and current load. Finally, base stations in mobile phone systems assign frequencies to terminals depending on the current availability. In WLANs network administration assigns frequencies thus forming cells.3.6 Wireless networks can use different frequencies, different time slots or even differentcodes to implement duplex channels. Typical wired networks simply use different wires (however, more elaborated schemes such as echo cancellation are feasible, too).3.7 If communication systems use fixed TDM patterns terminals can be very simple. Theonly requirement is to stay synchronised to be able to receive the right data. This is the standard system in classical telecommunication networks (e.g., ISDN, PCM-30 systems, SDH etc.). Ethernets, the Internet, wireless LANs etc. work demand driven. Here the advantage is the low overhead when starting communication: terminals don’t have to setup connections reserving time slots prior to communication. However, users transmit more and more data compared to voice. Most networks of today are data dominated (if the amount of data is considered, not the revenue). Thus, data transmission should be optimised. While WLANs are optimised for data from the beginning (and isochronous audio transmission causes some problems), wide area mobile phone systems started as almost voice only systems. The standard scheme is circuit switched, not packet switched. As more an more data is transmitted these networks have to integrate more and more data oriented technologies: GPRS in GSM, IP in the core network of UMTS etc.3.8 Interference and countermeasures in:SDMA: Interference happens if senders are too close to each other. Terminals or base stations have to keep a minimum distance.TDMA: Interference happens if senders transmit data at the same time. Countermeasures are tight synchronisation and guard spaces (time gap betweentransmissions).FDMA: Interference happens if senders transmit data at the same frequency. Thus, different frequencies have to be assigned to senders by organisations, algorithms in base stations, common frequency hopping schemes etc. Furthermore, guard bands between used frequency bands try to avoid interference.CDMA: Interference happens if senders transmit data using non-orthogonal codes, i.e., the correlation is not zero. Thus, senders should use orthogonal orquasi-orthogonal codes.3.9 Even in vacuum radio waves have limited velocity: the speed of light. As soon as matter is in the way waves travel even slower. Thus, it can happen that a sender senses the medium idle, starts the transmission and just in a moment before the waves reach another sender this second sender senses the medium idle and starts another transmission. This is the reason for CD (listen while talk) in classicalCSMA/CD Ethernets.3.10 After reservation of the medium succeeded no more collisions can occur (if the system is error free). Reservation schemes can also guarantee bandwidth, delay, and maximum jitter. Thus, during the transmission nothing can happen. Compared to classical Aloha the collision probability is lower because the contention period is kept short compared to the contention-free period where transmission takes place. A disadvantage of reservation schemes is the latency for data transmission. Before terminals can start transmission they have to reserve the medium. This wastes time in case of a very lightly loaded medium.3.11 Think of asymmetric transmission conditions and, for example, the hidden terminalscenario. What if station C in figure 3.10 transmits with a lot of power while it cannot receive anything from B? Then MACA fails because CTS is not received but C causes a collision at B.3.12 Fixed TDMA schemes can give hard guarantees –that’s why they are used in clas sical phone systems (ISDN, SDH, GSM/CSD, …). Also implicit reservations can give guarantees after the reservation succeeded. Furthermore, all centralistic systems, i.e., systems with a base station or access point controlling data transfer, can give guarantees. All non-deterministic schemes, such as CSMA/CA, MACA, cannot give any hard guarantees.3.13 The guard space between users in CDMA systems is the orthogonality between thespreading codes. The lower the correlation is, the better is the user separation.3.14 The transmitted signal in this simplified example is (-2,0,0,-2,+2,0) +(1,-1,0,1,0,-1) =(-1,-1,0,-1,+2,-1). The receiver will calculate for A: (-1,-1,0,-1,+2,-1) * (-1,+1,-1,-1,+1,+1) = 1-1+0+1+2-1 = 2. For B the result is: (-1,-1,0,-1,+2,-1) * (+1,+1,-1,+1,-1,+1) = -1-1+0-1-2-1 = -6. The receiver can decide ―more easily‖ for the binary 0 in case of B compared to the binary 1 in case of A. Noise can obviously affect the signal. But still the receiver can distinguish between the two signals – our simple example usesperfectly synchronised signals (the spread symbols are in phase). Adding the near/far problem to our simplified example does not change much: still the receiver can detect the signal – unless noise becomes too strong compared to the signal. Simply multiply the noise and B’s signal by, let us say, 20. The transmitted signal is then:A s+20*B s+20*noise = (-1,+1,-1,-1,+1,+1) + (-20,-20,+20,-20,+20,-20) + (+20,-20,0,+20,0,-20) = (-1,-39,19,-1,+21,-39). The receiver then receives for A: (-1,-39,19,- 1,+21,-39) * (-1,+1,-1,-1,+1,+1) = 1-39-19+1+21-39 = -74, and for B: (-1,-39,19,-1,+21,-39) * (+1,+1,-1,+1,-1,+1) = -1-39-19-1-21-39 = -120. Both results are negative, the receiver can not reconstruct the original data of A, but that of B. This example should just give a rough feeling what the problems are. For our simple problem here we don’t see all the effects: the spreading codes are much too short, everything is synchronised.4. Telecommunication systems4.1 Key features: GSM (wide area coverage, bandwidth 9.6-50 kbit/s, voice, SMS, MMS),DECT (local coverage, voice, data, high density), TETRA (regional coverage, ad-hoc mode, very fast connection set-up, group call, voice, data, very robust), UMTS (medium coverage, higher data rates 384 kbit/s, flexible bandwidth assignment). Common features are traditional voice support (circuit switched), integration into classical fixed telecommunication network, ISDN core network. The systems have different, unique properties: GSM has wide area coverage, TETRA ad-hoc mode and fast connection setup, DECT can support high user densities. If allowed from licensing GSM could replace DECT, if modified GSM can replace TETRA (e.g., GSMRail)– under certain conditions (GSM does not offer an ad-hoc mode). But alsoUMTS has specific advantages – higher data rates compared to classical GSM (but lower coverage) and higher coverage than WLANs (but lower data rates).4.2 Systems optimised for voice transmission support certain fixed data rates and operatecircuit switched. Data transmission happens quite often spontaneous with varying data rates. Thus either too much bandwidth is reserved to accommodate the maximum expected data rate or data transmission experiences long delays due to connection setup. One possible step towards the support of data transmission is the introduction of packet switched services as known from the Internet. An example is GPRS in GSM. Instead of time-based billing providers can now bill based on volume (however, application based billing would make even more sense as customers are not interested in bytes but useful applications).4.3 The three big categories are bearer, tele, and supplemental services. Separation ofservices supports phased introduction of services and separation of concerns: network providers, service providers, device manufacturers etc. can focus on certain sets of services (e.g., tele services between terminals) and rely on certain interfaces to other services (e.g., to the underlying bearer services).4.4 Main reason is the forward error correction to mitigate transmission errors. Furthermore, bandwidth is needed for signalling, guard spaces.4.5 See figure 4.4. Specifying all (or at least many) internal interfaces allows for a largervariety of vendors. As long as vendors stay with the standardised interfaces equipment of different vendors can be combined and network operators are not completely dependent from one manufacturer. However, reality often looks different and network operators often use only equipment from one or two vendor(s).4.6 The MS contains all device related functions: device ID, coders/decoders, radio etc.The SIM contains subscriber related functions and data: authentication, PIN, user id etc. This separation helps changing phones while keeping personal data: users simply insert their SIM in a new mobile phone and can use, e.g., their personal phone book, PIN etc. Exceptions are so-called SIM locked phones – in this case a mobile phone accepts only a certain SIM. However, this is rather a marketing than technical reason. Besides the SIM also the mobile phone itself can store user-related data. Additional user-related data is stored in the VLR responsible for the location area a user is currently in and the HLR of the network operator the user has a contract with. User data is protected in several ways: authentication centres are protected parts of the HLR residing at the network operator. Inside the core network only temporary identifiers are used, data is encrypted over the air interface (weak, but still encrypted), and the content of the SIM is protected via a PIN (some cards destroy themselves after being attacked too many times). Localisation could be terminal assisted: the terminal could gather the current signal strength from all surrounding base stations. Furthermore, using the time of arrival helps calculating the distance. Reflection and attenuation makes the calculation more difficult.4.7 GSM uses only two levels of hierarchy: Network operators store all user related information in the HLR and all information related to visitors within a certain location area in a VLR. Capacities of HLRs is up to some million customers, that of VLRs up to a million. I.e., within the location area a maximum of, e.g., one million users can be active (registered). If many users move between location areas updates have to take place, i.e., the HLR always gets the information about the new VLR. These updates happen independently on the users’ activity (data transmission, calls etc.). For standard scenarios – most users stay most of the time within their location area – the 2-level hierarchy works well. However, if, e.g., many tourists move frequently the updating process puts some load on the network as the HLR in the home network of the tourists always requires update information – probably around the globe. More levels of hierarchy could improve scalability but also raises complexity.4.8 HSCSD still operates circuit switched as CSD does. It ―simply‖ combines several connections. GPRS introduces a new paradigm in GSM, packet switching. Basically, the core network needs routers handling the packet stream. These routers (SGSN, GGSN) operate on IP and rely on the traditional GSM network for user localisation. Another new component located at the HLR is a registry for subscribed GPRS services. Furthermore, the system has to set up a context for each active user,。
移动通信课后答案1.doc

1、什么叫移动通信?移动通信的特点?通信双方至少有一方处在移动情况下(或临时静止)的相互信息传输和交换.移动通信的特点:a 移动通信必须利用无线电波进行信息传输b 移动通信是在复杂的干扰环境中运行的c 移动通信可以利用的频谱资源非常有限d 移动通信系统的网络结构多种多样,网络管理和控制必须有效e移动台必须适合于在移动环境中使用2、单工通信与双工通信有何区别?各有何优缺点?答:区别:单工通信是指通信双方电台交替地进行收信和发信。
双工通信是指通信双方可同时进行传输消息的工作方式。
单工通信的优点是电台设备简单、省电,且只占用一个频点。
缺点是这样的工作方式只允许一方发送时另一方进行接收。
此外,任何一方当发话完毕,必须立即松开其按讲开关,否则将收不到对方发来的信号。
双工通信的优点是使用方便,同普通有线电话相似,接受和发射可同时进行。
缺点是在电台的运行过程中,不管是否发话,发射机总是工作的,故电源消耗较大,这一点对用电池做电源的移动台而言时不利的。
4、常用移动通信系统包括哪几种类型?答:包括无线电寻呼系统,蜂窝移动通信系统,无绳电话系统,集群移动通信系统,移动卫星通信系统,分组无线网。
5.蜂窝通信系统采用了哪些技术它与无线寻呼、无绳电话、集群系统的主要差别是什么?答:蜂窝通信系统采用的技术有:频率再用、小区分裂、越区切换。
它与无线寻呼、无绳电话、集群系统的主要差别有:①线电寻呼系统是单向通信系统,通话双方不能直接利用它对话。
②无绳电话以有线电话网为依托,是有线电话网的无线延伸。
③集群移动通信属于调度系统的专用通信网,具有一定的限时功能,主要以无线用户为主,一般采用半双工,用频道共用技术来提高系统的频率利用率。
④蜂窝移动通信属于公众移动网采用全双工工作方式,除了无线用户之间的通信外,还有大量的无线用户与有线用户之间的通信,采用频道再用技术来提高系统的频率利用率。
4、全球3G的三大标准:WCDMA、CDMA2000、TD-SCDMA.5、基站:固定不动接发移动台的信号完成与交换中心相连,从而实现移动台信号的收发.6、移动台:接收发送无线信号并且可以移动的终端;包括:手机,车载台、无绳电话等.7、交换中心:交换各种信息的中心,分为有线和无线.无线交换中心为各个移动台所在的基站之间提供交换服务。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这是三份真实的试卷题目,至于你信不信,反正我是信了……不管考到哪份卷子,使用者请记住了,不要考得太好了,不然容易出事的,不要太贪心,差不多就好!A卷单项选择:1. 无线小区形状的选择,正六边形小区的临区中心间距离为_____【】A.r B. 1.414r C. 1.732r D. 0.5r2. 3G设备WCDMA载波最小带宽为_____【】A.5MHz B. 1.6MHz C. 1.25MHz D. 1.23MHz3. GSM系统所用的多址方式为_____【】A.码分多址 B. 时分多址 C. 频分多址 D. B与C都用4. 在GSM系统中,BSC与BTS之间的接口称为____接口。
【】A.Abis B. A C. B D. F5. 1992年世界无线电行政大会(W ARC)根据ITU对于IMT-2000的业务量和所需频谱的估计,划分了_____带宽给IMT-2000。
【】A.60MHz B. 230MHz C. 170MHz D. 120MHz填空题1.鉴权的作用是______防止_______,同时通过拒绝_______用户的______而保护GSM移动网络的_______。
2.VLR是存储用户____的动态数据库,当漫游用户进入某个______区域时,必须在MSC相关的VIR中______,VIR分配给移动用户一个_______(MSRN)。
3.信道编码主要包括纠错编码和______。
纠错编码的______是通过对信源编码的数据增加一些________对信源编码的数据进行_______。
以使在接收时能从接收的______中检出由于传送过程中引起的_______从而进行纠错。
4.由于码分多址的码是采用________,这样就给信号带上了伪装,如果对方不知道所用的码,是______破译的。
即便知道码,窃听者也_______靠近_______才能收到_________。
名词解释1.信源编码:信源编码的主要作用是将信源送出的模拟信号取样、量化、编码,并对编码后的信号去掉信源多余的冗余信息,以达到压缩信源信息率,降低信号的传输速率、缩小信号带宽,从而提高通信的有效性2.频分多址(FDMA):把通信系统的总频段划分成若干个等间隔的互不重叠的频道,分配给不同的用户使用3.同频干扰:无用信号的载频与有用信号的载频相同,并对接收同频有用信号的接收机造成的干扰4.位置登记:移动台向基站报告其位区状态、身份标识和其他特征的过程5.归属位置寄存器(HLR):用于移动用户管理的数据库。
主要存储有关用户的参数和有关用户目前所处位置的信息。
每个移动用户都应在其归属位置寄存器注册登记。
简答题:1.移动通信的特点①电波传输条件恶劣,存在严重的多径衰落现象②具有多普勒效应③存在远近效应④用户经常移动⑤组网方式灵活2.3G系统的组成和作用组成:由移动台(MS)、无线接入网(RAN)和核心网(CN)组成作用:①移动台包括移动终端与用户识别卡分别对应于GSM系统的移动终端与SIM卡②无线接入网相当于GSM系统的基站子系统,主要完成用户接入的全部功能,包括所有空中接口的功能③核心网相当于GSM系统的网络子系统,由用来传输话音的电路交换子网络和用来传输数据的分组交换子网络两部分构成3.简述WCDMA移动通信系统的组成(结构)由用户终端设备、无线接入网、核心网络和外部网络组成答:由核心网(CN)、无线接入网(UTRAN)、用户终端设备(UE)、外部网络构成。
(1)用户终端设备:包括移动设备(ME)和用户识别卡USIM。
(2)无线接入网:由一个或几个无线网络子系统(RNS)构成。
(3)核心网络:负责与其他网络的连接和对US的通信和管理。
分为电路交换(CS)域和分组交换(PS)域。
(4)外部网络:CS网络:用于提供电路交换连接,ISDN和PSTN也属于CS网络。
PS网络:用于提供分组业务连接,Internet属于PS网络。
4.第4代移动通信的概念第四代移动通信概念可称为广带接入和分布网络,具有非对称超过2Mb/S的数据传输能力,对全球移动用户能提供150Mb/s的高质量影像服务,将首次实现三维图像的高质量传输。
5.简述RBS2202的硬件组成及功能RBS2202主要由基站控制单元、无线收发信机、合成和分配单元、电源控制单元、电源转换单元组成功能:基站控制单元相当于计算机的CPU装载着基站的数据无线收发信机是基站上的信号处理单元,它实现对信号的发射和接受,同时进行信号的处理合成和分配单元主要用于完成信号的合成与分配功能,信号合成指将不同TRU的发射信号合成到一起,通过一根馈线发射出去电源控制单元对电源和环境设备的控制与监测,负责基站电源盒环境警告的收集,并通过内部控制功能调整内部相关电源和环境设备的运行状况,保证整个基站的正常运行电源转换单元主要功能是把230V AC变换为+24VDC计算题假设一个多信道共用小区中,要求呼损率为3%,共用信道数n=10,假设平均每个用户的话务量为0.1Erl,问这个校区的忙时能容纳多少用户?(呼损率为3%,n=10的忙时话务量是5.529)B卷单项选择:1.TD-SCDMA载波最小带宽为_____【】A.5MHz B. 1.6MHz C. 1.25MHz D. 1.23MHz2. GSM系统接口C接口定义为归属用户位置寄存器与_______。
【】A.访问用户位置寄存 B. 移动业务交换中心C. 不同移动业务交换中心D. 鉴权中心3. IMT-2000移动台与无线接入网之间的接口______【】A.UN1 B. RAN-CN C. NM1 D. U1M-MT4.GSM900系统的收发间隔、信道间隔分别为_____【】A.45MHz、200KHz B. 40MHz、200KHzC. 45MHz、150KHzD. 40MHz、150KHz5. 无线小区形状正六边形单位小区面积为_____【】A.1.3r^2 B. 1.42r^2 C. 2r^2 D. 2.6r^2填空题1.小区制是每个无线小区设置一个发射功率为5~10W的小功率基站,覆盖半径一般为5~20km。
每个单位无线区群分配一组频率,在每个单位区群中,每个无线小区使用一组频道,邻近无线小区使用不同的频道。
2.CDMA正向传输的逻辑信道采用64阶沃尔码区分,由1个导频信道W0,7个寻呼信道W1~W7,55个业务信道W8~W63组成。
3.WCDMA的用户终端设备(UE)包括移动设备(ME)和用户识别卡USIM两部分,相当于GSM系统中的ME和SIM卡,用户终端设备(UE)的主要功能是通过空中接口Uu与网络设备进行数据交互。
4.在CDMA2000 1X系统中,前向链路和反向链路都采用卷积码或Turbo码作为前向差错控制编码(FEC)。
小于19.2kbit/s的信息数据速率采用卷积码,大于或等于19.2kbit/s的信息数据速率一般采用Turbo码。
名词解释1.时分多址(TDMA):在一个载波频率上把实践分割成周期性的帧,每一帧再分割成若干个时隙,每个时隙就是一个通道,分配给每个用户2.定位技术:移动终端位置的测量方法和计算方法3.越区切换:移动台在通话过程中从一个基站覆盖区移动到另一个基站覆盖区,或是由于外界干扰而却换到另一条话音信道上的过程4.射频调制:将需要传输的基带信号进行频谱搬移至相应频段的信道上以低高度的天线转换为电磁波发射5.反向闭环功率控制:是由基站检测移动台的信号强度或信噪比,根据测得结果与预定值比较,产生功率调整指令,并通知移动台调整其发射功率简答题1.鉴权和加密的作用鉴权的作用是保护网络加密的作用是无线链路上的加密,基站收发信机与移动台之间交换用户信息和用户参数时不被非法个人或者团体获得或监听2.IS-95CDMA的特点①同一频率可以再所有小区重复使用,大大提高了频谱利用率②抗干扰能力强、误码率低③抗多径干扰性能好④具有保密性⑤系统容量大,且具有软容量特性⑥具有软切换特性3.简述3G采用的关键技术①先进的扩频码和地址码技术②高效信道编译码技术③多径分集接受技术④多用户检测技术4.天线的参数有哪些?①天线的方向性④天线的输入阻抗②天翔的增益⑤天线倾角③天线的极化5. TD-SCDMA系统智能TD-SCDMA的智能天线使用一个环形天线阵,由8个完全相同的圆柱形振子均匀排列,振子间的距离d=λ/2组成的圆形天线阵或扇形天线阵,智能天线的功能是由天线阵及与其相连接的基带数字信号处理部分共同完成的。
该智能天线的仰角方向辐射图形与每个天线元相同,在方位角的方向图由基带处理器控制,可同时产生多个波束,按照通信用户的分布,在360°的范围内任意赋形。
为了消除干扰,波束赋形是还可以再有干扰的地方设置零点,该零点出的天线辐射电平要比最大辐射方向低约40dB计算题假设一个多信道系统的一个小区有7个话音信道,每天每个用户平均呼叫10次,每个信道平均时间为80S,呼损率要求10%,忙时集中率为0.125.问该小区能有多少个用户?(n=7 A=4.666Erl)C卷单项选择:1.CDMA2000的最小带宽2。
GSM小区切换由()控制3.()分别存放于()()地方4.55个业务信道5.GSM900每个载波间隔为() 3.84M填空题1. 信源编码的主要作用是将信源送出的模拟信号取样、量化、编码,并对编码后的信号去掉信源多余的冗余信息,以达到压缩信源信息率,降低信号的传输速率、缩小信号带宽,从而提高通信的有效性2.位置登记:移动台向基站报告其位区状态、身份标识和其他特征的过程。
通过登记,基站可以知道移动台的位置,确定移动台的寻呼信道的哪个时隙中监听,并能有效地向移动台发起呼叫等。
3.TD-SCDMA的智能天线使用一个环形天线阵,有8个完全相同的圆柱形振子均匀排列,振子间的距离d=入/2组成的圆形天线阵或扇形天线阵。
智能天线的功能是由天线阵及其相连接的基带数字信号处理部分共同完成的。
4.名词解释1.码分多址(CDMA):不同的移动台的识别不是靠频谱不同或时隙不同,而是用各自不同的独特的随机的地址码序列来区分,地址码序列彼此正交互不相关,或相关性小2.开环功率控制:为了补偿平均路径衰落的变化和阴影、拐弯等效应,它必须要有一个很大的动态范围3.切换技术:适用于移动终端在不同移动小区之间、不同频率之间通信或者信号降低信道选择等情况4.扩频调制:调制后的信号带宽远大于未调制的传输信号的调制方式5.加密:基站收发信机与移动台之间交换用户信息和用户参数时不被非法个人或者团体获得或监听简答题1.3G的主要目标是什么?①全球同一频段、统一标准、无缝隙覆盖、全球漫游②提供音频、视频等多媒体业务③便于过渡、演进④高服务质量⑤高频谱利用率⑥低电磁辐射CDMA手机2.TD-SCDMA与WCDMA和CDMA2000相比主要优势①方便地支持非对称业务和语音+数据的混合业务②较好的网络兼容性和灵活的组网方式,可与第二代GSM移动通信系统兼容③频谱利用率高④系统收发使用同一频段,适用使用智能天线技术,从而使得系统的性能更加稳定⑤系统设备成本较低3.为什么无限小区采用正六边形正六边形小区的小区面积最大、也最接近理想的圆形、重叠区面积却最小。