第28章-锐角三角函数全章教案

合集下载

第二十八章《锐角三角函数》创新(教案)

第二十八章《锐角三角函数》创新(教案)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了锐角三角函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对锐角三角函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(2)绘制锐角三角函数图像:学生需要掌握图像绘制方法,并分析图像特征;
突破方法:引导学生运用数形结合的思想,通过观察、总结、验证图像的规律。
(3)锐角三角函数在实际问题中的应用:学生需要将理论知识与实际问题相结合,运用函数解决具体问题;
突破方法:设置典型例题,引导学生运用锐角三角函数知识解决问题,培养其建模和运算能力。
实践活动环节,学生们分组讨论和实验操作的表现还算不错,但我发现部分小组在解决问题时仍然存在一定的困难。这可能是因为他们在理论知识掌握方面还不够扎实。为此,我计划在接下来的课程中加强学生对基础知识的巩固,提高他们解决实际问题的能力。
在学生小组讨论环节,我发现学生们对于锐角三角函数在实际生活中的应用有了一些新的认识,但他们的观点和想法还不够深入。在今后的教学中,我将鼓励学生提出更多有创意的想法,并引导他们进行深入探讨,以提高讨论效果。
(3)锐角三角函数在实际问题中的应用:运用锐角三角函数解决三角形问题,掌握相关计算方法;
举例:利用锐角三角函数解决直角三角形、斜三角形中的角度、边长等计算问题。
2.教学难点
(1)理解锐角三角函数的定义:学生需要从实际问题中抽象出函数定义,理解函数概念;
突破方法:通过实例引入,让学生从直观的几何图形中理解正弦、余弦、正切函数的定义。
3.增强学生的数学建模素养,结合实际问题,运用锐角三角函数解决三角形问题,提高学生建立数学模型、解决问题的能力;

第二十八章锐角三角函数-教案全章(1)

第二十八章锐角三角函数-教案全章(1)

【锐角三角函数全章教案】锐角三角函数(第一课时)教学三维目标:一.知识目标:初步了解正弦、余弦、正切概念;能较正确地用siaA、cosA、tanA表示直角三角形中两边的比;熟记功30°、45°、60°角的三角函数,并能根据这些值说出对应的锐角度数。

二.能力目标:逐步培养学生观察、比较、分析,概括的思维能力。

三•情感目标:提高学生对几何图形美的认识。

教材分析:1. 教学重点:正弦,余弦,正切概念2 .教学难点:用含有几个字母的符号组siaA、cosA、tanA表示正弦,余弦,正切教学程序:一.探究活动1 .课本引入问题,再结合特殊角30°、45°、60°的直角三角形探究直角三角形的边角关系。

2. 归纳三角函数定义。

Z A的对边N A的邻边N A的对边siaA= ,cosA= ,ta nA=-斜边斜边N A的邻边3例1.求如图所示的Rt " ABC中的siaA,cosA,tanA 的值。

二.探究活动二1.让学生画30° 45° 60°的直角三角形,分别求sia 30 ° cos45 ° tan60归纳结果30 °45°60°siaAcosAta nA2.求下列各式的值三. 拓展提高 P82例4.(略)73厂1.如图在"ABC 中,/ A=30° ,tan B= ,AC=23 ,2求AB四•小结 五.作业课本 p85— 86 2,3,6,7,8,10解直角三角形应用(一)一•教学三维目标(一) 知识目标使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余 及锐角三角函数解直角三角形.(二) 能力训练点通过综合运用勾股定理, 直角三角形的两个锐角互余及锐角三角函数解直角三角形, 逐步培养学生分析问题、解决问题的能力.(三) 情感目标渗透数形结合的数学思想,培养学生良好的学习习惯. 二、 教学重点、难点和疑点1. 重点:直角三角形的解法.2. 难点:三角函数在解直角三角形中的灵活运用.3•疑点:学生可能不理解在已知的两个元素中,为什么至少有一个是边.三、 教学过程(一)知识回顾1. 在三角形中共有几个元素?2. 直角三角形 ABC 中,/ C=90° , a 、b 、c 、/ A 、/ B 这五个元素间有哪些等量关系呢?(1) sia 30 ° +cos30 °( 2) , 2 sia 45-—cos30cos30sia45°+ta60-tan30aba(1)边角之间关系si nA= cosA= tan A=-c c b⑵三边之间关系a2 +b2 =c2(勾股定理)⑶锐角之间关系/ A+ / B=90° .以上三点正是解直角三角形的依据,通过复习,使学生便于应用.(二)探究活动1•我们已掌握Rt△ ABC的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素•这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.2. 教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形).3•例题评析例1在厶ABC中,/ C为直角,/ A、/ B、/ C所对的边分别为a、b、c,且b= 2 a—. 6,解这个三角形.例2在厶ABC 中,/ C为直角,/ A、/ B、/ C所对的边分别为a、b、c,且b= 20 .B=35°,解这个三角形(精确到0.1).解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用•因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.完成之后引导学生小结“已知一边一角,如何解直角三角形?”答:先求另外一角,然后选取恰当的函数关系式求另两边•计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底.例3在Rt△ ABC中,a=104.0, b=20.49,解这个三角形.(三)巩固练习在厶ABC中,/ C为直角,AC=6 , - BAC的平分线AD=4 . 3,解此直角三角形。

人教版数学九年级下册28.1《锐角三角函数》配套教案

人教版数学九年级下册28.1《锐角三角函数》配套教案
首先,我发现学生在理解锐角三角函数的定义时,普遍存在一定的困难。可能是因为这些概念比较抽象,学生初次接触难以导学生逐步理解这些概念的本质。
其次,在新课讲授环节,我尽量用简洁明了的语言解释了正弦、余弦、正切的定义,并通过案例分析让学生看到这些概念在实际中的运用。但我也注意到,部分学生在案例分析时仍然显得有些迷茫。我想,可能是我讲解的速度过快,没有给学生足够的时间去消化和思考。下次我会尽量放慢节奏,让学生有更多的时间去理解和吸收。
3.锐角三角函数的关系式:了解正弦、余弦、正切之间的关系,如正切的定义可以用正弦和余弦表示。
4.锐角三角函数的应用:解决实际问题,如测量物体的高度、计算角度等。
二、核心素养目标
本节课的核心素养目标主要包括:
1.培养学生的几何直观和空间观念,通过观察直角三角形中角度与边长的关系,理解锐角三角函数的定义及其性质。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《锐角三角函数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要测量物体高度或距离的情况?”(如测量树的高度)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索锐角三角函数的奥秘。
-锐角三角函数关系式的推导:学生需要掌握正弦、余弦、正切之间的推导过程,这对于逻辑思维能力和代数运算能力有一定要求。
-实际问题的模型建立:将实际问题转化为数学模型,需要学生具备较强的抽象思维和问题解决能力。
举例:在解决测量物体高度的问题时,学生需要将实际问题转化为直角三角形模型,并运用锐角三角函数知识。教师应指导学生如何确定所求的角度和边长,以及如何选择合适的三角函数进行计算。
在实践活动环节,学生分组讨论和实验操作的过程较为顺利,但我感觉有些小组在讨论时,组内成员的参与度并不均衡。为了提高讨论效果,我需要加强对每个小组的指导,确保每个学生都能积极参与到讨论中。

人教版数学九年级下册第28章《锐角三角函数》课堂教学设计

人教版数学九年级下册第28章《锐角三角函数》课堂教学设计

人教版数学九年级下册第28章《锐角三角函数》课堂教学设计一. 教材分析人教版数学九年级下册第28章《锐角三角函数》是初中数学的重要内容,主要介绍了锐角三角函数的定义、性质和应用。

本章内容为学生提供了研究角度和三角函数的基本工具,对于培养学生的数学思维能力和解决问题的能力具有重要意义。

二. 学情分析学生在学习本章内容前,已经掌握了锐角的概念、三角函数的定义等基础知识,具备了一定的观察、实验、推理的能力。

但部分学生对于抽象的三角函数概念和性质的理解仍有困难,需要通过具体例子和实际应用来加深理解。

三. 教学目标1.理解锐角三角函数的定义和性质;2.学会用锐角三角函数解决实际问题;3.培养学生的数学思维能力和解决问题的能力。

四. 教学重难点1.重点:锐角三角函数的定义和性质;2.难点:用锐角三角函数解决实际问题。

五. 教学方法1.情境教学法:通过生活实例引入锐角三角函数的概念和性质,激发学生的学习兴趣;2.引导发现法:引导学生通过观察、实验、推理等方法发现锐角三角函数的性质;3.实践锻炼法:通过解决实际问题,培养学生的应用能力和解决问题的能力。

六. 教学准备1.教学课件:制作课件,展示锐角三角函数的定义、性质和应用;2.实例材料:准备一些实际问题,用于引导学生应用锐角三角函数解决问题;3.练习题:准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用课件展示一些生活中的实例,如建筑物的倾斜角度、运动员投篮的抛物线等,引导学生思考这些实例与数学的关系,从而引出锐角三角函数的概念。

2.呈现(15分钟)讲解锐角三角函数的定义和性质,让学生通过观察、实验、推理等方法发现锐角三角函数的性质。

3.操练(15分钟)让学生分组讨论,运用锐角三角函数解决实际问题,如测量建筑物的高度、计算运动员投篮的得分等。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)让学生独立完成一些练习题,巩固所学知识。

教师选取部分题目进行讲解,总结解题方法。

人教版九年级数学下第28章28.1《锐角三角函数》教学设计

人教版九年级数学下第28章28.1《锐角三角函数》教学设计
(2)思考锐角三角函数在日常生活和科技发展中的作用,举例说明,并进行课堂分享。
4.自主学习任务:
(1)预习下一节课的内容,提前了解余切、正割、余割等三角函数的定义和性质。
(2)针对本节课的学习内容,总结自己在学习过程中的困惑和问题,以便在课堂上与老师和同学交流。
作业布置要求:
1.学生需独立完成作业,不得抄袭,确保作业质量。
3.组织学生进行小组合作学习,培养学生的团队协作能力和沟通能力。
4.通过课堂讲解、例题解析、习题演练等多种教学手段,帮助学生巩固所学知识,提高学生的解题能力和数学思维能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生学习数学的热情,增强学生克服困难的信心。
2.通过解决实际问题,使学生感受到数学在生活中的广泛应用,提高学生的数学应用意识。
五、作业布置
为了巩固学生对锐角三角函数的理解和应用能力,特布置以下作业:
1.基础知识巩固:
(1)完成课本第28.1节后的练习题1-5。
(2)根据课堂讲解,自行绘制正弦、余弦、正切函数的图像,并解释其随角度变化的规律。
(3)选择一道实际情境题,运用锐角三角函数的知识解决问题,并给出详细的解题步骤。
2.提升能力训练:
四、教学内容与过程
(一)导入新课
1.创设情境:以校园内的一座建筑物为背景,提出问题:“如何测量这座建筑物的高度?”引导学生思考,激发学生的探究欲望。
2.引入新课:在学生思考的基础上,引出锐角三角函数的概念,说明锐角三角函数在解决此类问题中的应用。
3.提出问题:引导学生回顾已学的三角形的性质、勾股定理等知识,为新课的学习做好铺垫。
(1)设计一道综合性的应用题,要求包含至少两个锐角三角函数的计算,并提供解题思路。

第28章-锐角三角函数-全章教案

第28章-锐角三角函数-全章教案
求 sinA 就是要确定∠
====Word 行业资料分享--可编辑版本--双击可删====
一、在 Rt△ABC 中,∠C =90°: B
a 对边
c 斜边
视,对学习基 A 的对边与斜边的比;
础 较 弱 的 学 求 sinB 就是要确定∠B
生 及 时 给 予 的对边与斜边的比.
指点.
教师引导学
生作知识总
结,不断扩充
培养学生概括的能
学 生 的 知 识 力,使知识形成体系,
结构,学习新 并渗透数学思想方法。
的解题方法.
Cb
A
五、体验 收获

sin
A
A的对边 斜边
a c

同样 sinB= B的对边 斜边
b c
当∠A=300 时,sinA=? 当∠A=450 时,sinA=? 当∠A=600 时,sinA=?
也随之确
定”.但是怎
样证明这个
C
A C1
A!
命题呢?学
生这时的思
经过学生的实验和证明,得出:
维很活跃.对
于这个问题,
在 Rt△ABC 中,∠C=90°,我们把锐
部分学生可
角 A 的对边与斜边的比叫做∠A 的正弦
能能解决
(sine),记作:sinA,
它.因此教师
此时应让学
B
生展开讨论,
独立完成.
a 对边
长 50m,那么斜坡与水平面所成角的度数是多少
呢?
二、探究 1.请每一位同学拿出自己的三角板,分别测量并 教 师 提 出 问 在培养学生动手能力的
====Word 行业资料分享--可编辑版本--双击可删====
说理
三、感悟 深化

人教版九年级数学下第28章28.1《锐角三角函数》优秀教学案例

人教版九年级数学下第28章28.1《锐角三角函数》优秀教学案例
4.定期对学生的学习成果进行评价和总结,激发学生的学习动力,提高学生的数学素养。
四、教学评价
1.评价学生的知识掌握程度:通过课堂提问、作业批改等方式,了解学生对锐角三角函数知识的掌握情况;
2.评价学生的实践操作能力:通过实际问题解决,评价学生运用锐角三角函数解决实际问题的能力;
3.评价学生的合作交流能力:通过小组讨论、互动交流等方式,评价学生在团队合作中的表现;
3.讲练结合:在课堂中及时进行练习,巩固所学知识,提高学生的实际操作能力;
4.反馈调整:根据学生的学习情况,及时调整教学方法,以提高教学效果。
五、教学过程
1.创设情境,引入新课:通过生活实例,引导学生思考并引入锐角三角函数的概念;
2.自主探究,小组合作:让学生在小组内讨论交流,共同探究锐角三角函数的定义及应用;
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和热爱,激发学生学习数学的内在动力;
2.培养学生合作交流的意识,提高学生团队协作的能力;
3.让学生感受数学与生活的紧密联系,培养学生的应用意识;
4.通过对本节课的学习,使学生树立正确的数学学习观念,相信自己通过努力可以掌握并运用好数学知识。
三、教学重难点
4.评价学生的情感态度与价值观:通过观察学生的学习态度、课堂表现等,评价学生对数学学科的兴趣和热爱。
五、教学拓展
1.利用多媒体技术,展示锐角三角函数在实际生活中的应用,激发学生的学习兴趣;
2.推荐相关的数学读物和网站,让学生课后进行拓展学习,提高学生的数学素养;
3.结合学校或社区的活动,让学生运用所学知识解决实际问题,提高学生的实践能力。
六、教学反思
在教学过程中,教师应不断反思自己的教学方法、教学内容等方面,以确保教学的质量和效果。同时,关注学生的学习反馈,根据学生的需求调整教学策略,以提高教学效果。通过不断的反思和调整,使教学更加符合学生的实际情况,提高学生的数学素养。

第28章锐角三角函数教案

第28章锐角三角函数教案

第二十八章锐角三角函数在一个直角三角形中,如果一个锐角是45一、情境导入,初步认识问题我们知道,在直角三角形中,当锐角 A的度数一定时,不管三角形的大小如何,∠A的对边与斜边的比都是一个固定值.试问:∠A的邻边与斜边的比、∠A 的对边与邻边的比是否分别也是一个固定值呢?为什么?二、思考探究,获取新知问题如图,在Rt △ABC和Rt △A B C''',中,∠C=∠C'=90°∠A =∠A'.求证:(1)ACAB=A CA B'''';(2)BCAC=B CA C''''余弦:在Rt△ABC中,∠C=90°,我们把锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA ,即cosA =A bc ∠的对边=斜边正切:在RtAABC中,∠C=90°,我们把锐角A的对边与邻边的比叫做∠A的正切,记作tanA,tanA =A aA b∠的对边=∠的邻边.锐角A的正弦、余弦、正切叫做∠A的锐角三角函数.三、典例精析,掌握新知例1 在Rt△ABC中,∠C = 900,BC= 6,sinA = 35,求 cosA,tanB的值.例2在△ABC中,AB = AC = 20,BC = 30,试求 tanB,sinC 的值.四、运用新知,深化理解1.分别求出下列直角三角形中两个锐角的正弦值、余弦值和正切值.2.如图,在Rt△ABC中,∠C=90°,AC=8,tanA=,求cosB,sinA,tanB的值.3.在Rt△ABC中,∠C=90°,cosB=(1)求cosA和tanA的值;(2)若AB=5,求BC和AC的长.4.在Rt△ABC中,∠C=90°,AC=b,BC=a,AB=c.(1)sinA与cosB的关系如何?为什么?(2)sin2A与cos2A的关系如何?说说你的理由(sin2A=(sinA)2).(3)找出tanA与tanB的关系;(4)由(1),(2),(3),你能发现什么有趣的结论?五、师生互动,课堂小结通过本节课的学习你有哪些收获?你还有哪些疑虑,请与同伴交流.三、典例精析,掌握新知例1 求下列各式的值.(1)cos260°+ sin260°;(2)cos45tan45 sin45︒-︒︒.例2 (1)如图(1),在Rt△ABC中,∠C=90°,AB = 6,BC = 3,求∠A的度数;(2)如图(2),已知圆锥的高AO等于圆锥的底面半径OB的3倍,求α.1.在△ABC中,∠A,∠B都是锐角,且tanA = 12,cosB =32,则△ABC的形状是() A.直角三角形 B. C.锐角三角形 D.2.计算:(1)3tan30°- tan45°+ 12sin60°= ___________ .(2)60160sincos︒-︒+130tan︒- sin45°= ___________ .3.在Rt△ABC中,∠C=90°,BC = 7,AC = 21,试求∠A、∠B的度数.4.边长为2的正方形ABCD在平面直角坐标系中的位置如图所示,且∠OBC=30°,试求A、D两点坐标.五、师生互动,课堂小结1.如何理解并熟记特殊角的三角函数值?同学间相互交流.2.运用特殊角的三角函数值可解决哪两类问题?二、思考探究,获取新知在上述问题中,我们已知直角三角形的一条直角边和斜边,利用锐角三角函数可求出它的锐角的度数,事实上,我们还可以借助直角三角形中两锐角互余,求出另一个锐角度数,也可以利用勾股定理得到另一条直角边通过它们之间的关系,可以发现,知道其中的2个元素(至少有一条是边)△ABC中,∠C=90°,∠B=40°,且).°,根据下列条件解直角三角形:如图(1),求∠BAC度数;如图(2),试求∠BAC的度数.五、师生互动,课堂小结分析与解从组合体上能直接看到的地球上最远的点,应是视线与地球相切时的切点.如图,⊙O表示地球,点F表示组合体的位置FQ组合体上观测地球时的最远点,的长就是地球上两点两点的距离指第二十八章小结与复习二、释疑解惑,加深理解问题1 请用计算器探索出锐角函数的函数值随自变量锐角从小到大的变化而变化的情况,么发现?【归纳结论】对于锐角必满足0< sinA<1;它的余弦函数<1;它的正切函数(tanA) 的函数值随锐角试一试若锐角A的余弦值A. 60°<A<90°B. 45°<例2 如图,四边形ABCD是平行四边形,以AB为直径的⊙O经过点C,E是⊙O上一点,且∠BEC=45°. (1)试判断CD与⊙O的位置关系,并说明理由.(2)若BE=8 cm,sin∠BCE = 45,求⊙O的半径.例3 小刘同学在课外活动中观察吊车的工作过程,绘制了如图所示的平面图形,已知吊车吊臂的支点O距离地面的高OO'=2米,当吊臂顶端由A点抬升至点A'(吊臂长度不变)时,地面B处的重物(大小忽略不计)被吊至B'处,紧绷着的吊缆A B''=AB.AB垂直地面O'B于点B,A B''垂直地面O'B于点C,吊臂长度O A'=OA=10 m,且cosA = 35,sin A' =12.(1)求此重物在水平方向移动的距离BC;(2)求此重物在竖直方向移动的距离B'C.(结果保留根号)例 4 某校综合实践活动小组的同学欲测量公园内一棵树DE的高度.他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°,已知A点的高度AB为2 m,台阶AC的坡度为1∶3 (即AB∶BC=1∶3,且B、C、E 三点在同一直线上,请根据以上条件求出树DE的高度(测倾器的高度忽略不计).四、师生互动,课堂小结通过这节课的学习,你有哪些收获?。

人教版九年级数学下册第二十八章28.1《锐角三角函数》教学设计

人教版九年级数学下册第二十八章28.1《锐角三角函数》教学设计
3.你能总结出锐角三角函数的图像和性质吗?
学生需要在小组内进行讨论,共同解决问题。在这个过程中,我会巡回指导,为学生提供必要的帮助。讨论结束后,每个小组需要汇报他们的讨论成果,我会给予评价和反馈。
(四)课堂练习,500字
在课堂练习环节,我会设计不同难度层次的习题,让学生巩固所学知识。习题包括:
1.基础题:主要考察学生对锐角三角函数定义的理解和计算能力。
在导入新课环节,我将利用一个生动的实际情境来吸引学生的注意力,激发他们的学习兴趣。我会向学生展示一张图片,图中有一座高楼和一面倾斜的镜子。接着,我会提出问题:“同学们,你们有没有想过,如何通过测量镜子反射的光线角度来计算高楼的高度呢?这就需要用到我们今天要学习的锐角三角函数知识。”
(二)讲授新知,500字
4.设计丰富的例题和练习题,引导学生从不同角度理解和运用锐角三角函数,提高他们的解题能力和数学思维能力。
(三)情感态度与价值观
1.激发学生对数学学科的兴趣,使他们认识到数学在日常生活和实际应用中的重要性。
2.培养学生勇于探索、积极思考的学习态度,使他们能够在解决实际问题时,运用所学的数学知识进行分析和判断。
(二)教学设想
1.引入新课:
-通过生活实例或实际情境,如测量建筑物的高度、计算物体在斜面上的力等,引出锐角三角函数的概念。
-利用动态软件或实物演示,让学生直观感受锐角三角函数的变化规律。
2.新课讲解:
-以直观的图形和具体的例子,解释锐角三角函数的定义,帮助学生建立清晰的概念。
-通过互动提问和小组讨论,引导学生发现并理解互余关系和互补关系。
此外,我还会鼓励学生反思学习过程中的困难和收获,培养他们的自我评价和调整能力。最后,我会布置适量的课后作业,并提供在线资源或辅导,帮助学生巩固所学知识,提高学习效果。

人教版九年级下册28.1《锐角三角函数》教案

人教版九年级下册28.1《锐角三角函数》教案
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了锐角三角函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对锐角三角函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-锐角三角函数关系的理解:正弦、余弦、正切之间的关系较为复杂,学生难以理解和记忆。
-锐角三角函数图像的掌握:学生可能无法将图像与函数的性质有效联系起来。
举例解释:
-通过对比和实际操作,帮助学生区分正弦、余弦、正切的定义,例如通过直角三角形的模型进行直观展示。
-设计具体的计算题目,指导学生如何根据角度求函数值,强调记忆特殊角度的函数值,如30°、45°、60°等。
3.重点难点解析:在讲授过程中,我会特别强调正弦、余弦、正切函数的定义和应用这两个重点。对于难点部分,我会通过举分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与锐角三角函数相关的实际问题,如测量旗杆的高度。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过测量角度和距离,演示锐角三角函数的基本原理。
人教版九年级下册28.1《锐角三角函数》教案
一、教学内容
人教版九年级下册第28章《锐角三角函数》第1节,主要包括以下内容:
1.锐角三角函数的定义:正弦、余弦、正切的概念及其在直角三角形中的应用。
2.锐角三角函数的值:通过具体例子,让学生学会如何求锐角三角函数的值。
3.锐角三角函数的关系:掌握正弦、余弦、正切之间的基本关系,并能运用这些关系解决实际问题。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。

【免费下载】第28章 锐角三角函数 全章教案

【免费下载】第28章 锐角三角函数 全章教案

B
B
5
C (2)
13
(2)在 Rt△ABC 中,∠C=90°,∠A=30°,求 sinA 的 sinB 的值; (3)在 Rt△ABC 中,∠C=90°,∠A=45°,求 sinA 的 sinB 的值.
斜边 c
A
-2-
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

第28章锐角三角函数-《利用坡度解决问题》教案

第28章锐角三角函数-《利用坡度解决问题》教案
2.突破重点难点,运用图示、案例等方法,帮助学生理清角度与坡度的关系;
3.提高学生的问题解决能力,设计更多具有实际情境的问题,让学生在实践中学会运用锐角三角函数;
4.加强学生表达能力的培养,鼓励他们在课堂上积极发言,提高沟通与分享的能力。
3.重点难点解析:在讲授过程中,我会特别强调坡度的计算方法和锐角三角函数(正切函数)的应用这两个重点。对于难点部分,我会通过实际例子和图示来帮助大家理解坡度与角度之间的关系。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与坡度相关的实际问题,如自行车道的坡度设计、斜坡的稳定性分析等。
(3)在实际问题中,能够灵活运用锐角三角函数解决坡度问题。
举例解释:
a.坡度概念的理解:难点在于让学生理解坡度不仅仅是数学概念,而是与实际生活密切相关。教师可以通过展示图片、动画等,帮助学生形象地理解坡度在实际场景中的应用。
b.角度与坡度的关系:学生容易混淆角度与坡度的关系,教师需强调正切函数求解的是角度的正切值,而坡度是角度正切值的另一种表示形式。可通过具体实例,如30度角的正切值为1/√3,对应的坡度为1:√3。
在讲授正切函数的应用时,我发现有些学生在求解坡度时容易混淆角度与坡度的关系。针对这一情况,我通过具体案例和图示,强调了正切函数求解的是角度的正切值,而坡度是角度正切值的具体表现。此外,我还让学生们进行分组讨论,亲身体验如何将锐角三角函数应用于解决实际问题,从而加深对这一知识点的理解。
在实践活动环节,学生们分组讨论实际问题时表现得相当积极,但我也注意到有些小组在讨论过程中偏离了主题。为了引导学生们更好地聚焦问题,我及时介入并提出了具有针对性的问题,帮助他们回到正确的讨论方向。
b.正切函数的应用:强调正切函数在求解坡度中的关键作用,如已知斜面的垂直高度和水平宽度,可以通过计算正切值得到坡度。

人教版九年级数学下册28.1锐角三角函数(教案)

人教版九年级数学下册28.1锐角三角函数(教案)
-函数值的计算:学生在运用定义进行计算时可能会出现错误,需要引导学生掌握计算方法和技巧。
-函数值性质的应用:如何将函数值的性质应用于解决实际问题,是学生在本节课中需要突破的难点。
举例1:对于正弦、余弦、正切函数定义的理解,可以通过画图和实际操作,让学生直观地感受到函数值的变化。
举例2:在计算函数值时,可以引导学生先确定直角三角形的两个已知边长,然后利用定义求解未知边长,如已知斜边和一个锐角,求另一个锐角的对边或邻边。
3.培养学生的空间观念:通过锐角三角函数的学习,使学生建立直角三角形中各元素之间的空间关系,提高空间观念。
本节课将着重关注学生核心素养的培养,使学生在掌握知识的同时,提高解决实际问题的能力,发展学科素养。
三、教学难点与重点
1.教学重点
-锐角三角函数的定义:正弦(sin)、余弦(cos)、正切(tan)的定义是本节课的核心内容,需使学生理解并掌握。
其次,在新课讲授环节,我尽量使用生动的语言和形象的比喻来解释锐角三角函数的概念,但感觉在举例时,还可以选择更具代表性的例子,让学生更容易理解和接受。此外,在讲解重点难点时,要更加注意观察学生的反应,适时调整教学节奏,确保他们能够真正掌握这些核心知识。
在实践活动环节,我发现学生们在分组讨论和实验操作中表现出了很高的积极性。但同时,我也注意到有些学生在操作过程中对三角函数的应用还是有些迷茫。针对这个问题,我考虑在今后的教学中,可以增加一些实际操作的指导,让学生在动手实践的过程中更好地理解锐角三角函数的应用。
3.重点难点解析:在讲授过程中,我会特别强调正弦、余弦、正切函数的定义及计算方法这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与锐角三角函数相关的实际问题。

28.1《锐角三角函数》教案

28.1《锐角三角函数》教案
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“锐角三角函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
4.及时关注学生的学习反馈,针对他们的疑难点进行针对性的讲解和辅导。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了锐角三角函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对锐角三角函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
实践活动和小组讨论是今天课程的亮点。学生们在分组讨论中积极互动,通过实验操作加深了对三角函数的理解。在讨论环节,我尽量以引导者的身份出现,鼓励学生们提出自己的观点,这有助于培养他们的批判性思维和创新能力。不过,我也观察到,有些小组在分享成果时表达不够清晰,这可能是因为他们在整理思路和语言组织方面还需要进一步的指导。
在案例分析环节,我尝试通过解决实际问题的例子来展示锐角三角函数的应用,学生们对此表现出较大的兴趣。他们能够跟随我的思路,理解如何将三角函数知识应用于测量等实际问题中。然而,我也注意到,当学生们自己尝试解决问题时,他们在建立数学模型和选择合适的三角函数方面遇到了挑战。这表明,在未来的教学中,我需要更多关注学生的问题解决能力和数学建模能力的培养。
5.在小组合作与交流中,培养学生沟通协作、批判性思维和问题解决的核心素养。

人教版初中数学九年级下册第二十八章:锐角三角函数(全章教案)

人教版初中数学九年级下册第二十八章:锐角三角函数(全章教案)

第二十八章锐角三角函数教材简析本章的内容主要包括:锐角三角函数的概念;30°,45°,60°角的三角函数值;利用计算器求任意锐角的三角函数值及根据三角函数值求出相应的锐角;利用锐角三角函数解直角三角形及三角函数的应用.在学生掌握了直角三角形边、角之间的关系的基础上,引入了锐角三角函数的概念,进而学习解直角三角形,是中学几何的重点与难点.本章是中考的必考内容,主要考查特殊锐角三角函数值的计算和解直角三角形及其应用.教学指导【本章重点】锐角三角函数的概念和直角三角形的解法.【本章难点】综合运用直角三角形的边边关系、边角关系来解决实际问题.【本章思想方法】1.体会数形结合思想.如:在理解和应用锐角三角函数解决实际问题时,注意数形结合思想的应用,即需根据实际问题画出几何图形,并根据图形寻找直角三角形中边、角之间的关系.2.体会转化思想.如:(1)把实际问题转化成数学问题:把实际问题的情境转化为几何图形;把题中的已知条件转化为示意图中的边、角或它们之间的关系.(2)把数学问题转化为解直角三角形问题,如果示意图不是直角三角形,需要添加适当的辅助线构造出直角三角形.3.体会方程思想.如:在解决直角三角形的实际问题中,经常设出未知数来表示某一个量,并利用直角三角形的边、角关系建立方程,将几何问题转化为求方程的解.课时计划28.1锐角三角函数4课时28.2解直角三角形及其应用3课时28.1 锐角三角函数第1课时 正弦教学目标一、基本目标 【知识与技能】1.利用相似的直角三角形,探索直角三角形的锐角确定时,它的对边与斜边的比是固定值,从而引出正弦的概念.2.理解锐角的正弦的概念,并能根据正弦的概念进行计算. 【过程与方法】通过探究锐角的正弦的概念的形成,体会由特殊到一般的数学思想方法,培养学生的归纳、推理能力.【情感态度与价值观】让学生在通过探索、分析、论证、总结获取新知识的过程中体验成功的快乐,感悟数学的实用性,培养学生学习数学的兴趣.二、重难点目标 【教学重点】理解正弦的意义,会求锐角的正弦值. 【教学难点】理解直角三角形的锐角确定时,它的对边与斜边的比是固定值.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P61~P63的内容,完成下面练习. 【3 min 反馈】1.在直角三角形中,30°角所对的边等于斜边的一半.2.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,∠A 的对边与斜边的比叫做∠A 的正弦 ,即sin A =a c.3.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若a =3,b =4,则sin B =45.环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】如图,在Rt △ABC 中,∠C =90°,求sin A 和sin B 的值.【互动探索】(引发学生思考)要求sin A 和sin B 的值,需要分别找出∠A 、∠B 的对边和斜边的比.【解答】详细解答过程见教材P63例1.【例2】已知等腰三角形的一腰长为25 cm ,底边长为30 cm ,求底角的正弦值. 【互动探索】(引发学生思考)转化法:将已知条件转化为几何示意图,再作出辅助线构造出直角三角形求解.【解答】如图,过点A 作AD ⊥BC ,垂足为D. ∵AB =AC =25 cm ,BC =30 cm ,AD 为底边上的高, ∴BD =12BC =15 cm ,∴在Rt △ABD 中,由勾股定理,得AD =AB 2-BD 2=20 cm , ∴sin ∠ABC =AD AB =2025=45.即底角的正弦值为45.【互动总结】(学生总结,老师点评)求三角函数值一定要在直角三角形中求,当图形中没有直角三角形时,要通过作高构造直角三角形解答.活动2 巩固练习(学生独学) 1.如图,sin A 等于( C )A .2B .55C.12D . 52.在Rt △ABC 中,∠C =90°,BC =4,sin A =23,则AB 的长为( B )A.83 B .6 C .12D .83.如图,△ABC 的顶点是正方形网格的格点,则sin B 24.如图,在△ABC 中,AD ⊥BC 于点D ,若AD =9,DC =5,E 为AC 的中点,求sin ∠EDC 的值.解:∵AD ⊥BC , ∴∠ADC =90°. ∵AD =9,DC =5,∴AC =AD 2+DC 2=92+52=106. ∵E 为AC 的中点, ∴DE =AE =EC =12AC ,∴∠EDC =∠C ,∴sin ∠EDC =sin C =AD AC =9106=9106106.活动3 拓展延伸(学生对学)【例3】如图,已知AB 是⊙O 的直径,CD 是弦,且CD ⊥AB ,BC =6,AC =8,求sin ∠ABD 的值.【互动探索】首先根据垂径定理得出∠ABD =∠ABC ,然后由直径所对的圆周角是直角,得出∠ACB =90°,从而由勾股定理算出斜边AB 的长,再根据正弦的定义求出sin ∠ABC 的值,进而得出sin ∠ABD 的值.【解答】∵AB 是⊙O 的直径,CD 是弦,且CD ⊥AB , ∴AC ︵ =AD ︵, ∴∠ABD =∠AB C. ∵AB 为直径, ∴∠ACB =90°.在Rt △ABC 中,∵BC =6,AC =8, ∴AB =BC 2+AC 2=10, ∴sin ∠ABD =sin ∠ABC =AC AB =45.【互动总结】(学生总结,老师点评)求三角函数值时必须在直角三角形中.在圆中,由直径所对的圆周角是直角可构造出直角三角形.环节3 课堂小结,当堂达标 (学生总结,老师点评) 1.如图,sin A =∠A 的对边斜边.2.求一个锐角的正弦值一定要放到直角三角形中,若没有直角三角形,可通过作垂线构造直角三角形.练习设计请完成本课时对应练习!第2课时锐角三角函数教学目标一、基本目标【知识与技能】1.掌握余弦、正切的定义.2.了解锐角∠A的三角函数的定义.3.能运用锐角三角函数的定义求三角函数值.【过程与方法】通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生观察、比较、分析、概括等逻辑思维能力.【情感态度与价值观】通过观察、思考、交流、总结等数学活动,体验数学学习充满着探索与发现,培养学生积极思考,勇于探索的精神.二、重难点目标【教学重点】余弦、正切的概念,并会求指定锐角的余弦值、正切值.【教学难点】利用锐角三角函数的定义解决有关问题.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P64~P65的内容,完成下面练习.【3 min反馈】1.如图,在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.(1)∠A 的邻边与斜边的比叫做∠A 的余弦,即cos A =bc ;(2)∠A 的对边与邻边的比叫做∠A 的正切,即tan A =ab .2.锐角A 的正弦、余弦、正切叫做∠A 的锐角三角函数.3.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若a =3,b =4,则cos B =35,tan B =43.环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】如图,在Rt △ABC 中,∠C =90°,AB =10,BC =6,求sin A 、cos A 、tan A.【温馨提示】详细解答过程见教材P65例2.【例2】如图,△ABC 中,AD ⊥BC ,垂足是D ,若BC =14,AD =12,tan ∠BAD =34,求cos C 的值.【互动探索】(引发学生思考)观察图形,cos C =DC AC ,所以需要通过tan ∠BAD =34和已知条件求出DC 、AC 的长度,再代入求值.【解答】∵在Rt △ABD 中,tan ∠BAD =BD AD =34,∴BD =AD ·tan ∠BAD =12×34=9,∴CD =BC -BD =14-9=5, ∴AC =AD 2+CD 2=122+52=13, ∴cos C =DC AC =513.【互动总结】(学生总结,老师点评)在不同的直角三角形中,要根据三角函数的定义分清它们的边角关系,再根据勾股定理解答.活动2 巩固练习(学生独学)1.在Rt △ABC 中,∠C =90°,AB =13,AC =12,则cos A =( C ) A.513 B .512C.1213D .1252.已知Rt △ABC 中,∠C =90°,tan A =43,BC =8,则AC 等于( A )A .6B .323C .10D .123.如图所示,将∠AOB 放在边长为1的小正方形组成的网格中,则tan ∠AOB =12.4.如图,在Rt △ABC 中,∠C =90°,D 是BC 边上一点,AC =2,CD =1,设∠CAD =α.(1)求sin α、cos α、tan α的值; (2)若∠B =∠CAD ,求BD 的长.解:在Rt △ACD 中,∵AC =2,DC =1, ∴AD =AC 2+CD 2= 5.(1)sin α=CD AD =15=55,cos α=AC AD =25=255,tan α=CD AC =12.(2)在Rt △ABC 中,∵tan B =AC BC, 而∠B =∠CAD , ∴tan α=2BC =12,∴BC =4,∴BD =BC -CD =4-1=3. 活动3 拓展延伸(学生对学)【例3】如图,在Rt △ABC 中,∠C =90°,根据三角函数定义尝试说明: (1)sin 2A +cos 2A =1; (2)sin A =cos B ; (3)tan A =sin A cos A.【互动探索】用定义表示出sin A 、cos A 、cos B 、tan A →计算等式的左边与右边→得出结论.【证明】(1)由勾股定理,得a 2+b 2=c 2,而sin A =a c ,cos A =bc ,∴sin 2A +cos 2A =a 2c 2+b 2c 2=c 2c 2=1. (2)∵sin A =a c ,cos B =ac ,∴sin A =cos B.(3)∵tan A =a b ,sin A cos A =a c b c =ab,∴tan A =sin Acos A.【互动总结】(学生总结,老师点评)本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.题目中的三个结论应熟记.环节3 课堂小结,当堂达标 (学生总结,老师点评) 锐角三角函数⎩⎪⎨⎪⎧正弦→对比斜余弦→邻比斜正切→对比邻练习设计请完成本课时对应练习!第3课时 特殊角的三角函数值教学目标一、基本目标 【知识与技能】1.掌握30°,45°,60°角的三角函数值,能够用它们进行计算. 2.能够根据30°,45°,60°角的三角函数值说出相应锐角的大小. 【过程与方法】1.通过探索特殊角的三角函数值的过程,培养学生观察、分析、发现的能力. 2.通过推导特殊角的三角函数值,了解知识间的联系,提升综合运用数学知识解决问题的能力.【情感态度与价值观】在探索特殊角的三角函数值中,学生积极参与数学活动,培养学生独立思考问题的能力. 二、重难点目标 【教学重点】根据30°,45°,60°角的三角函数值进行有关计算. 【教学难点】正确理解与记忆30°,45°,60°角的三角函数值.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P65~P67的内容,完成下面练习. 【3 min 反馈】1.sin 30°=12,cos 30°2tan 30°32.sin 60°2cos 60°=12,tan 60°3.sin 45°2cos 45°2tan 45°=1. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】求下列各式的值: (1)cos 260°+sin 260°; (2)cos 45°sin 45°-tan 45°. 【互动探索】(引发学生思考)熟记特殊角的三角函数值→代入算式求值.【解答】(1)cos 260°+sin 260°=⎝⎛⎭⎫122+⎝⎛⎭⎫322=1. (2)cos 45°sin 45°-tan 45°=22÷22-1=0. 【互动总结】(学生总结,老师点评)特殊角的三角函数值必须熟练记忆,既能由角得值,又能由值得角,记忆这个结果,可以结合直角三角形三边的大小关系,也可以结合数值的特征,30°,45°,60°的正弦值分母都是2,分子分别为1,2,3,而它们的余弦值分母都是2,分子正好相反,分别为3,2,1;其正切值分别为1÷3,1,1× 3.【例2】数学拓展课程《玩转学具》课堂中,小陆同学发现:一副三角板中,含45°的三角板的斜边与含30°的三角板的长直角边相等,于是,小陆同学提出一个问题:如图,将一副三角板直角顶点重合拼放在一起,点B 、C 、E 在同一直线上,若BC =2,求AF 的长.请你运用所学的数学知识解决这个问题.【互动探索】(引发学生思考)根据正切的定义求出AC →根据正弦的定义求出CF →AF =AC -F C.【解答】在Rt △ABC 中,∵BC =2,∠A =30°, ∴AC =BC tan A =23,∴EF =AC =2 3. ∵∠E =45°,∴FC =EF ·sin E =6, ∴AF =AC -FC =23- 6.【互动总结】(学生总结,老师点评)本题考查的是特殊角的三角函数值的应用,掌握锐角三角函数的概念、熟记特殊角的三角函数值是解题的关键.活动2 巩固练习(学生独学)1.若3tan (α+10°)=1,则锐角α的度数是( A ) A .20° B .30° C .40°D .50°2.若∠A 为锐角,且tan 2A +2tan A -3=0,则∠A =45度. 3.计算.(1)2sin 30°-2cos 45°; (2)tan 30°-sin 60°·sin 30°; (3)(1-3tan 30°)2. 解:(1)0. (2)312. (3)3-1. 4.如图,在△ABC 中,∠ABC =90°,∠A =30°,D 是边AB 上一点,∠BDC =45°,AD =4,求BC 的长.解:∵∠B =90°,∠BDC =45°, ∴△BCD 为等腰直角三角形, ∴BD =B C.在Rt △ABC 中,∵tan A =tan 30°=BC AB ,∴BC BC +4=33,解得BC =2(3+1). 活动3 拓展延伸(学生对学)【例3】已知△ABC 中的∠A 与∠B 满足(1-tan A )2+⎪⎪⎪⎪sin B -32=0,试判断△ABC 的形状.【互动探索】根据非负性的性质求出tan A 及sin B 的值→根据特殊角的三角函数值求出∠A 及∠B 的度数→判断△ABC 的形状.【解答】∵(1-tan A )2+⎪⎪⎪⎪sin B -32=0, ∴1-tan A =0,sin B -32=0, ∴tan A =1,sin B =32, ∴∠A =45°,∠B =60°, ∴∠C =180°-45°-60°=75°, ∴△ABC 是锐角三角形.【互动总结】(学生总结,老师点评)一个数的绝对值和偶次方都是非负数,当几个数或式的绝对值或偶次方相加和为0时,则其中的每一项都必须等于0.环节3 课堂小结,当堂达标 (学生总结,老师点评) 特殊角的三角函数值:练习设计请完成本课时对应练习!第4课时用计算器求锐角三角函数值及锐角教学目标一、基本目标【知识与技能】1.能利用计算器求锐角三角函数值.2.已知锐角三角函数值,能用计算器求相应的锐角.3.能用计算器辅助解决含三角函数的实际问题.【过程与方法】使用计算器可以解决部分复杂问题,通过求值探讨三角函数问题的某些规律,提高学生分析问题的能力.【情感态度与价值观】通过计算器的使用,了解科学在人们日常生活中的重要作用,激励学生热爱科学、学好文化知识.二、重难点目标【教学重点】运用计算器处理三角函数中的值或角的问题.【教学难点】用计算器求锐角三角函数值时的按键顺序.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P67~P68的内容,完成下面练习.【3 min反馈】1.用计算器求sin 24°37′18″的值,以下按键顺序正确的是(A)A.sin24°′″37°′″18°′″=B.24°′″37°′″18°′″sin=C.2ndF sin24°′″37°′″18°′″=D.sin24°′″37°′″18°′″2ndF=2.使用计算器求下列三角函数值.(精确到0.0001)(1) sin 24°≈0.4067;(2)cos 35°≈0.8192;(3)tan 46°≈1.0355.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】按要求解决问题:(1)求sin 63°52′41″的值;(精确到0.0001)(2)求tan 19°15′的值;(精确到0.0001)(3)已知tan x=0.7410,求锐角的值.(精确到1′)【互动探索】(引发学生思考)熟悉用科学计算器求锐角三角函数值的操作流程.【解答】(1)在角度单位状态设定为“度”,再按下列顺序依次按键:sin 63°′′′52°′′′41°′′′=显示结果为0.897 859 012.所以sin 63°52′41″≈0.8979.(2)在角度单位状态设定为“度”,再按下列顺序依次按键:tan 19°′′′15°′′′=显示结果为0.349 215 633 4.所以tan 19°15′≈0.3492.(3)在角度单位状态设定为“度”,再按下列顺序依次按键:SHIFT tan 0.7410=显示结果为36.538 445 77.再按°′′′,显示结果为36°32′18.4″.所以x≈36°32′.【互动总结】(学生总结,老师点评)不同计算器的按键顺序是不同的,大体分两种情况:先按三角函数键,再按数字键;或先输入数字后,再按三角函数键,因此使用计算器时一定先要弄清输入顺序.【例2】如图,在△ABC中,AB=8,AC=9,∠A=48°.求:(1)AB边上的高(精确到0.01);(2)∠B的度数(精确到1′).【互动探索】(引发学生思考)观察图形→作辅助线→利用相似锐角三角函数解直角三角形.【解答】(1)作AB 边上的高CH ,垂足为H . ∵在Rt △ACH 中,sin A =CHAC ,∴CH =AC ·sin A =9sin 48°≈6.69. (2)∵在Rt △ACH 中,cos A =AH AC ,∴AH =AC ·cos A =9cos 48°,∴在Rt △BCH 中,tan B =CH BH =CH AB -AH =9sin 48°8-9cos 48°,∴∠B ≈73°32′.【互动总结】(学生总结,老师点评)利用三角函数求非直角三角形的边或角,一般情况下要构造直角三角形.活动2 巩固练习(学生独学)1.如图,在△ABC 中,∠ACB =90°,BC =2,AC =3,若用科学计算器求∠A 的度数,并用“度、分、秒”为单位表示出这个度数,则下列按键顺序正确的是( )A.tan 2÷3=B.tan 2÷3DMS =C.2ndF tan (2÷3)=D.2ndF tan (2÷3)DMS =2.用计算器求下列锐角的三角函数值.(精确到0.0001) (1)tan 63°27′; (2)cos 18°59′27″; (3)sin 67°38′24″; (4)tan 24°19′48″. 解:(1)2.0013. (2)0.9456. (3)0.9248. (4)0.4521. 3.根据下列条件求锐角A 的度数.(精确到1″) (1)cos A =0.6753; (2)tan A =87.54; (3)sin A =0.4553; (4)sin A =0.6725.解:(1)47°31′21″. (2)89°20′44″. (3)27°5′3″. (4)42°15′37″. 环节3 课堂小结,当堂达标 (学生总结,老师点评)用计算器求锐角三角函数值⎩⎪⎨⎪⎧求已知角的三角函数值由锐角三角函数值求锐角练习设计请完成本课时对应练习!28.2 解直角三角形及其应用 28.2.1 解直角三角形(第1课时)教学目标一、基本目标 【知识与技能】1.了解什么叫解直角三角形. 2.掌握解直角三角形的根据. 3.能由已知条件解直角三角形. 【过程与方法】在探索解直角三角形的过程中,渗透数形结合思想. 【情感态度与价值观】在探究活动中,培养学生的合作交流意识,让学生在学习中感受成功的喜悦,增强学习数学的信心.二、重难点目标 【教学重点】 解直角三角形的方法. 【教学难点】会将求非直角三角形中的边角问题转化为解直角三角形问题.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P72~P73的内容,完成下面练习. 【3 min 反馈】1.任何一个三角形都有六个元素,三条边、三个角,在直角三角形中,已知有一个角是直角,我们把利用已知的元素求出未知元素的过程,叫做解直角三角形.2.在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c . (1)两锐角互余,即∠A +∠B =90°; (2)三边满足勾股定理,即a 2+b 2=c 2;(3)边与角关系sin A =cos B =a c ,cos A =sin B =b c ,tan A =a b ,tan B =b a .3.Rt △ABC 中,若∠C =90°,sin A =45,AB =10,那么BC =8,tan B =34.环节2 合作探究,解决问题活动1小组讨论(师生互学)【例1】见教材P73例1.【例2】见教材P73例2.活动2巩固练习(学生独学)1.在△ABC中,a、b、c分别是∠A、∠B、∠C的对边,如果a2+b2=c2,那么下列结论正确的是(A)A.c sin A=a B.b cos B=cC.a tan A=b D.c tan B=b2.在Rt△ABC中,∠C=90°,∠B=30°,BC=6,则AB的长为3.根据下列条件解直角三角形.(1)在Rt△ABC中,∠C=90°,b=4,c=8;(2)在Rt△ABC中,∠C=90°,∠A=60°,a=12.解:(1)a=43,∠B=30°,∠A=60°.(2)∠B=30°,b=43,c=8 3.活动3拓展延伸(学生对学)【例3】一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=122,试求CD的长.【互动探索】过点B作BM⊥FD于点M,求出BM与CM的长度,在△EFD中求出∠EDF=60°,再解直角三角形即可.【解答】如题图,过点B作BM⊥FD于点M.在△ACB中,∵∠ACB=90°,∠A=45°,AC=122,∴BC=AC=12 2.∵AB∥CF,∴∠BCM=∠CBA=45°,∴BM=BC sin 45°=122×22=12,CM=BM=12.在△EFD中,∵∠F=90°,∠E=30°,∴∠EDF=60°,∴MD=BMtan 60°=43,∴CD=CM-MD=12-4 3.【互动总结】(学生总结,老师点评)解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.环节3课堂小结,当堂达标(学生总结,老师点评)练习设计请完成本课时对应练习!28.2.2应用举例第2课时利用仰角、俯角解直角三角形教学目标一、基本目标【知识与技能】1.能将直角三角形的知识与圆的知识结合起来解决问题.2.了解仰角、俯角等有关概念,会利用解直角三角形的知识解决有关仰角和俯角的实际问题.【过程与方法】通过探索用解直角三角形知识解决仰角、俯角等有关问题,经历将实际问题转化为数学问题的探究过程,提高应用数学知识解决实际问题的能力.【情感态度与价值观】通过探索三角函数在实际问题中的应用,感受数学来源于生活又应用于生活以及勇于探索的创新精神.二、重难点目标【教学重点】利用解直角三角形解决有关仰角、俯角的实际问题.【教学难点】建立合适的三角形模型,解决实际问题.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P74~P75的内容,完成下面练习.【3 min反馈】1.在进行测量时,从下往上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角.2.如图所示,在建筑物AB的底部a米远的C处,测得建筑物的顶端点A的仰角为α,则建筑物AB的高可表示为a tan α米.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】2012年6月18日,“神舟”九号载人航天飞船与“天宫”一号目标飞行器成功实现交会对接.“神舟”九号与“天宫”一号的组合体在离地球表面343 km的圆形轨道上运行,如图所示,当组合体运行到地球表面点P的正上方时,从中能直接看到的地球表面最远的点在什么位置?最远点与点P的距离是多少?(地球半径约为6400 km,π取3.142,结果取整数)【温馨提示】详细分析与解答见教材P74例3.【例2】如图,热气球探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球与楼的水平距离为120 m,这栋楼有多高(结果取整数)?【温馨提示】详细分析与解答见教材P75例4.活动2巩固练习(学生独学)如图,为了测量河的宽度AB,测量人员在高21 m的建筑物CD的顶端D处测得河岸B 处的俯角为45°,测得河对岸A处的俯角为30°(A、B、C在同一条直线上),则河的宽度AB 约是多少?(精确到0.1 m,参考数据:2≈1.41,3≈1.73)解:由题易知,∠DAC=∠EDA=30°. ∵在Rt△ACD中,CD=21 m,∴AC=CDtan 30°=2133=213(m).∵在Rt△BCD中,∠DBC=45°,∴BC=CD=21 m,∴AB=AC-BC=213-21≈15.3(m).即河的宽度AB约是15.3 m.活动3拓展延伸(学生对学)【例3】如图,某大楼顶部有一旗杆AB,甲、乙两人分别在相距6米的C、D两处测得点B和点A的仰角分别是42°和65°,且C、D、E在一条直线上.如果DE=15米,求旗杆AB的长大约是多少米?(结果保留整数,参考数据:sin 42°≈0.67,tan 42°≈0.9,sin 65°≈0.91,tan 65°≈2.1)【互动探索】要求AB ,先求出AE 与BE →解直角三角形:Rt △ADE 、Rt △BCE . 【解答】在Rt △ADE 中,∵∠ADE =65°,DE =15米, ∴tan ∠ADE =AE DE,即tan 65°=AE15≈2.1,解得 AE ≈31.5米.在Rt △BCE 中,∵∠BCE =42°,CE =CD +DE =6+15=21(米), ∴tan ∠BCE =BE CE,即tan 42°=BE21≈0.9,解得 BE ≈18.9米.∴AB =AE -BE =31.5-18.9≈13(米). 即旗杆AB 的长大约是13米.【互动总结】(学生总结,老师点评)先分析图形,根据题意构造直角三角形,再解Rt △ADE 、Rt △BCE ,利用AB =AE -BE 即可求出答案.环节3 课堂小结,当堂达标 (学生总结,老师点评)练习设计请完成本课时对应练习!第3课时 利用坡度、方向角解直角三角形教学目标一、基本目标【知识与技能】1.能运用解直角三角形解决航行问题.2.能运用解直角三角形解决斜坡问题.3.理解坡度i =坡面的铅直高度坡面的水平宽度=坡角的正切值. 【过程与方法】1.通过探究从实际问题中建立数学模型的过程,发展学生的抽象概括能力,提高应用数学知识解决实际问题的能力.2.通过将实际问题中的数量关系转化为直角三角形中元素之间的关系,增强应用意识,体会数形结合思想的应用.【情感态度与价值观】在运用三角函数知识解决问题的过程中,认识数学具有抽象、严谨和应用广泛的特点,体会数学的应用价值.二、重难点目标【教学重点】用三角函数有关知识解决方向角、坡度、坡角等有关问题.【教学难点】准确分析问题并将实际问题转化成数学模型.教学过程环节1 自学提纲,生成问题【5 min 阅读】阅读教材P76~P77的内容,完成下面练习.【3 min 反馈】(一)方向角1.方向角是以观察点为中心(方向角的顶点),以正北或正南为始边,旋转到观察目标的方向线所成的锐角,方向角也称象限角.2.如图,我们说点A 在O 的北偏东30°方向上,点B 在点O 的南偏西45°方向上,或者点B 在点O 的西南方向.(二)坡度、坡角1.坡度通常写成1∶m的形式.坡面与水平面的夹角叫做坡角,记作α,有i=hl=tan α.2.一斜坡的坡角为30°,则它的坡度为(三)利用解直角三角形的知识解决实际问题的一般过程1.将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题,也就是建立适当的函数模型);2.根据条件的特点,适当选用锐角三角函数,运用解直角三角形的有关性质解直角三角形;3.得到数学问题的答案;4.得到实际问题的答案.环节2合作探究,解决问题活动1小组讨论(师生互学)(一)解直角三角形,解决航海问题【例1】如图,海中一小岛A,该岛四周10海里内有暗礁,今有货轮由西向东航行,开始在A岛南偏西55°的B处,往东行驶20海里后到达该岛的南偏西25°的C处,之后,货轮继续向东航行,你认为货轮向东航行的途中会有触礁的危险吗?【互动探索】(引发学生思考)构造直角三角形→解直角三角形求出AD 的长并与10海里比较→得出结论.【解答】如题图,过点A 作AD ⊥BC 交BC 的延长线于点D.在Rt △ABD 中,∵tan ∠BAD =BD AD, ∴BD =AD ·tan 55°.在Rt △ACD 中,∵tan ∠CAD =CD AD, ∴CD =AD ·tan 25°.∵BD =BC +CD ,∴AD ·tan 55°=20+AD ·tan 25°,∴AD =20tan 55°-tan 25°≈20.79(海里). 而20.79海里>10海里,∴轮船继续向东行驶,不会遇到触礁危险.【互动总结】(学生总结,老师点评)解决本题的关键是将实际问题转化为直角三角形的问题,通过作辅助线构造直角三角形,再把条件和问题转化到这个直角三角形中解决.应先求出点A 距BC 的最近距离,若大于10海里则无危险,若小于或等于10海里则有危险.(二)解直角三角形,解决坡度、坡角问题【例2】如图,铁路路基的横断面是四边形ABCD ,AD ∥BC ,路基顶宽BC =9.8 m ,路基高BE =5.8 m ,斜坡AB 的坡度i =1∶1.6,斜坡CD 的坡度i ′=1∶2.5,求铁路路基下底宽AD 的值(精确到0.1 m)与斜坡的坡角α和β的值(精确到1°).【互动探索】(引发学生思考)将坡度i=1∶1.6和i′=1∶2.5分别转化为正切三角函数→求出AE、DF的长→由AD=AE+EF+DF求出AD的长→利用计算器求得坡角α和β的值.【解答】如题图,过点C作CF⊥AD于点F,则CF=BE,EF=BC,∠A=α,∠D=β.∵BE=5.8 m, i=1∶1.6, i′=1∶2.5,∴AE=1.6×5.8=9.28(m),DF=2.5×5.8=14.5(m),∴AD=AE+EF+DF=9.28+9.8+14.5≈33.6(m).由tan α=i=1∶1.6,tan β=i′=1∶2.5,得α≈32°,β≈22°.即铁路路基下底宽AB为33.6 m,斜坡的坡角α和β分别为32°和22°.【互动总结】(学生总结,老师点评)利用坡度与坡角解决实际问题的关键是将坡度与坡角放入可解的直角三角形中,没有直角三角形一般要添加辅助线(垂线)构造直角三角形.活动2巩固练习(学生独学)1.如图,防洪大坝的横断面是梯形,坝高AC为6米,背水坡AB的坡度i=1∶2,则斜坡AB的长为2.“村村通”公路工程拉近了城乡距离,加速了我区农村经济建设步伐.如图所示,C 村村民欲修建一条水泥公路,将C 村与区级公路相连.在公路A 处测得C 村在北偏东60°方向,沿区级公路前进500 m ,在B 处测得C 村在北偏东30°方向.为节约资源,要求所修公路长度最短,画出符合条件的公路示意图,并求出公路长度.(结果保留整数)解:如图,过点C 作CD ⊥AB ,垂足落在AB 的延长线上,CD 即为所修公路,CD 的长度即为公路长度.在Rt △ACD 中,根据题意,有∠CAD =30°.∵tan ∠CAD =CD AD, ∴AD =CD tan 30°=3C D. 在Rt △CBD 中,根据题意,有∠CBD =60°.∵tan ∠CBD =CD BD,∴BD=CDtan 60°=33C D.又∵AD-BD=500 m,∴3CD-33CD=500,解得CD≈433 m.活动3拓展延伸(学生对学)【例3】如图,小明于堤边A处垂钓,河堤AB的坡比为1∶ 3 ,坡长为3米,钓竿AC的倾斜角是60°,其长为6米,若钓竿AC与钓鱼线CD的夹角为60°,求浮漂D与河堤下端B之间的距离.【互动探索】将实际问题转化为几何问题→作辅助线,构造直角三角形→延长CA交DB延长线于点E,过点A作AF⊥EB→解直角三角形得AE长→得△CDE是等边三角形,DE=CE=AC+AE→求得BD长.【解答】如图,延长CA交DB延长线于点E,过点A作AF⊥EB,交EB于点F,则∠。

人教版九年级数学下册:28锐角三角函数《锐角三角函数优秀教学案例》教案

人教版九年级数学下册:28锐角三角函数《锐角三角函数优秀教学案例》教案
1.了解锐角三角函数的概念、定义及性质,掌握锐角三角函数的计算方法。
2.能够运用锐角三角函数解决实际问题,提高学生的应用能力。
3.学会使用三角板和直尺等工具进行角度测量,培养学生的动手操作能力。
4.能够运用信息技术辅助学习,提高学生的信息素养。
(二)过程与方法
1.通过观察、实验、探究等方法,引导学生主动发现锐角三角函数的规律。
四、教学内容与过程
(一)导入新课
1.生活实例引入:教师通过展示一些实际生活中的图片,如建筑物的设计图、物理实验场景等,让学生观察并思考其中涉及到的角度问题。
2.提问引导:教师向学生提出问题,如“这些图片中的角度是如何计算的?”“你能想到一些与角度相关的实际问题吗?”等,激发学生的思考兴趣。
3.学生回答:鼓励学生积极回答问题,分享自己的观点和思考。
三、教学策略
(一)情景创设
1.生活情境:通过设置一些与生活密切相关的实例,如建筑设计、物理实验等,让学生了解锐角三角函数在实际生活中的应用,激发学生的学习兴趣。
2.问题情境:设计一些具有挑战性的问题,让学生在解决问题的过程中自然地引入锐角三角函数的知识,引导学生主动探究。
3.互动情境:创设轻松、愉快的课堂氛围,鼓励学生积极参与课堂讨论,培养学生主动表达自己观点的能力。
2.作业反馈:教师及时批改学生的作业,给予反馈和评价,指出学生的错误和不足,帮助学生提高。
3.学生自我检查:学生对自己的作业进行自我检查,总结自己在作业中的优点和不足,不断提高自己的学习效果。
五、案例亮点
1.生活情境的引入:通过展示与学生生活密切相关的实例,如建筑设计、物理实验等,让学生了解锐角三角函数在实际生活中的应用,使学生感受到数学的实用性,激发学生的学习兴趣。这种生活情境的引入,不仅能够引起学生的兴趣,还能够增强学生对知识的理解和记忆。

第28章_锐角三角函数全章教案

第28章_锐角三角函数全章教案

课题 锐角三角函数——正弦一、教学目标1、通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这 一事实。

2、能根据正弦概念正确进行计算3、经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维, 培养学生由特殊到一般的演绎推理能力。

二、教学重点、难点 重点:理解认识正弦( sinA )概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值 这一事实.难点:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实。

三、教学过程 (一)复习引入操场里有一个旗杆,老师让小明去测量旗杆高度。

(演示学校操场上的国旗图片) 小明站在离旗杆底部10 米远处,目测旗杆的顶部, 视线与水平线的夹角为 34 度,并已知目高为 1 米.然 后他很快就算出旗杆的高度了。

你想知道小明怎样算出的吗?师:通过前面的学习我们知道,利用相似三角形的方法可以测 算出旗杆的大致高度;实际上我们还可以象小明那样通过测量一些角的度数和一些线 段的长度,来测算出旗杆的高度。

这就是我们本章即将探讨和学习的利用锐角三角函数来测算物体长度或高度的方法。

面我们大家一起来学习锐角三角函数中的第一种:锐角的正弦 (二)实践探索为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的 绿地进行灌溉。

现测得斜坡与水平面所成角的度数是 30o,为使出水口的高度为 35m ,那么需要准备多长的水管? 分析:问题转化为,在 Rt △ABC 中,∠ C=90o ,∠ A=30o , BC=35m,求 AB 根据“再直角三角形中, 30o 角所对的边等于斜边的一半”,即10米举例说明:若 a=1,c=3, 则 sinA= 1 )3注意:1、 sinA 不是 sin 与 A 的乘积,而是一个整体;2、正弦的三种表示方式: sinA 、 sin56 °、 sin ∠DEF3、 sinA 是线段之间的一个比值; sinA 没有单位。

笫二十八章《锐角三角函数》教案

笫二十八章《锐角三角函数》教案
笫二十八章《锐角三角函数》教案
一、教学内容
第二十八章《锐角三角函数》教案:
1.理解锐角三角函数的定义,掌握正弦、余弦、正切函数的概念。
-教材章节:第28章第1节
2.学会使用锐角三角函数进行简单图形的求解,如直角三角形中的角度和边长计算。
-教材章节:第28章第2节
3.掌握锐角三角函数的图像和性质,了解函数值随角度变化的规律。
其次,计算方法也是学生学习的另一个难点。尽管我总结了计算口诀,但学生在实际操作中仍然容易混淆。针对这一点,我认为在课堂上增加一些实际例题的讲解和练习是非常有必要的。通过大量的练习,让学生熟练掌握各个函数的计算方法,提高他们的运算能力。
此外,在教授锐角三角函数的性质时,我发现学生对于周期性和增减性的理解不够深入。这可能是因为我在这部分的讲解和引导不够到位。在以后的教学中,我需要通过绘制更详细的图像和列举更多实例,帮助学生更好地理解函数性质。
4.培养学生的数学运算能力,使学生熟练掌握锐角三角函数的计算方法,并能够准确解决相关数学问题。
-教材关联:第28章锐角三角函数的计算及应用
5.激发学生的创新意识,鼓励学生探索三角函数在其他领域的应用,拓展知识视野。
-教材关联:第28章拓展学习内容
三、教学难点与重点
1.教学重点
(1)锐角三角函数的定义及记忆
-突破方法:通过绘制直角三角形,让学生直观地看到函数值与三角形边长的关系。
(2)锐角三角函数的计算方法
-学生在计算锐角三角函数值时,可能难以确定使用哪个函数,或者容易混淆各函数的计算方法。
-突破方法:总结计算方法,如“正弦对边比斜边,余弦邻边比斜边,正切对边比邻边”,并辅以大量练习。
(3)锐角三角函数性质的理解
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题 锐角三角函数——正弦一、教学目标1、通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。

2、能根据正弦概念正确进行计算3、经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力。

二、教学重点、难点重点:理解认识正弦(sinA )概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实.难点:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实。

三、教学过程 (一)复习引入操场里有一个旗杆,老师让小明去测量旗杆高度。

(演示学校操场上的国旗图片)小明站在离旗杆底部10米远处,目测旗杆的顶部,视线与水平线的夹角为34度,并已知目高为1米.然后他很快就算出旗杆的高度了。

你想知道小明怎样算出的吗?师:通过前面的学习我们知道,利用相似三角形的方法可以测算出旗杆的大致高度;实际上我们还可以象小明那样通过测量一些角的度数和一些线段的长度,来测算出旗杆的高度。

这就是我们本章即将探讨和学习的利用锐角三角函数来测算物体长度或高度的方法。

下面我们大家一起来学习锐角三角函数中的第一种:锐角的正弦 (二)实践探索为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行灌溉。

现测得斜坡与水平面所成角的度数是30o,为使出水口的高度为35m ,那么需要准备多长的水管? 分析:问题转化为,在Rt △ABC 中,∠C=90o,∠A=30o,BC=35m,求AB 根据“再直角三角形中,30o角所对的边等于斜边的一半”,即341米10米?可得AB=2BC=70m.即需要准备70m长的水管结论:在一个直角三角形中,如果一个锐角等于30o,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于如图,任意画一个Rt△ABC,使∠C=90o,∠A=45o,计算∠A的对边与斜边的比,能得到什么结论?分析:在Rt△ABC 中,∠C=90o,由于∠A=45o,所以Rt△ABC是等腰直角三角形,由勾股定理得,故结论:在一个直角三角形中,如果一个锐角等于45o,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于.一般地,当∠A取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值?如图:Rt△ABC与Rt△A`B`C`,∠C=∠C` =90o,∠A=∠A`=α,那么与有什么关系分析:由于∠C=∠C` =90o,∠A=∠A`=α,所以Rt△ABC∽Rt△A`B`C`,,即结论:在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的对边与斜边的比也是一个固定值。

认识正弦如图,在Rt△ABC中,∠A、∠B、∠C所对的边分别记为a、b、c。

师:在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦。

记作sinA。

板书:sinA=A aA c∠=∠的对边的斜边(举例说明:若a=1,c=3,则sinA=31)注意:1、sinA不是 sin与A的乘积,而是一个整体;2、正弦的三种表示方式:sinA、sin56°、sin∠DEF3、sinA 是线段之间的一个比值;sinA 没有单位。

提问:∠B 的正弦怎么表示?要求一个锐角的正弦值,我们需要知道直角三角形中的哪些边? (三)教学互动 例1如图,在中,,求sin和sin的值.解答按课本 (四)巩固再现1.三角形在正方形网格纸中的位置如图所示,则sin α的值是﹙ ﹚ A .43 B .34 C .53 D .542.如图,在直角△ABC 中,∠C =90o,若AB =5,AC =4,则sinA =( ) A .35 B .45 C .34 D .43 3.在△ABC 中,∠C=90°,BC=2,sinA=23,则边AC 的长是( )A .13B .3C .43 D . 5四、布置作业课题 锐角三角函数——余弦和正切一、教学目标1、使学生知道当直角三角形的锐角固定时,它的邻边与斜边、对边与邻边的比值也都固定这一事实.2、逐步培养学生观察、比较、分析、概括的思维能力. 二、教学重点、难点 重点:理解余弦、正切的概念难点:熟练运用锐角三角函数的概念进行有关计算 三、教学过程 (一)复习引入 1、口述正弦的定义2、(1)如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,且AB =5,BC =3.则sin ∠BAC= ;sin ∠ADC= . (2)如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D 。

已知AC= 5 ,BC=2,那么sin ∠ACD =( )CB AEOABD·ABCDA .53B .23C .255D .52(二)实践探索一般地,当∠A 取其他一定度数的锐角时,它的邻边与斜边的比是否也是一个固定值?如图:Rt △ABC 与Rt △A`B`C`,∠C=∠C` =90o ,∠B=∠B`=α,那么''''B A C B AB BC 与有什么关系? 分析:由于∠C=∠C` =90o,∠B=∠B`=α,所以Rt △ABC ∽Rt △'''C B A ,''''B A AB C B BC =,即''''B A C B AB BC =结论:在直角三角形中,当锐角B 的度数一定时,不管三角形的大小如何,∠B 的邻边与斜边的比也是一个固定值。

如图,在Rt △ABC 中,∠C=90o ,把锐角B 的邻边与斜边的比叫做∠B 的余弦,记作cosB 即c a B B =∠=斜边的邻边cos ,把∠A 的对边与邻边的比叫做∠A 的正切.记作tanA,即baA A A =∠∠=的邻边的对边tan ,锐角A 的正弦,余弦,正切都叫做∠A 的锐角三角函数. (三)教学互动 例2:如图,在中,,BC=6,53sin =A 求cos 和tan 的值.解:∵AB BC A =sin ,∴10356sin =⨯==A BC AB 又86102222=-=-=BC AB AC例3:(1)如图(1), 在中,,,,求的度数.(2)如图(2),已知圆锥的高AO 等于圆锥的底面半径OB 的倍,求.(四)巩固再现 1.在中,∠C =90°,a ,b ,c 分别是∠A 、∠B 、∠C 的对边,则有()A .B .C .D .2. 在中,∠C =90°,如果54cos =A 那么的值为()A .53B .45C .43D .34 3、如图:P 是∠的边OA 上一点,且P 点的坐标为(3,4), 则cos=_____________.4、P81 练习1、2、3 四、布置作业 P85 1课题 锐角三角函数间的关系一、教学目标1、使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系.2、使学生了解同一个锐角正弦与余弦之间的关系3、使学生了解正切与正弦、余弦的关系4、使学生了解三角函数值随锐角的变化而变化的情况 二、教学重点、难点重点:三个锐角三角函数间几个简单关系难点:能独立根据三角函数的定义推导出三个锐角三角函数间几个简单关系 三、教学过程 (一)复习引入叫学生结合直角三角形说出正弦、余弦、正切的定义 (二)实践探索1、从定义可以看出sin A 与cos B 有什么关系?sin B 与cos A 呢?满足这种关系的A ∠与B ∠又是什么关系呢?2、利用定义及勾股定理你还能发现sin A 与cos A 的关系吗?3、再试试看tan A 与sin A 和cos A 存在特殊关系吗?经过教师引导学生探索之后总结出如下几种关系: (1)若90A B ∠+∠= 那么sin A =cos B 或sin B =cos A(2)22sin cos 1A A +=(3)sin tan cos AA A=4、在正弦中它的值随锐角的增大而增大还是随锐角的增大而减少?为什么?余弦呢?正切呢? 通过一番讨论后得出:(1)锐角的正弦值随角度的增加(或减小)而增加(或减小); (2)锐角的余弦值随角度的增加(或减小)而减小(或增加); (3)锐角的正切值随角度的增加(或减小)而增加(或减小)。

(三)教学互动(1)判断题:i 对于任意锐角α,都有0<sinα<1和0<cosα<1 ()ii 对于任意锐角α1,α2,如果α1<α2,那么cosα1<cosα2()iii 如果sinα1<sinα2,那么锐角α1<锐角α2I ()iv 如果cosα1<cosα2,那么锐角α1>锐角α2()(2)在Rt△ABC中,下列式子中不一定成立的是______A.sinA=sinB B.cosA=sinB C.sinA=cosB D.sin(A+B)=sinC(3)在390,sin.cos,sin tan5ABC C A A B A∠==中,求和的值A.0°<∠A≤30°B.30°<∠A≤45°C.45<∠A≤60°D.60°<∠A<90°四、布置作业课题 30°、45°、60°角的三角函数值一、教学目标1、能推导并熟记30°、45°、60°角的三角函数值,并能根据这些值说出对应的锐角度数。

2、能熟练计算含有30°、45°、60°角的三角函数的运算式二、教学重点、难点重点:熟记30°、45°、60°角的三角函数值,熟练计算含有30°、45°、60°角的三角函数的运算式难点:30°、45°、60°角的三角函数值的推导过程三、教学过程(一)复习引入还记得我们推导正弦关系的时候所到结论吗?即01sin 302=,02sin 452=你还能推导出0sin 60的值及30°、45°、60°角的其它三角函数值吗? (二)实践探索1.让学生画30°45°60°的直角三角形,分别求sia 30° cos45° tan60° 归纳结果30° 45° 60° siaA cosA tanA(三)教学互动例 求下列各式的值:(1)02245sin 30sin 245cos 60cos ++ (2)00000000cos 60sin 45cos 60cos 45cos 60sin 45sin 30cos 45+-+-+解 (1)原式=22212222122⨯⨯+⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛45212141=++=(2)原式=22321212221222122212221--=-+=+-+-+说明:本题主要考查特殊角的正弦余弦值,解题关键是熟悉并牢记特殊角的正弦余弦值。

相关文档
最新文档