可变进气系统

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

可变配气正时控制机构的主要目的是在维持发动机怠速性能情况下,改善全负荷性能。这种机构是保持进气门开启持续角不变,改变进气门开闭时刻来增加充气量。

(1)凌志LS400汽车可变配气正时控制机构(VVT-i)

VVT-i系统用于控制进气门凸轮轴在50°范围内调整凸轮轴转角,使配气正时满足优化控制发动机工作状态的要求,从而提高发动机在所有转速范围内的动力性、经济性和降低尾气的排放。

VVT-i系统由VVT-i控制器、凸轮轴正时机油控制阀和传感器三部分组成,如下图所示。其中传感器有曲轴位置传感器、凸轮轴位置传感器和VVT传感器。

LS400汽车的发动机是8缸V型排列4气门式的,有两根进气凸轮轴和两根排气凸轮轴。在工作过程中,排气凸轮轴由凸轮轴齿形带轮驱动,其相对于齿形带轮的转角不变。曲轴位置传感器测量曲轴转角,向ECU 提供发动机转速信号;凸轮轴位置传感器测量齿形带轮转角;VVT传感器测量进气凸轮轴相对于齿形带轮的转角。它们的信号输入ECU,ECU 根据转速和负荷的要求控制进气凸轮轴正时控制阀,控制器根据指令使

进气凸轮轴相对于齿形带旋转一个角度,达到进气门延迟开闭的目的,用以增大高速时的进气迟后角,从而提高充气效率。

1)结构

VVT-i控制器的结构如下图所示,它包括由正时带驱动的外齿轮和与进气凸轮轴刚性连接的内齿轮,以及一个内齿轮、外齿轮之间的可动活塞。活塞的内、外表面上有螺旋形花键。活塞沿轴向的移动,会改变内、外齿轮的相对位置,从而产生配气相位的连续改变。

VVT外壳通过安装在其后部的剪式齿轮驱动排气门凸轮轴。

凸轮轴正时控制阀根据ECU的指令控制阀轴的位置,从而将油压施加给凸轮轴正时带轮以提前或推迟配气正时。发动机停机时,凸轮轴正时控制阀处于最延迟的位置,如下图(b)所示。

2)工作原理

根据发动机ECU的指令,当凸轮轴正时控制阀位于图(a)所示时,机油压力施加在活塞的左侧,使得活塞向右移动。由于活塞上的旋转花键的作用,进气凸轮轴相对于凸轮轴正时带轮提前某一角度。

当凸轮轴正时控制阀位于图(b)位置时,活塞向左移动,并向延迟的方向旋转。进而,凸轮轴正时控制阀关闭油道,保持活塞两侧的压力平衡,从而保持配气相位,由此得到理想的配气正时。

提高充气效率是提高发动机动力性能的重要措施。除了增压以外,合理选择配气相位且能随发动机转速不同而变化,以及利用进气的惯性及谐振效应是提高充气效率的重要途径。

进气惯性及谐振效应是随着发动机转速、进气管长度及管径大小的变化而变化。在不同转速下,进气管长度应有所不同,方能获得良好的进气惯性效应。并且,只有采用可变配气相位,可变进气系统才能适应不同发动机转速下的要求,才能较全面地提高发动机性能。

可变进气系及配气相位改善发动机的性能,主要体现在以下几方面:

①能兼顾高速及低速不同工况,提高发动机的动力性和经济性;

②降低发动机的排放;

③改善发动机怠速及低速时的性能及稳定性。

这里首先介绍可变进气系统,至于可变配气相位以后会以不同的方式

再作介绍。

可变进气系统分为两类:(1)多气门分别投入工作;(2)可变进气道系统。其目的都是为了改变进气涡流强度、提高充气效率;或者为了形成谐振及进气脉冲惯性效应,以适应低速及中高速工况都能提高性能的需要。 1.多气门分别投入工作

实现多气门分别投入工作的结构方案有如下两种:第一,通过凸轮或摇臂控制气门按时开或关;第二,在气道中设置旋转阀门,按需要打开或关闭该气门的进气通道,其结构如图3-94a)所示,这种结构比用凸轮、摇臂控制简单。

a)涡轮控制阀示意图b)低速、小负荷工况c)高速、大负荷工况

图3-94 多气门分别投入工作示意图

当发动机在节气门部分开度工作时,涡流控制阀关闭(见图3-94b),混合气通过主要螺旋进气道进入气缸。节流的气道促进混合加速,并沿着切线方向进入气缸,这样可以形成较强的进气涡流,对于低速工况及燃烧稀混合气是有利的。

当发动机转速及负荷增加时,仅由主气道进入气缸的混合气不能满足发动机的需要,于是副进气道中的阀门开启,增加进入缸内的混合气(见图3-94c),而且抑制了进气道中进气涡流强度,这对于提高发动机高速

工况时的容积效率及燃烧效率、减少能量损失是有利的。

2.可变进气道系统

可变进气道系统是根据发动机不同转速,使用不同长度及容积的进气管向气缸内充气,以便能形成惯性充气效应及谐振脉冲波效应,从而提高充气效率及发动机动力性能。

(1)双脉冲进气系统

双脉冲进气系统由空气室及两根脉冲进气管组成,如图3-95所示。空气室的入口处设置节气门,并与两根直径较大的进气管相连接,其目的在于防止两组(每组三缸)进气管中谐振空气柱的互相干扰。每根脉冲管子成为形成谐振空气波的通道,分别连接两组气缸。

将六缸机的进气道分成前后两组,这就相当于两个三缸机的进气管,每个气缸有240°的进气冲程,各气缸之间不会有进气脉冲波的互相干扰。上述可变进气系统的效果在于:每个气缸都会产生空气谐振波的动力效应,而直径较大的空气室、中间的产生谐振空气波的通道同支管一起,形成脉冲波谐振循环系统。

图3-95 双脉冲进气系统示意图

a)低速段(n﹤4400r/min);b)高速段(n﹥4400r/min)

当进气管中动力阀关闭时(见图3-95a),可变进气管容积及总长大约为

70cm的进气管,能在发动机转速n=3300r/min时,形成谐振进气压力波,提高了充气效率,使转矩达到最大值。当发动机转速大于4000r/min 时,进气管中便不能形成有效的进气压力波,于是动力阀门打开(见图3-95b),两个中间进气通道便连接成一体。优化选择在每个气缸与总管连接的支管容积后,能形成高速(如:n=4400r/min)下谐振进气脉冲波,使转矩值达到较高值。于是在n=1500~5000r/min的范围内,转矩曲线变化平缓,如图3-96所示。

图3-96 采用可变进气系统后的转矩特性(六缸发动机)

(2)四气门二阶段进气系统

该进气系统由弯曲的长进气管和短的直进气管与空气室相连接,并分别连接到缸盖的两个进气门上,如图3-97所示。在发动机低、中速工况时由长的弯曲管向发动机供气;而在高速时,短进气管也同时供气(动力阀打开),提高了发动机功率。

在发动机低、中速工况(n﹤3800r/min),动力阀关闭短进气管的通道(见图3-97a)。空气通过长的弯曲气道,使气流速度增加,并且形成较强的涡流,促进良好混合气的形成。此外,进气管的长度能够在进气门即将关闭时,形成较强的反射压力波峰,使进入气缸的空气增加。这都有助于提高发动机低速时的转矩。

在发动机高速工况(n﹥3800r/min),动力阀打开(见图3-97b),额外的空气从空气室经过短进气管进入气缸,改善了容积效率,并且由另一气

相关文档
最新文档