初中锐角三角函数教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

锐角三角函数

中考主要考查点:

1. 锐角三角函数定义;特殊角的三角函数值; 2. 解直角三角形;解直角三角形的应用; 3. 直角三角形的边角关系的应用

➢ 知识点1.

直角三角形中边与角的关系

中,∠C=90°

(1)边的关系: (2)角的关系:

(3)边与角的关系:

sinA = cosA=

tanA= cotA=

sinA =cosB =

a c , cosA =sinB =

b

c ,tanA ==a b , tanB =b a , cotA=b a

➢ 知识点2. 特殊角的三角函数值

特殊角30°,45°,60°的三角函数值列表如下:

α

sinα

cosα

tanα

30°

1

2

33

45°

22

22

1 60°

1

2

斜边

的对边

A ∠斜边

的邻边A ∠邻边的对边A ∠

对边的邻边A ∠2

3

233

➢ 知识点3. 三角函数的增减性

已知∠A 为锐角,sinA 随着角度的增大而 增大 ,tanA 随着角度的增大而 增大 , cosA 随着角度的增大而 减小 。 例1. 已知∠A 为锐角,且cosA≤

2

1

,那么( ) (A ) 0°<A≤60°(B )60°≤A <90°(C )0°<A≤30°(D )30°≤A <90°

➢ 知识点4. 同角三角函数与互为余角的三角函数之间的关系。

1. 同角三角函数的关系

1cos sin 22=+A A

A

A

A cos sin tan =

1cot tan =⋅A A 2. 互为余角的三角函数之间的关系90=+B A

B

A B A sin cos cos sin == ︒=47cos 43sin

1tan tan =⋅B A

➢ 知识点5. 直角三角形的解法

直角三角形中各元素间的关系是解直角三角形的依据,因此,解直角三角形的关键是 正确选择直角三角形的边角关系式,使两个已知元素(其中至少有一个元素是边). 重要类型:

1.已知一边一角求其它。

2.已知两边求其它。 例2. 在中,∠C=90°,,∠A -∠B=30°,试求的值。

A C

B

例3.已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点.

DE ∶AE =1∶2. 求:sin B 、cos B 、tan B .

例4.已知:如图,在菱形ABCD 中,DE ⊥AB 于E ,BE =16cm ,⋅=

13

12sin A 求此菱形的周长.

例5.已知:如图,Rt △ABC 中,∠C =90°,∠BAC =30°,延长CA 至D 点,使AD =AB .求:

(1)∠D 及∠DBC ; (2)tan D 及tan ∠DBC ;

(3)请用类似的方法,求tan22.5°.

例6.已知:如图,Rt △ABC 中,∠C =90°,求证:

(1)sin 2A +cos 2A =1;

(2)⋅=

A

A

A cos sin tan

例7.已知:如图,在△ABC 中,AB =AC ,AD ⊥BC 于D ,BE ⊥AC 于E ,交AD 于H

点.在底边BC 保持不变的情况下,当高AD 变长或变短时,△ABC 和△HBC 的面积的积S △ABC ·S △HBC 的值是否随着变化?请说明你的理由.

参考答案

1.B

2. 32

3. .2tan ,55

cos ,552sin ===B B B

4. 104cm .提示:设DE =12x cm ,则得AD =13x cm ,AE =5x cm .利用BE =16cm .

列方程8x =16.解得x =2.

5.

(1)∠D =15°,∠DBC =75°;(2);32tan ,32tan +=∠-=DBC D

(3).125.22tan -=

7. 不发生改变,设∠BAC =2α ,BC =2m ,则.)tan (tan 422

m m m S S HBC

ABC =⋅=⋅∆∆αα

相关文档
最新文档