同济大学《混凝土结构基本原理》第十一章 混凝土构件的使用性能

合集下载

同济大学顾祥林 混凝土结构课后答案

同济大学顾祥林 混凝土结构课后答案

3
Ec
105 N / mm2 34.7 2.2 f cu
2-10 什么是混凝土的疲劳强度?重复荷载下混凝土应力——应变关系曲线有何特点? 答:对混凝土棱柱体试件,当加载应力小于混凝土疲劳强度 f
f c
时,如图中的加载应力σ1
或更大的加载应力σ2,经过多次重复加载试验后,应力——应变关系曲线与图 2-30(a)的 情况类似,只是随着荷载重复次数的增多,加载和卸载过程形成的环状曲线趋于闭合,但即 使荷载重复次数达到数百万次也不会发生疲劳破坏。如果加载应力高于混凝土疲劳强度
思考题
2-1 钢筋可以如何分类? 答:1.根据钢筋中的化学成分,可将钢筋分为碳素钢及普通合金钢两大类 2.按加工方法,钢筋可分成热轧钢筋、冷拉钢筋和热处理钢筋三大类;钢丝可分为碳素 钢丝、刻痕钢丝、钢绞线和冷拔低碳钢丝四大类。 2-2 软钢和硬钢的应力——应变关系曲线有何不同?他们的屈服强度是如何取值的? 答:
思考题
4-1 为什么轴心受拉构件开裂后,当裂缝增至一定数量时,不再出现新的裂缝? 答:随着荷载的增加,裂缝不断增加,裂缝处混凝土不断推出工作,钢筋不断通过粘结力将 拉力传递给相邻的混凝土。 当相邻裂缝之间的距离不足以使混凝土开裂的拉力传递给混凝土 时,构件中不再出现新的裂缝。 4-2 如何确定受拉构件的开裂荷载和极限荷载? 答:当εt=εto 时,混凝土开裂,构件的开裂荷载为 Ntcr=EcAoεto=EcA(1+αEρ) εto 当钢筋应力达到屈服强度,构件即进入第阶段,荷载基本保持不变,但变形急剧增加。 这时构件达到极限承载力 Ntu=fyAs 4-3 在轴心受压短柱的短期荷载试验中,随着荷载的增加,钢筋的应力增长速度和混凝土的 应力增长速度哪个快?为什么? 答:第一阶段钢筋应力增长快,第二阶段钢筋应力不再增加,混凝土应力继续增加。由于混 凝土的非线性,使得应变增长较应力增加速率大。 4-4 如何确定轴心受压短柱的极限承载能力?为什么在轴压构件中不宜采用高强钢筋? ‘ 答:由于ε=εo=ε’s=0.002,相应的纵筋应力值为:σ s=Esε’s≈200×103×0.002=400N/mm2。 由此可知,轴心受压短柱中,当钢筋的强度超过 400N/mm2 时,其强度得不到充分发挥。 故对于屈服强度大于 400N/mm2 的钢筋,在计算 f’y 值时只能取 400N/mm2。 4-5 构件设计时,为什么要控制轴心受力构件的最小配筋率?如何确定轴心受拉和轴心受压 构件的最小配筋率? 答: 为了防止构建出现脆性破坏。 轴心受力构件的最小配筋率是按极限抗拉承载力和开裂荷 载相等的原则来确定的。 (钢筋屈服的同时混凝土被压碎破坏) 4-6 配有普通箍筋的钢筋混凝土轴心受压构件中,箍筋的作用主要是什么? 答:固定纵筋以形成钢筋骨架,防止纵向钢筋压曲,便于施工。 4-7 钢筋混凝土轴心受压构件在长期荷载作用下,随着荷载作用时间的增长,钢筋的应力和 混凝土的应力各发生什么变化?混凝土的徐变是否会影响短柱的承载力? 答:轴心受压构件在不变荷载的长期作用下,由于混凝土的徐变影响,其压缩变形将随时间

混凝土结构第十一章思考题参考答案

混凝土结构第十一章思考题参考答案

第十一章思考题参考答案11.1 现浇单向板肋梁楼盖中的主梁按连续梁进行内力分析的前提条件是什么?答:(1)次梁是板的支座,主梁是次梁的支座,柱或墙是主梁的支座。

(2)支座为铰支座--但应注意:支承在混凝土柱上的主梁,若梁柱线刚度比<3,将按框架梁计算。

板、次梁均按铰接处理。

由此引起的误差在计算荷载和内力时调整。

(3)不考虑薄膜效应对板内力的影响。

(4)在传力时,可分别忽略板、次梁的连续性,按简支构件计算反力。

(5)大于五跨的连续梁、板,当各跨荷载相同,且跨度相差大10%时,可按五跨的等跨连续梁、板计算。

11.2 计算板传给次梁的荷载时,可按次梁的负荷范围确定,隐含着什么假定?答:假定板、次梁非连续,并且仅短向传力。

11.3 为什么连续梁内力按弹性计算方法与按塑性计算方法时,梁计算跨度的取值是不同的?答:两者计算跨度的取值是不同的,以中间跨为例,按考虑塑性内力重分布计算连续梁内力时其计算跨度是取塑性铰截面之间的距离,即取净跨度;而按弹性理论方法计算连续梁内力时,则取支座中心线间的距离作为计算跨度,即取。

11.4 试比较钢筋混凝土塑性铰与结构力学中的理想铰和理想塑性铰的区别。

答:1)理想铰是不能承受弯矩,而塑性铰则能承受弯矩(基本为不变的弯矩);2)理想铰集中于一点,而塑性铰有一定长度;3)理想铰在两个方向都能无限转动,而塑性铰只能在弯矩作用方向作一定限度的转动,是有限转动的单向铰。

11.5 按考虑塑性内力重分布设计连续梁是否在任何情况下总是比按弹性方法设计节省钢筋?答:不是的11.6 试比较内力重分布和应力重分布答:适筋梁的正截面应力状态经历了三个阶段:弹性阶段--砼应力为弹性,钢筋应力为弹性;带裂缝工作阶段--砼压应力为弹塑性,钢筋应力为弹性;破坏阶段--砼压应力为弹塑性,钢筋应力为塑性。

上述钢筋砼由弹性应力转为弹塑性应力分布,称为应力重分布现象。

由结构力学知,静定结构的内力仅由平衡条件得,故同截面本身刚度无关,故应力重分布不会引起内力重分布,而对超静定结构,则应力重分布现象可能会导:①截面开裂使刚度发生变化,引起内力重分布;②截面发生转动使结构计算简图发生变化,引起内力重分布。

同济大学土木工程 第九章 混凝土结构的使用性能—开裂和挠度

同济大学土木工程 第九章 混凝土结构的使用性能—开裂和挠度

第九章混凝土结构的使用性能—开裂和挠度一、概述二、裂缝的类型三、构件的开裂内力四、裂缝宽度的计算理论五、裂缝的控制六、受弯构件的变形与刚度结构构件的可靠性具有足够的承载力和变形能力安全性:适用性:耐久性:在使用荷载下不产生过大的裂缝和变形在一定时期内维持其安全性和适用性的能力极限状态设计理论承载能力极限状态:正常使用极限状态:混凝土结构的使用性能包括裂缝、挠度、振动、疲劳等裂缝控制、变形控制和振动控制混凝土结构的极限荷载下的强度产生裂缝的原因:在混凝土结构中裂缝通常是由拉应力引起的。

因混凝土的极限拉伸应变εt u 随混凝土品种、配合比、添加剂、养护条件、加载速度、截面上的应力梯度等不同会发生变化。

严格地说,只有当混凝土的拉伸应变εt 达到某处混凝土的极限拉应变εt u 时才会出现裂缝。

1. 受力裂缝:拉、弯、剪、扭、粘结等引起的裂缝斜裂缝!!垂直裂缝!目前,只有拉、弯状态下混凝土横向裂缝宽度的计算理论比较成熟钢筋混凝土轴心受拉构件,贯穿整个截面宽度的裂缝为“主裂缝”;用变形钢筋钢筋配筋的构件,在主裂缝之间还出现有位于钢筋附近的短的“次裂缝”,有人称之为“粘结裂缝”。

当钢筋应力接近屈服时,将出现沿钢筋的纵向裂缝。

在梁中,主裂缝首先从受拉区边缘开始向中和轴发展,同样在主裂缝之间可以看到短的次裂缝。

梁高较大的T形梁或工字形梁中,钢筋附近的次裂缝可发展成与主裂缝相交的“枝状裂缝”(图c)。

在厚度较大的单向板或墙中(图d所示为板底面的裂缝)同样会产生这种“枝状裂缝”。

枝状裂缝在梁腹或钢筋间距中间处的裂缝宽度要比钢筋处的裂缝宽度大得多。

承受剪力和扭矩的构件,将出现垂直于主拉应力方向的裂缝。

钢筋混凝土结构在轴压力或压应力作用下也可能产生裂缝,例如梁受压区顶部的水平裂缝、薄腹梁端部连接集中荷载和支座的斜向受压裂缝、螺旋箍筋柱沿箍筋外沿的纵向裂缝、局部承压和预应力筋锚固端的局部裂缝等。

发生受压裂缝时,混凝土的应变值一般都超过了单轴受压峰值应变,临近破坏,使用阶段中应予避免。

同济大学土木工程 第九章 混凝土结构的使用性能—开裂和挠度

同济大学土木工程 第九章 混凝土结构的使用性能—开裂和挠度

第九章混凝土结构的使用性能—开裂和挠度一、概述二、裂缝的类型三、构件的开裂内力四、裂缝宽度的计算理论五、裂缝的控制六、受弯构件的变形与刚度结构构件的可靠性具有足够的承载力和变形能力安全性:适用性:耐久性:在使用荷载下不产生过大的裂缝和变形在一定时期内维持其安全性和适用性的能力极限状态设计理论承载能力极限状态:正常使用极限状态:混凝土结构的使用性能包括裂缝、挠度、振动、疲劳等裂缝控制、变形控制和振动控制混凝土结构的极限荷载下的强度产生裂缝的原因:在混凝土结构中裂缝通常是由拉应力引起的。

因混凝土的极限拉伸应变εt u 随混凝土品种、配合比、添加剂、养护条件、加载速度、截面上的应力梯度等不同会发生变化。

严格地说,只有当混凝土的拉伸应变εt 达到某处混凝土的极限拉应变εt u 时才会出现裂缝。

1. 受力裂缝:拉、弯、剪、扭、粘结等引起的裂缝斜裂缝!!垂直裂缝!目前,只有拉、弯状态下混凝土横向裂缝宽度的计算理论比较成熟钢筋混凝土轴心受拉构件,贯穿整个截面宽度的裂缝为“主裂缝”;用变形钢筋钢筋配筋的构件,在主裂缝之间还出现有位于钢筋附近的短的“次裂缝”,有人称之为“粘结裂缝”。

当钢筋应力接近屈服时,将出现沿钢筋的纵向裂缝。

在梁中,主裂缝首先从受拉区边缘开始向中和轴发展,同样在主裂缝之间可以看到短的次裂缝。

梁高较大的T形梁或工字形梁中,钢筋附近的次裂缝可发展成与主裂缝相交的“枝状裂缝”(图c)。

在厚度较大的单向板或墙中(图d所示为板底面的裂缝)同样会产生这种“枝状裂缝”。

枝状裂缝在梁腹或钢筋间距中间处的裂缝宽度要比钢筋处的裂缝宽度大得多。

承受剪力和扭矩的构件,将出现垂直于主拉应力方向的裂缝。

钢筋混凝土结构在轴压力或压应力作用下也可能产生裂缝,例如梁受压区顶部的水平裂缝、薄腹梁端部连接集中荷载和支座的斜向受压裂缝、螺旋箍筋柱沿箍筋外沿的纵向裂缝、局部承压和预应力筋锚固端的局部裂缝等。

发生受压裂缝时,混凝土的应变值一般都超过了单轴受压峰值应变,临近破坏,使用阶段中应予避免。

第11章 混凝土构件的使用性能

第11章  混凝土构件的使用性能
荷载效应标准组合下(短期效应)混凝土中不产生拉应力
σ sk − σ pcII ≤ 0
σ ck
=
Nk A0
,σ ck
=
Mk W0
二、构件的裂缝控制
3.正截面抗裂度验算(以GB50010为例)
一般要求不出现裂缝(二级)
n
∑ S = SGk + ψ qi SQik i =1
荷载效应准永久组合下(长期效应)混凝土中不产生拉应力,荷载效 应标准(短期)组合下混凝土中可有拉力但应小于混凝土抗拉强度
四、裂缝宽度的实用计算方法
1. 半理论半经验的方法
预应力受弯构件裂缝处钢 筋的应力
和轴拉构件类 似,参见教材 中的相应内容!
P
进入塑性
承载力极限
开裂
下边缘的应力为0
P
P
考虑自重的反拱值
δ
不考虑损失 的反拱值
不考虑自重有 效预应力引起 的反拱值
四、裂缝宽度的实用计算方法
1. 半理论半经验的方法
有效受拉面积 轴拉构件:Ate = bh
受弯构件:Ate = 0.5bh + (bf − b)hf
于是,对轴拉和受弯构件,平均裂缝间距的公式可统一写成:
lm
=
k2
d
ρ te
三、横向受力裂缝宽度的计算
1. 粘结滑移理论
裂缝的宽度
C
wm = (ε sm − ε cm )lm = kw' 2ε smlm
施工期间产生的裂缝和使 用期间产生的裂缝
非受力因素产生的裂缝和 受力因素产生的裂缝
龟裂、横向裂缝(与构件 轴线垂直)、纵向裂缝、 斜裂缝、八字裂缝、X形交 叉裂缝等
二、构件的裂缝控制

混凝土结构基本原理 同济

混凝土结构基本原理 同济

混凝土结构基本原理同济混凝土结构是指采用混凝土作为主要材料构成的建筑结构。

混凝土结构的基本原理包括混凝土的力学特性、混凝土与钢筋的复合力学特性、结构受力分析与设计以及施工过程中的质量控制等方面。

下面将依次介绍这些基本原理。

首先是混凝土的力学特性。

混凝土是一种复合材料,由水泥、骨料、粉煤灰等组成。

混凝土具有较高的抗压强度和较低的抗拉强度,因此在结构中常使用混凝土承受压力的构件,如柱、梁等。

混凝土的力学特性可以通过试验获得,如抗压试验、抗拉试验等。

其次是混凝土与钢筋的复合力学特性。

混凝土具有较好的抗压性能,但抗拉强度较低,容易产生裂缝。

钢筋则具有较高的抗拉强度,能够抵抗混凝土的拉力。

因此,在混凝土结构中常将钢筋嵌入混凝土中,构成混凝土与钢筋的复合结构。

这种复合结构能够充分发挥混凝土和钢筋的优势,提高结构的抗震和抗裂性能。

第三是结构受力分析与设计。

混凝土结构的设计要满足力学平衡和强度要求。

在结构受力分析中,需要考虑结构的荷载、支座反力、截面强度等因素,进行力学计算。

根据结构的受力状态和设计要求,确定合适的截面尺寸和布置钢筋。

设计要合理选取混凝土的等级、强度,以保证结构在使用寿命内满足使用要求。

最后是施工过程中的质量控制。

混凝土结构的施工过程中,需要保证混凝土的配合比、浇筑质量和养护条件等,以保证混凝土结构的质量。

配合比是指混凝土中水泥、骨料和水的比例关系,不同的配合比能够获得不同的混凝土性能。

浇筑质量包括浇筑工艺、浇筑过程中的震捣和养护等,要保证混凝土的致密性和强度。

养护条件包括温度、湿度等,能够促进混凝土的水化反应,提高强度和耐久性。

总结起来,混凝土结构的基本原理包括混凝土的力学特性、混凝土与钢筋的复合力学特性、结构受力分析与设计以及施工过程中的质量控制。

混凝土结构的设计和施工要根据这些原理进行,以保证结构的安全和可靠性。

钢筋混凝土构件的基本受力性能

钢筋混凝土构件的基本受力性能
1.0 1.0 0.8 0.8 0.6 0.6
0.4
◆ 由于受压区混凝土压应力不
断增大,其弹塑性特性表现得 越来越显著,受压区应力图形 逐渐呈曲线分布。
M Muu M Myy
Mcr
0
ξn=xn/h0
φ 0 cr0.1 0.2 0.3 0.4 0.5 φy
3.3 承载力和延性
φu
φ
第三章
钢筋混凝土构件的基本受力性能
一些裂缝,拉区混凝土逐步退出工 作,截面抗弯刚度降低,荷载-挠度 曲线或弯矩-曲率曲线有明显的转 折。 ◆ 虽然受拉区有许多裂缝,但如果 纵向应变的量测标距有足够的长度 (跨过几条裂缝),则平均应变沿 截面高度的分布近似直线。 (平截面假定) (Plane Cross-Section Assumption)

3.3 承载力和延性
第三章
钢筋混凝土构件的基本受力性能
3.3 承载力和延性(Bearing Capacity and Ductility) 钢筋混凝土构件的破坏类型(Failure Mode)有三种基本形式
★ 延性破坏(Ductile Failure):
配筋合适的构件,具有一定的承载力,破坏时有一定的延性。 钢筋的抗拉强度和混凝土的抗压强度都得到充分发挥 ★ 受拉脆性破坏(Brittle Failure): 承载力很小,取决于混凝土的抗拉强度,破坏特征与素混凝土 构件类似。 混凝土的抗压强度未得到发挥
Mcr
0
fy
y ξn=xn/h0
ε
φcr0.1 0.2 0.3 0.4 0.5 0 Ⅱa 状态截面应力和应变分布 φy φu φ
3.3 承载力和延性
第三章
钢筋混凝土构件的基本受力性能
带裂缝工作阶段(Ⅱ阶段)

030036《混凝土结构基本原理》同济大学教学大纲(含教学内容,使用课本等)

030036《混凝土结构基本原理》同济大学教学大纲(含教学内容,使用课本等)

《混凝土结构基本原理》课程教学大纲课程编号: 030036 学分:3 总学时:51大纲执笔人:朱军大纲审核人:屈文俊一、课程性质与目的本课程主要面向工程力学专业,是针对该专业修读专业方向二(现代工程结构方向)课群组的学生开设的专业特色课程内的限定选修课(F2),教学目的是使学生掌握由钢筋及混凝土这两种材料所组成的结构构件的基本力学性能及计算方法,从而为后继课程——《建筑混凝土结构设计》的学习打下基础。

二、课程基本要求(一) 绪论了解钢筋混凝土结构的一般概念与特点,了解其工程应用及发展概况。

(二)混凝土结构材料的物理力学性能熟悉钢筋混凝土材料的特点,掌握钢筋和混凝土的强度及应力应变关系,熟悉混凝土的收缩和徐变特性,熟悉混凝土与钢筋的粘结。

(三) 按近似概率理论的极限状态设计法熟悉极限状态的概念,了解按近似概率的极限状态设计法,掌握实用设计表达式。

(四) 受弯构件的正截面受弯承载力熟悉主要试验结果,熟练掌握单筋、双筋及T形截面受弯构件的正截面受弯承载力计算方法,熟悉受弯构件的一般构造。

(五) 受弯构件的斜截面承载力熟悉主要试验结果,熟练掌握梁的斜截面受剪承载力的计算方法,熟悉保证斜截面受弯承载力的构造措施。

(六) 受压构件的截面承载力熟悉主要试验结果,熟练掌握轴心受压普通箍筋柱的正截面受压承载力计算方法,熟练掌握偏心受压构件对称及不对称配筋正截面受压承载力计算方法,了解偏心受压构件斜截面受剪承载力计算,熟悉受压构件一般构造。

(七) 受拉构件的截面承载力熟悉主要试验结果,熟悉轴心受拉及偏心受拉构件正截面受拉承载力计算方法,了解偏心受拉构件斜截面受剪承载力计算(八) 受扭构件的扭曲截面承载力熟悉主要试验结果,熟练掌握纯扭构件及弯、剪、扭构件的扭曲截面承载力计算方法,熟悉受扭构件一般构造。

(九) 钢筋混凝土构件的变形、裂缝及混凝土结构的耐久性熟悉变形及裂缝控制计算的理论和方法,了解混凝土结构耐久性的基本概念。

混凝土构件的使用性能及结构的耐久性

混凝土构件的使用性能及结构的耐久性
Es
式中:
sk
——裂缝截面处纵向钢筋的拉应力

——纵向钢筋应变不均匀系数
平均裂缝宽度计算图式
c ——裂缝间混凝土自身伸长对裂缝
宽度的影响系数,为简化,一 般取0.85
8.1 钢筋混凝土构件裂缝宽度验算
第8章 混凝土构件的使用性能及结构的耐久性
3
平均裂缝宽度
裂缝截面处的钢筋应力 sk
sk 均可按裂缝截面处力的平衡条件求得
8.2 钢筋混凝土受弯构件的挠度验算
第8章 混凝土构件的使用性能及结构的耐久性
1
混凝土受弯构件变形计算的特点
钢筋混凝土受弯构件的M-φ关系曲线
受诸多因素影响,目前尚难以给出明确 的解析表达式。
解决办法是通过一定的理论分析与试验
研究,首先确定构件在短期荷载作用下 的刚度Bs,然后考虑长期荷载的影响, 以计算构件正常使用阶段的挠度。
8.1 钢筋混凝土构件裂缝宽度验算
第8章 混凝土构件的使用性能及结构的耐久性
8.1 钢筋混凝土构件裂缝宽度验算
第8章 混凝土构件的使用性能及结构的耐久性
1
裂缝的出现、分布和开展
裂缝宽度影响因素
裂缝宽度指的是受拉钢筋重心水平处构件侧表面上混凝土的裂缝宽度
传递长度l
裂缝宽度

粘结强度 钢筋表面积大小 配筋率 受拉区混凝土的滑移徐变和拉应力的松弛 混凝土的收缩 钢筋直径变化
向钢筋合力点的距离 e e0 yc as
yc
—截面重心至受压或较小受拉边缘的距离
大、小偏心受拉构件钢筋应力计算图式
8.1 钢筋混凝土构件裂缝宽度验算
第8章 混凝土构件的使用性能及结构的耐久性
3
平均裂缝宽度

混凝土结构设计原理(同济大学)课后思考题答案

混凝土结构设计原理(同济大学)课后思考题答案

第1章绪论思考题1.1什么是钢筋混凝土结构?配筋的主要作用和要求是什么?以混凝土为主要材料的结构。

在混凝土中配置适量的受力钢筋,并使得混凝土主要承受压力,钢筋主要承受拉力,就能起到充分利用材料,提高结构承载力和变形能力的作用。

要求:受力钢筋与混凝土之间必须可靠地粘结在一起,以保证两者共同变形、共同受力。

同时受力钢筋的布置和数量都应由计算和构造要求确定,施工也要正确。

保证钢筋和混凝土之间有足够的粘结力的构造措施有:1)对不同等级的混凝土和钢筋,要保证最小搭接长度和锚固长度;2)为了保证混凝土与钢筋之间有足够的粘结,必须满足钢筋最小间距和混凝土保护层最小厚度的要求;3)在钢筋的搭接接头范围内应加密箍筋;4)为了保证足够的粘结在钢筋端部应设臵弯钩。

1.2 钢筋混凝土结构的优点有:1)经济性好,材料性能得到合理利用;2)可模性好;3)耐久性和耐火性好,维护费用低;4)整体性好,且通过合适的配筋,可获得较好的延性;5)刚度大,阻尼大;6)就地取材。

缺点有:1)自重大;2)抗裂性差;3)承载力有限;4)施工复杂;5)加固困难。

1.3结构有哪些功能要求?简述承载能力极限状态和正常使用能力极限状态的概念。

(1)结构的安全性(Safety):在正常施工和正常使用时,能承受可能出现的各种作用;在设计规定的偶然事件发生时及发生后,仍然能保持必要的整体稳定性。

(2)结构的适用性(Serviceability):结构在正常使用时具有良好的工作性能,不致产生过大的变形以及过宽的裂缝等。

(3)结构的耐久性(Durability):结构在正常的维护下具有足够的耐久性。

(即结构能正常使用到规定的设计使用年限)。

它根据环境类别和设计使用年限进行设计。

承载力极限状态(ultimate limit state):结构或构件达到最大承载能力或变形达到不适于继续承载的状态;其主要表现为材料破坏、丧失稳定或结构机动。

正常使用极限状态(serviceability limit state):结构或构件达到正常使用或耐久性能中某项规定限值的状态;其主要表现为过大变形、裂缝过宽或较大振动。

同济大学顾祥林 混凝土结构课后答案

同济大学顾祥林 混凝土结构课后答案

4
的方法;也可以由公式计算 la
fy ft
d。
3-6 对水平浇筑的钢筋混凝土梁,其顶部钢筋与混凝土间的粘结强度和底部钢筋与混凝土间 的粘结强度相比有何区别?为什么? 答:顶部水平钢筋,钢筋地面的混凝土由于水分、气泡的溢出和混凝土泌水下沉,并不与钢 筋紧密接触,形成轻度较低的疏松空隙层,削弱了钢筋与混凝土的粘结作用。 3-7 两根钢筋在混凝土搭接时是否允许钢筋并拢?为什么? 答:不允许。增大钢筋外部混凝土保护层厚度和保持一定的钢筋净距,可以提高外围混凝土 的劈裂能力,保证粘结强度的充分发挥。 3-8 钢筋传递长度 ltr 和锚固长度 la 之间的区别和联系是什么? 答:传递长度—钢筋通过粘结作用把加于其上的拉力 T 传递给混凝土所需的粘结长度。 锚固长度—将钢筋在混凝土中延伸一段长度来实现钢筋与混凝土之间的锚固。 联系最小的锚固长度实际上就是钢筋屈服时的传递长度, 或称钢筋应力达到屈服强度时 的发展长度。
2
图 2.2 混凝土轴心受压应力-应变曲线关系 a 点前内部裂缝没有发展, 应力应变近似直线。 b 点称为临界应力点,内部裂缝有发展,但处于 稳定状态。c 点的应变称为峰值应变,e0 约为 0.002,内部裂缝延伸到表面, c 点后出现应变 软化。d 点为极限压应变,对普通混凝土取 0.0033。 美国的 E.Hognestad 建议的模型
图 2.1 软钢(左)和硬钢(右)的应力应变曲线关系
1
软钢的应力-应变曲线关系中,在 a 点以前,应力与应变呈线性比例关系,与 a 点相应的应 力称为比列极限;过 a 点后,应变较应力增长稍快,尽管从图上看起来并不明显;到达 b 点后,应力几乎不增加,应变却可以增加很多,曲线接近于水平线并一直延伸至 f 点。cf 段 称为流幅或屈服台阶;过 f 点后曲线又继续上升,直到最高点 d 点,相应于 d 点的应力称为 钢筋的极限强度,fd 段称为钢筋的强化阶段。过了 d 点之后,变形迅速增加,时间最薄弱 的截面逐渐缩小,出现“颈缩”现象,应力随之下降,到达 e 点时试件发生断裂。硬钢的应 力-应变曲线关系中,看不到明显的屈服点和流幅。其强度取值如下。软钢取屈服台阶(屈 服下限)的强度作为屈服强度,硬钢一般取残余应变为 0.2%时所对应的 0.2 应力作为钢筋 的条件屈服强度。 2-3 钢筋应力——应变曲线的理论模型有哪几种?他们适用于何种情况? 答:三折线模型、两折线模型、双斜线模型。三折线模型适用于有明显流幅的软钢,两折线 模型适用于流幅较长的理想弹塑性模型,双斜线模型适用于无明显流幅的高强钢筋或钢丝。 2-4 冷拉和冷拔会对钢筋的力学性能有怎样的影响? 答:冷拉只能提高钢筋的抗拉强度,不提高钢筋的抗压强度。冷拔可同时提高钢筋的抗拉强 度及抗压强度。 2-5 对混凝土结构中的钢筋性能有哪些要求? 答:1.钢筋的强度。2.钢筋的塑性。3.钢筋的可焊性。4.钢筋的耐火性。5.钢筋与混凝土的粘 结力。 2-6 如何确定混凝土立方体抗压强度、轴心抗压强度和抗拉强度? 答:国家标准《普通混凝土力学性能试验方法》 (GB/T50081—2002)规定:以边长为 150mm 的立方体为标准试件, 将其在 20℃±3℃的温度和相对湿度 90%以上的潮湿空气中养护 28d, 按照标准试验方法测得的抗压强度作为混凝土的立方体抗压强度,单位为 N/mm2。 我国国家标准 《普通混凝土力学性能试验方法》 (GB/T50081—2002) 规定, 以 150mm×150mm ×300mm 的棱柱体作为混凝土轴心抗压强度试验的标准试件。棱柱体试件与立方体试件的 制作条件相同,试件上下表面不涂润滑剂。 根据普通混凝土和高强度混凝土的试验资料, 混凝土轴心抗拉强度与立方体抗压强度存在如 下的关系

钢筋混凝土结构混凝土材料的力学性能PPT课件

钢筋混凝土结构混凝土材料的力学性能PPT课件
试 验 录 像
§2.1 混凝土材料的力学性能 《钢筋混凝土结
3.轴心抗拉强度 ft,s
P

d

f ts
2P
dl
fts
2P
d2

P
劈拉试验
fts
0.23
f 2/3
cu
§2.1 混凝土材料的力学性能 《钢筋混凝土结
4.双轴应力状态 Biaxial Stress State
§2.1 混凝土材料的力学性能 《钢筋混凝土结
b.特点
混凝土的收缩是随时间而增长的变形,早期收缩变形 发展较快,两周可完成全部收缩的25%,一个月可完成50%, 以后变形发展逐渐减慢,整个收缩过程可延续两年以上。
§2.1 混凝土材料的力学性能 《钢筋混凝土结
esh
50% 25% 14d 28d
(2~5)×10-4
t
§2.1 混凝土材料的力学性能 《钢筋混凝土结 5.温度变形
a、压-压作用
一向的强度随另一向 压应力的增加而增加。
最大受压强度发生在两 个压应力之比为0.5或2时, 约为1.27fc。
§2.1 混凝土材料的力学性能 《钢筋混凝土结
4.双轴应力状态 Biaxial Stress State
b、拉-压作用 任意应力比情况下均
不超过其相应单轴强度。 并且抗压强度或抗拉强度 均随另一方向拉应力或压 应力的增加而减小。
切线模量
§2.1 混凝土材料的力学性能 《钢筋混凝土结
3.混凝土的徐变 Creep
a.定义
混凝土在荷载的长期作用下,其变形随时间不断增长的现象称为徐变
b.特点
早期发展较快,然后趋于稳定
§2.1 混凝土材料的力学性能 《钢筋混凝土结

钢筋混凝土构件的适用性与耐久性课件

钢筋混凝土构件的适用性与耐久性课件
钢筋混凝土构件具有一定的抗爆性能,能够承受一定程度的爆炸冲击,保证结构 的安全。
抗腐蚀性能与耐久性
钢筋混凝土构件具有较强的抗腐蚀性能,能够抵御各种环境 因素的侵蚀,保证结构的长期使用。
钢筋混凝土构件具有良好的耐久性,能够长期保持其性能和 外观,延长结构的使用寿命。
03 钢筋混凝土构件的耐久性
影响耐久性的因素
耐久性。
提高耐久性的措施
合理设计
优化结构设计,完善构 造措施,提高构件的耐
久性。
选用优质材料
选用优质的水泥、骨料 和添加剂等材料,提高
混凝土的耐久性。
控制施工质量
加强施工质量控制,确 保施工质量符合要求。
定期维护
定期对钢筋混凝土构件 进行检查和维护,及时 发现并处理问题,提高
其耐久性。
04 钢筋混凝土构件的设计与 优化
施工方便
钢筋混凝土构件的施工相 对方便,且易于维修和加 固。
钢筋混凝土构件的应用领域
桥梁工程
在桥梁工程中,钢筋混凝 土梁和桥墩等结构形式得 到了广泛应用。
建筑工程
在建筑工程中,钢筋混凝 土结构广泛应用于住宅、 办公楼等建筑物的梁、板 、柱等部位。
水利工程
在水利工程中,钢筋混凝 土结构常被用于大坝、水 闸等水工建筑物的结构形 式。
修复材料
选择性能良好的修复材料,如环氧 树脂、聚合物砂浆等。
加固方法与案例分析
加固方法
根据构件的损伤程度和承载要求 ,选择合适的加固方法,如粘贴 钢板、碳纤维加固等。
案例分析
对典型加固案例进行详细分析, 包括加固方案、施工工艺、效果 评估等。
感谢您的观看
THANKS
日常维护与保养
定期检查
防水与防潮

《混凝土结构》课程笔记

《混凝土结构》课程笔记

《混凝土结构》课程笔记第一章绪论1.1 混凝土结构的概念混凝土结构是现代建筑工程中广泛采用的一种结构形式,它主要是由混凝土和钢筋(或其他形式的加固材料)组成的。

混凝土是一种由水泥、砂、石子和水混合而成的坚硬材料,它在凝固后能够承受巨大的压力。

钢筋则具有良好的抗拉性能,将钢筋嵌入混凝土中,可以有效地弥补混凝土抗拉强度低的不足,使结构能够同时承受压力和拉力。

1.2 混凝土结构的特点1. 耐久性好:混凝土结构能够在多种环境条件下保持较长时间的稳定性,对酸碱、盐雾、冻融等有较好的抵抗力。

2. 可塑性高:混凝土在凝固前具有良好的流动性,可以根据模板的形状浇注成各种复杂的结构。

3. 耐火性好:混凝土是一种不燃材料,能够在高温下保持结构完整性,提供必要的安全保障。

4. 抗震性强:混凝土结构通过合理的配筋设计,能够在地震发生时吸收和分散能量,减少结构破坏。

5. 施工方便:混凝土结构施工技术成熟,可以现场浇筑,也可以预制构件,便于大规模生产和安装。

6. 经济性:混凝土材料来源广泛,成本相对较低,且施工过程中能耗较低,具有较好的经济性。

1.3 混凝土结构的发展混凝土结构的发展可以追溯到古罗马时期,当时的工程师们就已经使用天然混凝土建造了一些著名的建筑。

19世纪末,随着钢铁工业的发展,钢筋被引入混凝土结构中,形成了现代意义上的钢筋混凝土结构。

20世纪初,预应力技术的出现进一步提升了混凝土结构的性能,使得建造更大跨度和更高层级的建筑成为可能。

1.4 混凝土结构的应用混凝土结构在现代工程建设中有着广泛的应用,包括但不限于以下几个方面:- 房屋建筑:混凝土框架结构、剪力墙结构等被广泛应用于多层和高层建筑中。

- 道路桥梁:混凝土桥墩、梁、板等构件是桥梁工程中的重要组成部分。

- 隧道工程:混凝土衬砌为隧道提供了结构支持和防水功能。

- 水坝工程:混凝土重力坝、拱坝等结构用于水库的蓄水和发电。

- 海洋工程:混凝土结构在海港、码头、防波堤等海洋工程中发挥着重要作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

kl
(1.9c
0.08
deq
te
)
光圆,取0.7;变 形,取1.0
te<0.01时,取te=0.01
c<20时,取c=20;c>65时,取c=65
四、裂缝宽度的实用计算方法
1. 半理论半经验的方法
平均裂缝宽度
轴拉: sk
受弯:
sk
Nk As
Mk 0.87 Ash0
wm
kwkl
sk
Es
(1.9c 0.08 deq )
五、裂缝宽度的控制
C
wmax wlim
由不同的《规范》根据 具体的情况确定
六、受弯构件的变形与刚度
1. 截面抗弯刚度的特点
与荷载形式、支承条件有关的系数
f
s
Ml02 EI
sM B
l02
M EIy'' EI
B EI M
钢筋混凝土纯弯段截面抗弯刚度的特点 :
M
III
*随着弯矩增大B不断降低
六、受弯构件的变形与刚度
2. 短期刚度Bs
解析刚度法
c
裂缝截面处的应力和应变
0h0
Mk
1c
sh0 h0
c
s Ec
As Ass
s
s Es
s
Mk As sh0
c
Mk 10 sbh02
平均应变
cm
sm
s
s
Es
Mk
As sh0 Es
cc
c
s Ec
c
Mk
10 sbh02Ec
Mk
bh02 Ec
六、受弯构件的变形与刚度
荷载效应标准组合下(短期效应)混凝土中不产生拉应力
sk pcII 0
ck
Nk A0
, ck
Mk W0
二、构件的裂缝控制
3.正截面抗裂度验算(以GB50010为例)
一般要求不出现裂缝(二级)
n
S SGk qi SQik i1
荷载效应准永久组合下(长期效应)混凝土中不产生拉应力,荷载效 应标准(短期)组合下混凝土中可有拉力但应小于混凝土抗拉强度
非预应力钢筋的截面积
四、裂缝宽度的实用计算方法
1. 半理论半经验的方法 预应力轴拉构件裂缝处钢筋的应力N
预应力混凝土构件 (使用荷载下不带裂缝)
钢筋的应力
在Ns-Np0的拉力作用下混凝土中产生裂 Np0 缝
N
预应力钢筋
sk
Nk N p0 Ap As
普通混凝土构件
N
(使用荷载下常带裂缝)
预应力钢筋的截面积
第十一章 混凝土构件的使用性能
一、引言
结构构件 的可靠性
安全性 适用性 耐久性
具有足够的承载力和变形 能力
在使用荷载下不产生过大 的裂缝和变形
在一定时期内维持其安全 性和适用性的能力
本章的主要内容
二、构件的裂缝控制
1. 裂缝的分类
按裂缝的产生时间 按裂缝的产生原因 按裂缝的形态
施工期间产生的裂缝和使 用期间产生的裂缝
有效配筋率
te
As Ate
b
0.5h
hf
bf
有效受拉面积
轴拉构件:Ate 受弯构件:Ate
bh 0.5bh (bf
b)hf
于是,对轴拉和受弯构件,平均裂缝间距的公式可统一写成:
lm
k2
d
te
三、横向受力裂缝宽度的计算
1. 粘结滑移理论
裂缝的宽度
C
wm ( sm cm )lm kw' 2 smlm
*Broms(美)Base(英)等人通过试验得出:
wm
kw1c
s
Es
lm k1c
三、横向受力裂缝宽度的计算
3. 粘接滑移与无滑移理论的结合
上述两种理论和实际情况均有一定的差距, 为此将二者结合起来,按下述公式进行计 算分析:
C
d
lm kl (k1 c k2 te )
wm
kwkl
s
Es
(k1c k2
裂缝的最小间距 l 均间距
裂缝的最大间距
2l
s (s)
lm 1.5l c(c)
l m
s c c=ft
lm
1.5 ft
4 m
d
k2'
d
(s+ s)As
sAs
l
(s+ s)As
m
sAs
l
三、横向受力裂缝宽度的计算
1. 粘结滑移理论 bf ’
裂缝的间距
hf ’ b
h h
为了和受弯构件相统一,定义:
四、裂缝宽度的实用计算方法
2. 以数理统计分析为基础的计算方法
《公路钢筋混凝土及预应力桥涵设计规范》采用的方法
钢筋的直径,采用不同直径的钢筋时
取换算直径:d 4As
wm a x
C1C2C3
s
Es
( 30 d
0.28 10
)
(mm)
受拉钢筋的总周长
As
bh0 (bf b)hf
0.02时,取 0.02 0.006时,取 0.006
混凝土的主压应力
一级 二级
σcp≤0.60fck
二、构件的裂缝控制
4.受弯构件斜截面抗裂度验算(以GB50010为例)
先张法应考虑 传递长度内的 实际应力分布
pe
ltr
ltr
三、横向受力裂缝宽度的计算
1. 粘结滑移理论
以轴心受拉为例
*基本假定就是:开裂后,裂缝处混凝
土退出工作,钢筋和混凝土之间发生
2. 短期刚度Bs
解析刚度法
Bs
Mk
M k h0
cm sm
1
As sh02Es
1
bh03
Ec
Es Ash02
E
s
GB50010采用的就是上述公式,且有
E
0.2 6E ,于是:
Bs
Mk
Es Ash02
1.15 0.2 6E
六、受弯构件的变形与刚度
3. 荷载长期作用下的刚度
基本概念
tp cp
x y 2
x
2
y
2
2
x
pcII
M k y0 I0
Vk pe Apb sinp S0 I0b
二、构件的裂缝控制
4.受弯构件斜截面抗裂度验算(以GB50010为例)
混凝土的主拉应力
一级
σtp≤0.85ftk
二级
σtp≤0.95ftk
二、构件的裂缝控制
4.受弯构件斜截面抗裂度验算(以GB50010为例)
C
滑移,混凝土回缩至图中虚线的位置
*裂缝宽度=裂缝间钢筋和混凝土之间的变形差值
先求出裂缝间距
三、横向受力裂缝宽度的计算
1. 粘结滑移理论
裂缝的间距
l
粘结应力的 传递长度
s ( s )
c( c )
l m
As
裂缝数量 增加至一 定数量时 sm 不再增加, 但宽度不 cm 断变化
三、横向受力裂缝宽度的计算
1. 粘结滑移理论
裂缝的间距
s As ft A
s As mld
l
s (s) c(c)
l m
sm
cm c=ft
(s+ s)As
sAs
l
ft A
md
ft
m
1
d 2
d 4
1 ft
4 m
d
l
4A
(s+ s)As
m
sAs
l
三、横向受力裂缝宽度的计算
1. 粘结滑移理论
裂缝的间距
l
裂缝的平
裂缝的最大宽度
由裂缝的统计特性,按95%的保证率
wmax 1.66wm,(弯,正态分布) wmax 1.9wm,(轴拉,偏态分布)
考虑到长期荷载下,混凝土徐变影响导致裂缝继续扩大,取扩大系
数为1.5
wmax
cr
s
Es
(1.9c
0.08
deq )
te
受 轴弯 拉: :ccrr
1.51.9 0.851.1 2.7 1.51.66 0.851.0 2.1
d
te
)
各系数由试验分析确定
四、裂缝宽度的实用计算方法
1. 半理论半经验的方法
《混凝土结构设计规范》(GB50010) 《水工钢筋混凝土结构设计规范》
所采用的方法
四、裂缝宽度的实用计算方法
1. 半理论半经验的方法
平均裂缝间距
受弯kl=1.0;
deg
ni di2
nii di
轴拉kl=1.1
lm
垂直裂缝!
拉、弯、剪、扭、粘结等引起的裂缝
纵向裂缝!!!
目前,只有在拉、弯状态下混凝土横向裂 缝宽度的计算理论比较成熟。这也是下面 所要介绍的主要内容
二、构件的裂缝控制
3.正截面抗裂度验算(以GB50010为例)
严格要求不出现裂缝(一级) n S SGk SQ1k S ci Qik i2
恒+活中 “恒”
+
活中“活”
六、受弯构件的变形与刚度
3. 荷载长期作用下的刚度
变形系数法
定义: f / fs
f fs
GB50010
f
s Mk Mq Bs
l02
s
M ql02 Bs
s Mk B
l02
B
M q (
Mk 1) M k
Bs
' '
0时, 2.0 时, 1.6
相关文档
最新文档