第28章锐角三角函数复习
人教版九年级数学下册 第28章《锐角三角函数》单元核心考点归纳
★第28章《锐角三角函数》单元核心考点归纳核心考点1三个概念 (一)正弦1·在Rt △ABC 中, ∠C =90°,AC =12,BC =5,则sin A 为( ) A .512B .125C .1213D .513【答案】D2.在Rt △ABC 中,∠C =90°,AC =9,sin B =35,则AB 的长等于( )A .15B .12C .9D .6【答案】A(二)余弦3.在△ABC 中,若三边BC ,CA ,AB 满足BC :CA :AB =5:12:13,则cos B =( ) A .512B .1252C .513D .1213【答案】D4.如图,在平面直角坐标系中,点A 的坐标为(4,3),那∠cos α的值是( ) A .34B .43C .35D .45【答案】D第4题图第6题图第7题图C D(三)正切5.在Rt △ABC 中,∠C =90°,若斜边AB 是直角边BC 的3倍,则tan B 的值是( ) A .13B .3CD .【答案】D6.如图,在网格中,小正方形的边长均为l ,点A ,B ,C 都在格点上,则∠ABC 的正切值是( )A .2BC .D .12【答案】D7.如图,△ABC 是等腰直角三角形,AC =BC ,D 是AC 的中点,设∠ABD 为α,那∠tan α的值为( ) A .2 B .2 C .12 D .13 【答案】D8.如图,在△ABC 中,∠C =90°,a ,b ,c 分别为∠A ,B ,∠C 的对边,a :c =2:3,求sin A ,tan B 的值.ABC解∵a :c =2:3.设a =2k 走,c =3k (k ≠0),∴.b = 225c a k -=,∴sin A =23a c = ,tan B =55k =核心考点2一个运算——特殊角的三角函数值与实数运算9.计算:( 1) tan30°sin60°+cos 230°-sin 245°tan45° 解:34(2)tan 245°+21sin 30⎛⎫ ⎪⎝⎭-3cos 230°-(2-l )0.解:14+4-94-1=1核心考点3 四个应用应用l 解直角三角形10.如图,在△ABC 中,已知BC =13B =60°,∠C =45°,求AB ,AC 的长.A B C D CB A【答案】 解:过A 作AD ⊥BC 于D ,∴AD =CD ,AD,∴BD +CD =BC , ∴BD=1BD =1,∴AB =2BD =2,ADAC应用2利用仰角、俯角解直角三角形11.如图,某建筑物AC 顶部有一旗杆AB ,且点A ,B .C 在同一条直线上,小明在地面,)处观测旗杆顶端B 的仰角为30°,然后他正对建筑物的方向前进了20米到达地面的E 处,又测得旗杆顶端I 的仰角为60°,已知建筑物的高度AC =12米,求旗杆AB 的高度(结果精确到0.1米).1.73≈1.41.EC解:∠DBE =30°.BE =DE =20m ,在Rt △BEC 中,BC =BE .sin 60°=20=AB =BC -AC =12≈5.3 答:AB 大约是5.3米,应用3 利用方位角解直角三角形12. 如图,随着我市铁路建设进程的加快,现规划从A 地到B 地有一条笔直的铁路通过,但在附近的C 处有一大型油库.现测得油库C 在A 地的北偏东60°方向上,在B 地的西北方向上,AB 的距离为250+1)米.已知在以油库C 为中心,半径为200米的范围内施工均会对油库的安全造成影响.问若在此路段修建铁路,油库C 是否会受到影响?请说明理由.C BAA BCD解:过C 作CD ⊥AB 于D ,∴BD =CD ,AD.∴BD +AD =AB ,∴CDCD =250l ),CD =250>200;∴油库C 是不套爱到影响的.应用4利用坡角解直角三角形13.如图,是某市一座人行天桥的示意图,天桥离地面的高BC 是10米,离坡底10米处有一建筑物HQ ,为了方便行人推车过天桥,市政府部门决定降低坡度,使新坡面DC 的倾斜角∠BDC =30°,若新坡面下D 处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(最后计算结果保留一位小数). (1. 4141.732)H FED B A解:AH =10,BC =10,∠CAB =45°,在Rt △DBC 中,∠CDB =30°.∴DB=tan CD BCB=∠DH =AH -AD =AH -(DB -AB )=10-10=20-3米,∴该建筑物要拆除. 核心考点4 四种数学思想 思想1 数形结合的思想 14.在Rt △ABC 中,∠C =90°,若AC =2BC ,则sin A 的值是________ .21CA【答案】根据题意,作出如下图形,已知AC =2BC ,可得到三角形的三边之比为1:2,再由正弦定义sin A =BC AB思想2 分类讨论的思想15.如果方程x 2-4 x +3=0的两个根分别是Rt △ABC 的两条边,△ABC 最小的角为A ,那么tan A 的值为________ .【答案】解:∵x 2-4 x +3=0,∴x 1=1,x 2=3,即Rt △ABC 的两条边长分别为1和3,①当1和3分别为两直角边时,∴tan A =13;②当1和3分别为直角边和斜边时,∴tan A ;思想3 转化的思想16.如图,河流的两岸PQ ,MN 互相平行,河岸PQ 上有一排小树,已知相邻两树之间的距离CD =50米,某人在河岸MN 的A 处测得∠DAN =35°,然后沿河岸走了120米到达B 处,测得∠CBN = 70°,求河流的宽度CE (结果取整数). (参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)PN【答案】过点C 作CH ∥DA ,则∠CHB =∠DAB =35°,∴∠BCH =∠CBE -∠CHB =35°,∴BC =BH ,∵CD ∥AD ,∴AH =CD =50,∴BC =BH =AB -AH =70,∴sin ∠CBE =70×sin70°=70×0.94=65.8≈66,所以河流的宽度CE 约为66米.PN思想4 方程的思想17.直角三角形纸片的两直角边长分别为6,8,现将△ABC 如图那样折叠,使点A 与点B 重合,折痕为DE ,求tan ∠CBE 的值.DA【答案】解:设EC =x ,则BE =AE =8-x ,在Rt △BCE 中,62+x 2=(8-x )2, 解得x =74,tan ∠CBE =CE :BC =74÷6=724. 18.如图,折叠矩形ABCD 的一边AD ,使点D 落在BC 边的点F 处,已知AB =8cm, BC =10cm,求tan ∠EAF 的值.ED BC【答案】由折叠知AF =AD ,在Rt △ABF 中利用勾股定理求出BF =6,∴FC =4,设EE =x ,在Rt △EFC 中,由勾股定理有42+(8-x )2=x 2,∴x =5,tan ∠EAF =EF AF =EF AD =510=12.。
第二十八章锐角三角函数(A卷知识通关练)(原卷版)
班级姓名学号分数第二十八章锐角三角函数(A卷·知识通关练)核心知识1 锐角三角函数1.已知在Rt△ABC中,∠C=90°,AC=4,BC=6,那么下列各式中正确的是()A.tan A=B.cot A=C.sin A=D.cos A=2.在Rt△ABC中,∠C=90°,BC=3,AB=4,那么下列各式中正确的是()A.sin A=B.cos A=C.tan A=D.cot A=3.已知Rt△ABC中,∠C=90°,tan A=,AC=6,则AB等于()A.6B.C.10D.84.已知α为锐角,且,那么α的正切值为()A.B.C.D.5.在Rt△ABC中,∠C=90°,若sin A=,则cos B=()A.B.C.D.6.在Rt△ABC中,∠C=90°,AC=2,AB=3,那么tan A=.7.Rt△ABC中,∠C=90°,tan A=2,则cos A的值为.8.如图,在Rt△ABC中,∠C=90°,AC=24,sin A=,则BC=.9.已知在△ABC中,∠C=90°,AB=8,AC=6,那么cos A的值是.核心知识2.解直角三角形10.如图所示,△ABC的顶点是正方形网格的格点,则tan B的值为()A.B.C.D.111.如图,在Rt△ABC中,∠C=90°,sin A=,BC=,则AC的长为()A.B.3C.D.212.在Rt△ABC中,∠C=90°,BC=2,,则AC的长是()A.B.3C.D.13.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,下列结论正确的是()A.sin C=B.sin C=C.sin C=D.sin C=14.在△ABC中,已知AC=3,BC=4,AB=5,那么下列结论正确的是()A.sin A=B.cos A=C.tan A=D.以上均不正确15.如图,△ABC的顶点是正方形网格的格点,则sin∠ABC的值为()A.B.C.D.16.已知AD是△ABC的中线,BC=6,且∠ADC=45°,∠B=30°,则AC=()A.B.C.D.617.如图,在4×4正方形网格中,点A,B,C为网格交点,AD⊥BC,垂足为D,则sin∠BAD的值为()A.B.C.D.核心知识3.解直角三角形的应用18.如图,沿AB方向架桥BD,以桥两端B、D出发,修公路BC和DC,测得∠ABC=150°,BC=1800m,∠BCD=105°,则公路DC的长为()A.900m B.900m C.900m D.1800m19.图1是一款平板电脑支架,由托板、支撑板和底座构成.工作时,可将平板电脑吸附在托板上,底座放置在桌面上.图2是其侧面结构示意图,已知托板AB长200mm,支撑板CB长80mm,当∠ABC=130°,∠BCD=70°时,则托板顶点A到底座CD所在平面的距离为()(结果精确到1mm).(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,≈1.41,≈1.73)A.246 mm B.247mm C.248mm D.249mm20.如图,架在消防车上的云梯AB长为15m,BD∥CE,∠ABD=α,云梯底部离地面的距离BC为2m.则云梯的顶端离地面的距离AE的长为()A.(2+15sinα)m B.(2+15tanα)mC.17tanαm D.17sinαm21.如图,小明为了测量遵义市湘江河的对岸边上B,C两点间的距离,在河的岸边与BC平行的直线EF 上点A处测得∠EAB=37°,∠F AC=60°,已知河宽30米,则B,C两点间的距离为()(参考数据:sin37°≈,cos37°≈,tan37°≈)A.(18+25)米B.(40+10)米C.(24+10)米D.(40+30)米22.如图,已知A、C两点的距离为5米,∠A=α,则树高BC为()A.5sinα米B.5cosα米C.5tanα米D.米23.如图,一条河的两岸互相平行,为了测量河的宽度PT(PT与河岸PQ垂直),测量得P,Q两点间距离为m米,∠PQT=α,则河宽PT的长为()A.m sinαB.m cosαC.m tanαD.24.如图所示的衣架可以近似看成一个等腰三角形ABC,其中AB=AC,∠ABC=27°,BC=44cm,则高AD约为()(参考数据:sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)A.9.90cm B.11.22cm C.19.58cm D.22.44cm25.一配电房示意图如图所示,它是一个轴对称图形.已知BC=6m,∠ABC=α,则房顶A离地面EF的高度为()A.(4+3sinα)m B.(4+3tanα)m C.(4+)m D.(4+)m26.某学校安装红外线体温检测仪(如图1),其红外线探测点O可以在垂直于地面的支杆OP上自由调节(如图2).已知最大探测角∠OBC=67°,最小探测角∠OAC=37°.测温区域AB的长度为2米,则该设备的安装高度OC应调整为()米.(精确到0.1米.参考数据:sin67°≈,cos67°≈,tan67°≈,sin37°≈,cos37°≈,tan37°≈)A.2.4B.2.2C.3.0D.2.727.如图1是一种可折叠手机平板支架,由托板、支撑板和底座组成,手机放置在托板上,图2是其侧面结构示意图.量得托板长AB=17cm,支撑板长CD=12cm,底座长DE=13cm,托板AB固定在支撑板的端点C处,托板AB可绕点C转动,支撑板CD可绕点D转动,当∠ACD=2∠D=60°时,点A到点D的距离恰好是点C到直线DE的距离的2倍,则BC=cm.为了观看舒适,把AB绕点C旋转,再将CD绕点D旋转,使点B与点E重合,则此时点A到直线DE的距离为cm.。
九年级数学下册 第28章锐角三角函数复习教案 人教新课标版 教案
第28章 锐角三角函数复习教案锐角三角函数(第一课时) 教学三维目标:一.知识目标:初步了解正弦、余弦、正切概念;能较正确地用siaA 、cosA 、tanA 表示直角三角形中两边的比;熟记功30°、45°、60°角的三角函数,并能根据这些值说出对应的锐角度数。
二.能力目标:逐步培养学生观察、比较、分析,概括的思维能力。
三.情感目标:提高学生对几何图形美的认识。
教材分析:1.教学重点: 正弦,余弦,正切概念2.教学难点:用含有几个字母的符号组siaA 、cosA 、tanA 表示正弦,余弦,正切 教学程序: 一.探究活动1.课本引入问题,再结合特殊角30°、45°、60°的直角三角形探究直角三角形的边角关系。
2.归纳三角函数定义。
siaA=斜边的对边A ∠,cosA=斜边的邻边A ∠,tanA=的邻边的对边A A ∠∠3例1.求如图所示的Rt ⊿ABC 中的siaA,cosA,tanA 的值。
4.学生练习P21练习1,2,3 二.探究活动二1.让学生画30°45°60°的直角三角形,分别求sia 30°cos45° tan60° 归纳结果2. 求下列各式的值(1)sia 30°+cos30°(2)2sia 45°-21cos30°(3)004530cos sia +ta60°-tan30°三.拓展提高P82例4.(略) 1. 如图在⊿ABC 中,∠A=30°,tanB=23,AC=23,求AB 四.小结 五.作业课本解直角三角形应用(一) 一.教学三维目标 (一)知识目标使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.(二)能力训练点通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.(三)情感目标渗透数形结合的数学思想,培养学生良好的学习习惯. 二、教学重点、难点和疑点 1.重点:直角三角形的解法.2.难点:三角函数在解直角三角形中的灵活运用.3.疑点:学生可能不理解在已知的两个元素中,为什么至少有一个是边. 三、教学过程 (一)知识回顾1.在三角形中共有几个元素?2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢? (1)边角之间关系 sinA=c a cosA=c b tanA=ba(2)三边之间关系a 2+b 2=c 2(勾股定理) (3)锐角之间关系∠A+∠B=90°.以上三点正是解直角三角形的依据,通过复习,使学生便于应用. (二) 探究活动1.我们已掌握Rt △ABC 的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形).3.例题评析例 1在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且b= 2 a=6,解这个三角形.例2在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且b= 20 B ∠=350,解这个三角形(精确到0.1).解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.完成之后引导学生小结“已知一边一角,如何解直角三角形?”答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底.例 3在Rt △ABC 中,a=104.0,b=20.49,解这个三角形. (三) 巩固练习在△ABC 中,∠C 为直角,AC=6,BAC ∠的平分线AD=43,解此直角三角形。
第二十八章 锐角三角函数(单元总结)-2021学年九年级数学下册(人教版)(解析版)
第二十八章 锐角三角函数单元总结【知识要点】 知识点一 锐角三角形锐角三角函数:如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B)【正弦和余弦注意事项】1.sinA 、cosA 是在直角三角形中定义的,∠A 是锐角(注意数形结合,构造直角三角形)。
2.sinA 、cosA 是一个比值(数值,无单位)。
3.sinA 、cosA 的大小只与∠A 的大小有关,而与直角三角形的边长无关。
0°、30°、45°、60°、90°特殊角的三角函数值(重要)正弦、余弦的增减性:当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。
正切的增减性:当0°<α<90°时,tan α随α的增大而增大,对边邻边C知识点二 解直角三角形一般地,直角三角形中,除直角外,共有五个元素,即三条边和两个锐角.由直角三角形中的已知元素,求出其余未知元素的过程,叫做解直角三角形. 直角三角形五元素之间的关系: 1. 勾股定理()2. ∠A+∠B=90°3. sin A==4. cos A= =5.tan A= =【考查题型】考查题型一 正弦典例1.(2020·陕西西安市·西北工业大学附属中学九年级期中)如图,在54⨯的正方形网格中,每个小正方形的边长都是1,ABC ∆的顶点都在这些小正方形的顶点上,则sin BAC ∠的值为( )A .43B .34C .35D .45【答案】D 【分析】过C 作CD AB ⊥于D ,首先根据勾股定理求出AC ,然后在Rt ACD ∆中即可求出sin BAC ∠的值.【详解】如图,过C 作CD AB ⊥于D ,则=90ADC ∠︒,∴AC =222234=+=+AC AD CD =5. ∴4sin 5CD BAC AC ∠==. 故选D . 【点睛】本题考查了勾股定理的运用以及锐角三角函数,正确作出辅助线是解题的关键.变式1-1.(2018·西城区·北京四中九年级期中)如图,在Rt ABC ∆中,90C =∠,10AB =,8AC =,则sin A 等于( )A .35B .45C .34D .43【答案】A 【解析】分析:先根据勾股定理求得BC=6,再由正弦函数的定义求解可得. 详解:在Rt △ABC 中,∵AB=10、AC=8, ∴2222=108=6AB AC --,∴sinA=63105BC AB ==. 故选:A .点睛:本题主要考查锐角三角函数的定义,解题的关键是掌握勾股定理及正弦函数的定义.变式1-2.(2019·山东淄博市·九年级期中)如图,在Rt△ABC中,∠C=90°,sin A=45,AC=6cm,则BC的长度为()A.6cm B.7cm C.8cm D.9cm 【答案】C【详解】已知sinA=45BCAB=,设BC=4x,AB=5x,又因AC2+BC2=AB2,即62+(4x)2=(5x)2,解得:x=2或x=﹣2(舍),所以BC=4x=8cm,故答案选C.考查题型二余弦典例2.(2020·福建省泉州市培元中学九年级期中)如图,△ABC的顶点都是正方形网格中的格点,则cos∠ABC等于()A 5B25C5D.23【答案】B【详解】由格点可得∠ABC所在的直角三角形的两条直角边为2,4,222425+=∴cos∠25525=.故选B .变式2-1.(2016·辽宁铁岭市·九年级期末)在ABC 中,C 90∠=,AB 6=,1cosA 3=,则AC 等于( ) A .18 B .2C .12D .118【答案】B 【分析】根据三角函数的定义,在直角三角形ABC 中,cosA =ACAB,即可求得AC 的长. 【详解】解:∵在△ABC 中,∠C =90°,∴cosA =ACAB , ∵cosA =13,AB =6,∴AC =123AB =,故答案选:B . 【点睛】本题考查了解直角三角形中三角函数的应用,解题的关键是要熟练掌握直角三角形中边角之间的关系.变式2-2.(2019·山东滨州市·九年级期末)如图,在平面直角坐标系中,点M 的坐标为M (5,2),那么cosα的值是( )A 5B .23C 25D 5【答案】D 【分析】如图,作MH⊥x轴于H.利用勾股定理求出OM,即可解决问题.【详解】解:如图,作MH⊥x轴于H.∵M(5,2),∴OH=5,MH=2,∴OM=22(5)2+=3,∴cosα=5 OHOM=,故选:D.【点睛】本题考查解直角三角形的应用,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.考查题型三正切典例3.(2020·广东深圳市·深圳中学八年级期中)如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为()A.12B.1 C3D3【答案】B【分析】连接BC,由网格求出AB,BC,AC的长,利用勾股定理的逆定理得到△ABC为等腰直角三角形,即可求出所求. 【详解】 如图,连接BC ,由网格可得AB=BC=5,AC=10,即AB 2+BC 2=AC 2, ∴△ABC 为等腰直角三角形, ∴∠BAC=45°, 则tan ∠BAC=1, 故选B .【点睛】本题考查了锐角三角函数的定义,解直角三角形,以及勾股定理,熟练掌握勾股定理是解本题的关键.变式3-1.(2018·江苏苏州市·九年级期末)如图,在等腰Rt ABC ∆中,90C ∠=︒,6AC =,D 是AC 上一点,若1tan 5DBA ∠=,则AD 的长为( ).A .2B .3C .2D .1【答案】A 【解析】分析:本题考查等腰直角三角形的性质及解直角三角形.解题的关键是作辅助线,构造直角三角形,运用三角函数的定义建立关系式然后求解. 解析:如图,作DE ⊥AB 于E .∵tan ∠DBA==,∴BE=5DE .∵△ABC 为等腰直角三角形,∴∠A=45°,∴AE=DE .∴BE=5AE ,又∵AC=6,∴AB=6,∴AE+BE=AE+5AE=6,∴AE=,∴在等腰直角△ADE中,由勾股定理,得AD=,AE=2.故选A.变式3-2.(2020·河北唐山市·九年级期末)如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是∠BAC,若2tan5BAC∠=,则此斜坡的水平距离AC为()A.75m B.50m C.30m D.12m 【答案】A【分析】根据BC的长度和tan BAC∠的值计算出AC的长度即可解答.【详解】解:因为2tan5BCBACAC=∠=,又BC=30,所以,3025AC=,解得:AC=75m,所以,故选A.【点睛】本题考查了正切三角函数,熟练掌握是解题的关键.考查题型四特殊角的三角函数值典例4.(2018·南昌市期末)点M(-sin60°,cos60°)关于x轴对称的点的坐标是( )A.(32,12) B.(-32,-12)C.(312) D.(-123【答案】B 【详解】∵点(-sin60°,cos60°)即为点(312),∴点(-sin60°,cos60°)关于y 3,12).变式4-1.(2019·山东淄博市·九年级期中)下列式子错误的是()A.cos40°=sin50°B.tan15°•tan75°=1C.sin225°+cos225°=1 D.sin60°=2sin30°【答案】D【详解】试题分析:选项A,sin40°=sin(90°﹣50°)=cos50°,式子正确;选项Btan15°•tan75°=tan15°•cot15°=1,式子正确;选项C,sin225°+cos225°=1正确;选项D,sin60°=3,sin30°=12,则sin60°=2sin30°错误.故答案选D.变式4-2.(2018·河北唐山市·九年级期末)如果△ABC中,sin A=cos B=22,则下列最确切的结论是()A.△ABC是直角三角形B.△ABC是等腰三角形C.△ABC是等腰直角三角形D.△ABC是锐角三角形【答案】C【解析】因为sin A=cos B 2,所以∠A=∠B=45°,所以△ABC是等腰直角三角形. 故选C.考查题型五同角的三角函数典例5.(2018·山东潍坊市·九年级期末)在Rt△ABC中,∠C =90°,sinA=45,则cosB的值等于( )A.35B.45C.34D5【答案】B 【解析】在Rt△ABC中,∠C=90°,∠A+∠B=90°,则cos B=sin A=45.故选B.点睛:本题考查了互余两角三角函数的关系.在直角三角形中,互为余角的两角的互余函数变式5-1.(2018·浙江台州市·九年级期末)在Rt △ABC 中,cosA= 12,那么sinA 的值是( )A .2B .2C .3D .12【答案】B 【分析】利用同角三角函数间的基本关系求出sinA 的值即可. 【详解】:∵Rt △ABC 中,cosA=12 ,∴ =2, 故选B . 【点睛】本题考查了同角三角函数的关系,以及特殊角的三角函数值,熟练掌握同角三角函数的关系是解题的关键.变式5-2.(2018·湖南岳阳市·九年级期末)在Rt ABC 中,C 90∠=,如果4cosA 5=,那么tanA 的值是( ) A .35B .53C .34D .43【答案】C 【分析】本题可以利用锐角三角函数的定义求解. 【详解】解:∵在Rt △ABC 中,∠C=90°,∴cosA=b c ,tanA=ab ,a 2+b 2=c 2. ∵cosA=45,设b=4x ,则c=5x ,a=3x .∴tanA=a b =3344x x =. 故选C.【点睛】利用锐角三角函数的定义,通过设参数的方法求三角函数值.考查题型六 解直角三角形典例6.(2020·东北师大附中明珠学校九年级期中)如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠ABC=α,∠ADC=β,则竹竿AB 与AD 的长度之比为( )A .tan tan αβB .sin sin βαC .sin sin αβD .cos cos βα【答案】B【分析】在两个直角三角形中,分别求出AB 、AD 即可解决问题;【详解】在Rt △ABC 中,AB=AC sin α, 在Rt △ACD 中,AD=AC sin β, ∴AB :AD=AC sin α:AC sin β=sin sin βα, 故选B .【点睛】 本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题. 变式6-1.(2020·山东枣庄市·九年级期末)如图,在ABC ∆中,144CA CB cosC ==,=,则sinB 的值为( )A .10B .15C .6D .10 【答案】D【分析】过点A 作AD BC ⊥,垂足为D ,在Rt ACD ∆中可求出AD ,CD 的长,在Rt ABD ∆中,利用勾股定理可求出AB 的长,再利用正弦的定义可求出sinB 的值.【详解】解:过点A 作AD BC ⊥,垂足为D ,如图所示.在Rt ACD ∆中,1CD CA cosC ⋅==,2215AD AD CD ∴=-=;在Rt ABD ∆中,315BD CB CD AD =﹣=,=,22BD AD 26AB ∴=+=,AD 10sin AB B ∴==. 故选:D .【点睛】考查了解直角三角形以及勾股定理,通过解直角三角形及勾股定理,求出AD ,AB 的长是解题的关键.变式6-2.(2019·辽宁沈阳市·九年级期末)如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A 处看乙楼楼顶B 处仰角为30°,则甲楼高度为( )A.11米B.(36﹣153)米C.153米D.(36﹣103)米【答案】D【分析】分析题意可得:过点A作AE⊥BD,交BD于点E;可构造Rt△ABE,利用已知条件可求BE;而乙楼高AC=ED=BD﹣BE.【详解】解:过点A作AE⊥BD,交BD于点E,在Rt△ABE中,AE=30米,∠BAE=30°,∴BE=30×tan30°=103(米),∴AC=ED=BD﹣BE=(36﹣103)(米).∴甲楼高为(36﹣103)米.故选D.【点睛】此题主要考查三角函数的应用,解题的关键是熟知特殊角的三角函数值.考查题型七利用解直角三角形相关知识解决实际问题典例7.(2019·河南许昌市·九年级期末)如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点B 处的求救者后,又发现点B 正上方点C 处还有一名求救者.在消防车上点A 处测得点B 和点C 的仰角分别是45°和65°,点A 距地面2.5米,点B 距地面10.5米.为救出点C 处的求救者,云梯需要继续上升的高度BC 约为多少米?(结果保留整数.参考数据:tan65°≈2.1,sin65°≈0.9,cos65°≈0.4,2≈1.4)【答案】云梯需要继续上升的高度BC 约为9米.【分析】过点A 作AM EF ⊥于点M ,AD BC ⊥于点D ,在Rt ABD ∆中,求得AD 的长;在Rt ACD ∆中,求得CD 的长,根据BC=CD-BD 即可求得BC 的长.【详解】过点A 作AM EF ⊥于点M ,AD BC ⊥于点D ,∵CN EF ⊥ ,∴90AMN MND ADN ∠=∠=∠=︒,∴四边形AMND 为矩形.∴ 2.5DN AM ==米.∴10.5 2.58BD BN DN =-=-=(米),由题意可知,45BAD ∠=︒,65CAD ∠=︒,∵AD BC ⊥,∴90ADB ∠=︒,在Rt ABD ∆中,tan BD BAD AD ∠=, ∴88tan tan45BD AD BAD ===∠︒(米). 在Rt ACD ∆中,tan CD CAD AD∠=, ∴tan 8tan658 2.116.8CD AD CAD =⋅∠=︒≈⨯=(米).∴16.888.89BC CD BD =-≈-=≈(米).答:云梯需要继续上升的高度BC 约为9米.【点睛】本题考查解直角三角形﹣仰角俯角问题,添加辅助线,构造直角三角形,建立直角三角形模型是解决问题的关键.变式7-1.(2018·江苏无锡市·九年级期末)如图,为了测量出楼房AC 的高度,从距离楼底C 处603米的点D (点D 与楼底C 在同一水平面上)出发,沿斜面坡度为i=1:3的斜坡DB 前进30米到达点B ,在点B 处测得楼顶A 的仰角为53°,求楼房AC 的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈43,计算结果用根号表示,不取近似值).【答案】153+【分析】如图作BN ⊥CD 于N ,BM ⊥AC 于M ,先在RT △BDN 中求出线段BN ,在RT △ABM 中求出AM ,再证明四边形CMBN 是矩形,得CM=BN 即可解决问题.【详解】如图作BN ⊥CD 于N ,BM ⊥AC 于M .在RT △BDN 中,BD=30,BN :ND=13,∴BN=15,DN=153,∵∠C=∠CMB=∠CNB=90°,∴四边形CMBN是矩形,∴CM=BM=15,BM=CN=603153453-=,在RT△ABM中,tan∠ABM=43 AMBM=,∴AM=603,∴AC=AM+CM=15603+.【点睛】构造适当的直角三角形,并应用锐角的三角函数,正确理解坡比的概念.变式7-2.(2018·山西晋中市期末)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)【答案】高、低杠间的水平距离CH 的长为151cm .【解析】分析:利用锐角三角函数,在Rt △ACE 和Rt △DBF 中,分别求出AE 、BF 的长.计算出EF .通过矩形CEFH 得到CH 的长.详解:在Rt △ACE 中,∵tan ∠CAE=CE AE, ∴AE=()15515521tan tan82.47.5CE cm CAE =≈≈∠︒ 在Rt △DBF 中,∵tan ∠DBF=DF BF, ∴BF=()23423440tan tan80.3 5.85DF cm DBF =≈=∠︒. ∵EF=EA+AB+BF≈21+90+40=151(cm )∵CE ⊥EF ,CH ⊥DF ,DF ⊥EF∴四边形CEFH 是矩形,∴CH=EF=151(cm ).答:高、低杠间的水平距离CH 的长为151cm .点睛:本题考查了锐角三角函数解直角三角形.题目难度不大,注意精确度.。
第28章 锐角三角函数 复习学案
第28章锐角三角函数复习学案一、课程学习目标1、了解锐角三角函数的概念,能够正确应用sinA 、cos A、tanA表示直角三角形中两边的比;记忆0°、30°、45°、60°、90°的正弦、余弦和正切的函数值,并会由一个特殊角的三角函数值说出这个角;2、能够正确地使用计算器,由已知锐角求出它的三角函数值,由已知三角函数值求出相应的锐角;3、理解直角三角形中边与边的关系,角与角的关系和边与角的关系,会运用勾股定理、直角三角形的两个锐角互余、以及锐角三角函数解直角三角形,并会用解直角三角形的有关知识解决简单的实际问题;4、通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,通过解直角三角的学习,体会数学在解决实际问题中的作用,并结合实际问题对微积分的思想有所感受。
二、本章知识结构框图三、知识点与方法(一)正弦、余弦、正切的意义【第1课时】(1)在Rt△ABC中,∠C=90度,则锐角A的与的比叫做∠A的正弦,记作;则锐角A的与的比叫做∠A的余弦,记作;则锐角A的与的比叫做∠A的正切,记作。
(2)锐角A的正弦、余弦、正切都叫做∠A的。
【练习】1、把Rt△ABC各边的长度都扩大3倍得Rt△A′B′C′,那么锐角A,A′的余弦值的关系为()A.cosA=cosA′ B.cosA=3cosA′ C.3cosA=cosA′ D.不能确定2、如图1,已知P是射线OB上的任意一点,PM⊥OA于M,且PM:OM=3:4,则cos α的值等于( )A .34B .43C .45D .35图1 图2 图3 3、在△ABC 中,∠C=90°,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,则下列各项中正确的是( )A .a=c ·sinB B .a=c ·cosBC .a=c ·tanBD .以上均不正确 4、在Rt △ABC 中,∠C=90°,32cos =A ,则tanB 等于( )A .35B .C .25.5、、如图2,在△ABC 中,∠C=90°,BC :AC=1:2,则sinA=_______,cosA=______,tanB=______.6、如图3,在Rt △ABC 中,∠C=90°,b=20,c=220,则∠B 的度数为_______.7、已知:α是锐角,247tan =α,则sin α=_____,cos=_______. 8、如图,角α的顶点在直角坐标系的原点,一边在x 轴上,•另一边经过点P ()32,2,求角α的三个三角函数值.9、(2013•自贡)如图,边长为1的小正方形网格中,⊙O 的圆心在格点上,则∠AED 的余弦值是 。
第28章+锐角三角函数知识点总结及思维导图+2023—2024学年人教版数学九年级下册
第28章锐角三角函数【思维导图】28.1锐角三角函数【知识点】1.Rt△ABC中,∠C=90°.(1)∠A的对边与斜边比,叫做∠A的正弦,记为sinA,即sinA=∠A的对边斜边=aa(2)∠A的邻边与斜边比,叫做∠A的余弦,记为cosA,即cosA=∠A的邻边斜边=aa(3)∠A的对边与邻边比,叫做∠A的正切,记为tanA,即tanA=∠A的对边∠A的邻边=aa∠A的正弦、余弦、正切统称为∠A的锐角三角函数.提示:sin A 不是sin与A的乘积,而是一个整体,cosA和tanA同理;锐角三角函数的三种表示方法:sin A,sin 56°,sin∠DEF.2.一个锐角的三角函数值是一个比值,它与三角形的大小无关,它没有单位.在Rt△ABC中,当锐角A的度数一定时,无论这个直角三角形大小如何,∠A的锐角三角函数值为定值.锐角三角函数锐角α30°45°60°sin α12√22√32cos α√32√2212tan α√331√3(1)正弦值、正切值随角度的增大而增大,余弦值随角度的增大而减小.(2)sin α=cos(90°-α)cos α=sin(90°-α)tan α·tan(90°-α)=1(3)锐角A 的正弦、余弦的取值范围分别为:0<sin A<1,0<cos A<1, (4)cos 2A+sin 2A=1 sin 2A+sin 2(90°-α)=1(5)tan A=sin A cos A4.锐角三角函数值是个常数值,它只与角的度数有关,将来离开了直角三角形也存在.5.若α=45°,则sin α=cos α; 若α<45°,则sin α<cos α; 若α>45°,则sin α>cos α;28.2解直角三角形及其应用 28.2.1 解直角三角形【知识点】1.在直角三角形中,由已知元素求出其余未知元素的过程就是解直角三角形.2.在直角三角形中,三边之间的关系是a 2+b 2=c 2(勾股定理); 两锐角之间的关系是∠A+∠B=90° 边角之间的关系有sinA=∠A 的对边斜边,cosA=∠A 的邻边斜边,tanA=∠A 的对边∠A 的邻边3.在直角三角形的六个元素中,除直角外的五个元素只要知道其中的两个元素,就可以求出其余三个元素,其中至少有一个是边.4.在Rt △ABC 中,∠C=90°,若已知∠A=α,AB=c ,较简便的方法是用正弦求出BC ,用余弦求出AC ,也可用勾股定理求出AC ,根据直角三角形的两锐角互余求出∠B.单元练习一、选择题1.已知∠α为锐角,且sin a=12,则∠α=( )A.30°B.45°C.60°D.90°2.sin 60°的相反数是( )A.-12B.−√33C.−√32D.−√223.如图,在∠ABC中,∠B=90°,BC=2AB,则cosA的值为( )A.52B.12C.255D.554.如图,在4×5 的正方形网格中,每个小正方形的边长都是1,∠ABC的顶点都在这些小正方形的顶点上,那么sin∠ACB 的值为( )A.3√55B.√175C. 35D. 455.在∠ABC中,∠A,∠B均为锐角,且|2sin A-1|与(cos a-√22)2互为相反数,则∠C的度数是( )A.45°B.75°C.105°D.120°6.如图,在∠ABC中,∠C=90°,AB=15,sinB=35,则AC的长为( )A.3 B.9 C.4 D.127.如图,在离铁塔150米的A处,用测倾仪测得塔顶的仰角为α,测倾仪的高A D为1.5米,则铁塔的高BC为( )A.(1.5+150tanα)米a.(1.5+150tan a)米C.(1.5+150sinα)米a.(1.5+150sin a)米8.在Rt∠ABC 中,∠C=90°,AB=2BC,则cos A 的值为 ( ) A.√32 B .12 C .√33 D .√229.如图,在∠ABC 中,CA =CB =4,cosC =14 ,则sinB 的值为( )A.102 B .153 C .64 D .10410.如图,电线杆CD 的高度为h ,两根拉线 AC 与BC 相互垂直,∠CAB=α,则拉线 BC 的长度为(点 A,D,B 在同一条直线上)( ) a .asin a a .acos a a .atan a D. h·cosα11.定义一种运算:cos(α+β)=cos αcos β-sin αsin β,cos(α-β)=cos αcos β+sin αsin β.例如:当α=60°,β=45°时,cos(60°-45°)=12×√22+√32×√22=√2+√64,则cos 75°的值为 ( )A.√6+√24 B .√6-√24C.√6-√22 D .√6+√2212.如图,由边长为1的小正方形构成的网格中,点A ,B ,C 都在格点上,以AB 为直径的圆经过点C ,D ,则cos∠ADC 的值为( )A .21313B .31313C .23D .53 二、填空题,则cos B=_______.13.在∠ABC中, aa=90°,tan a=√3314.已知α为锐角,当无意义时,cos α的值是_______.√3tan a-115.如图,在Rt∠ABC中,∠ACB=90°,CD∠AB,垂足为D,若AC= 5 ,BC =2,则sin∠ACD的值为_________.16.某物体沿着坡比为4:3的坡面上升了8米,那么在坡面上移动了_______米.17.如图,已知正方形ABCD和正方形BEFG,点G在AD上,GF与CD交于点,正方形ABCD的边长为8,则BH的长为_______.H,tan∠ABG=1218.如图,在平面直角坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2,设tan∠BOC=m,则m的取值范围是_________.三、解答题19.图1是一种三角车位锁,其主体部分是由两条长度相等的钢条组成.当位于顶端的小挂锁打开时,钢条可放入底盒中(底盒固定在地面下),此时汽车可以进入车位;当车位锁上锁后,钢条按图1的方式立在地面上,以阻止底盘高度低于车位锁高度的汽车进入车位.图2是其示意图,经测量,钢条AB=AC=50 cm,∠AB C=47°.(1)求车位锁的底盒BC的长;(2)若一辆汽车的底盘高度为30cm,当车位锁上锁时,问这辆汽车能否进入该车位? (参考数据:aaa47°≈0.73,aaa47°≈0.68,aaa47°≈1.07)20.某景区为给游客提供更好的游览体验,拟在如图∠所示的景区内修建观光索道.其设计示意图如图∠所示,以山脚A为起点,沿途修建AB、CD两段长度相等的观光索道,最终到达山顶D处,中途设计了一段与AF平行的观光平台BC,BC长为50 m.索道AB与AF的夹角为15°,CD与水平线的夹角为45°,A、B两处的水平距离AE为576 m,DF∠AF,垂足为点F.(图∠中所有点都在同一平面内,点A、E、F 在同一水平线上)(1)求索道AB的长(结果精确到1 m);(2)求AF的长(结果精确到1 m).(参考数据:sin 15°≈0.25,cos 15°≈0.96,tan 15°≈0.26,√2≈1.41)21.八年级二班学生到某劳动教育实践基地开展实践活动,当天,他们先从基地门口A处向正北方向走了450米,到达菜园B处锄草,再从B处沿正西方向到达果园C处采摘水果,再向南偏东37°方向走了300米,到达手工坊D处进行手工制作,最后从D处回到门口A处,手工坊在基地门口北偏西65°方向上,求菜园与果园之间的距离.(结果保留整数.参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)。
2013新人教版九下第28章《锐角三角函数》word期末复习测试2
第28章 锐角三角函数整章测试(时间45分钟 满分100分)班级 ______________ 学号 姓名 ____ 得分____一、选择题(每题3分,共24分)1.在△ABC 中,∠C =90°,3sin 5A =,则cos A 的值是( ) A .45 B . 35 C . 34 D . 432.在△ABC 中,2∠B =∠A +∠C ,则sinB +tanB 等于( ) A .1 B .323 C .321+ D .不能确定 3.等腰三角形底边与底边上的高的比是( ) A . 60° B .90° C .120° D .150°4.一段公路的坡度为1:3,某人沿这段公路路面前进100米,那么他上升的最大高度是( ) A .30米 B .10米 C .1030米 D .1010米 5.若平行四边形相邻两边的长分别为10和15,它们的夹角为60°,则平行四边形的面积是( )A .150B .375C . 9D . 76.如图,为了测量河两岸A 、B 两点的距离,在与AB 垂直的方向上取点C ,测得AC =a ,∠ACB =α,那么AB 等于( )A .sin a α⋅B .cos a α⋅C .n a ta α⋅D .tan aα7.如图,ΔABC 中,AE ⊥BC 于E ,D 为AB 边上一点,如果BD =2AD ,CD =10,sin ∠BCD =35,那么AE 的值为( ) A .3 B .6 C .7.2 D .98.如图,E 在矩形ABCD 的边CD 上,AB =2BC ,则t a n ∠CBE +tan ∠DAE 的值是( ) A .2 B .2C .2D .2+ABCEDABCDE二、填空题(每题2分,共20分)9.在△ABC 中,2AB =,AC =B ∠=30º,则 ∠BAC 的度数是 . 10.锐角A 满足2sin (A -150)=3则∠A = . 11.如图,在菱形ABCD 中,DE ⊥AB ,垂足是E ,DE =6,sinA =35,则菱形ABCD 的周长是________.12.根据图中所给的数据,求得避雷针CD 的长约为_______m (结果精确的到0.01m ). 13.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西 度.14.已知,在△ABC 中,∠A=30°,tanB=23,AC=32,则AB= . 15.计算:100245sin 251-+⋅-+-=16.如图,修建抽水站时,沿着倾斜角为300的斜坡铺设管道,若量得水管AB 的长度为80米,那么点B 离水平面的高度BC 的长为 米.17.如图,小红把梯子AB 斜靠在墙壁上,梯脚B 距墙1.6米,小红上了两节梯子到D 点,此D 点距墙1.4米,BD 长0.55米,则梯子的长为18.如图,机器人从A 点,沿着西南方向,行了个42单位,到达B 点后观察到原点O 在它的南偏东60°的方向上,则原来A 的坐标为(结果保留根号)CA第11题 第12题 第13题第18题图CBAADEB 第16题 第17题 第18题三、解答题(共56分)19.(4分)阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺、标杆、一副三角尺、小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种..测量方案. (1)所需的测量工具是: ; (2)请在下图中画出测量示意图;(3)设树高AB 的长度为x ,请用所测数据(用小写字母表示)求出x .20.(4分)如图,河旁有一座小山,从山顶A 处测得河对岸点C 的俯角为30°,测得岸边点D 的俯角为45°,又知河宽CD 为50米。
江西九年级数学下册第二十八章《锐角三角函数》综合知识点总结(答案解析)
学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.如图,PA ,PB 分别与⊙O 相切于A ,B 两点,延长PO 交⊙O 于点C ,若60APB ∠=︒,6PC =,则AC 的长为( )A .4B .22C .23D .332.已知如图,在直角梯形ABCD 中,AD ∥BC ,∠B=90°,AD=23,AB=4,连接AC ,若∠CAD=30°,则CD 为( )A .223+B .27C .1033D .123+3.在Rt ABC 中,90,C a b c ∠=︒、、分别是A B C ∠∠∠、、的对边,如果3,4a b ==,那么下列等式中正确的是( )A .4sin 3A =B .4cos 3A =C .4tan 3A =D .4cot 3A = 4.小明在学完《解直角三角形》一章后,利用测角仪和校园旗杆的拉绳测量校园旗杆的高度,如图,旗杆PA 的高度与拉绳PB 的长度相等,小明先将PB 拉到'PB 的位置,测得(''PB C a B C ∠=为水平线),测角仪/B D 的高度为1米,则旗杆PA 的高度为( )A .11sin a +米B .11cos a -米C .11sin a -米D .11cos a +米 5.如图,△ABC 的三个顶点均在格点上,则cos A 的值为( )A .12B .55C .2D .2556.在Rt △ABC 中,∠ACB =90°,AB =5,tan ∠B =2,则AC 的长为 ( ) A .1 B .2 C .5 D .257.如图,在矩形ABCD 中,AB =6,BC =62,点E 是边BC 上一动点,B 关于AE 的对称点为B ′,过B ′作B ′F ⊥DC 于F ,连接DB ′,若△DB ′F 为等腰直角三角形,则BE 的长是( )A .6B .3C .32D .62﹣6 8.某兴趣小组想测量一座大楼 AB 的高度.如图,大楼前有一段斜坡BC ,已知 BC 的长为 12 米它的坡度1:3i = .在离 C 点 40 米的 D 处,用测量仪测得大楼顶端 A 的仰角为 37度,测角仪DE 的高度为 1.5米,求大楼AB 的高度约为( )米(sin 370.60,cos370.80,tan 370.75,3 1.73︒=︒=︒==)A .39.3B .37.8C .33.3D .25.79.如图,在Rt ABC ∆中,90C ∠=︒,30BAC ∠=︒,延长CA 到点D ,使AD AB =,连接BD .根据此图形可求得tan15︒的值是( )A .23-B .23+C .36D .3210.如图,一块矩形木板ABCD 斜靠在墙边,( OC ⊥OB ,点A 、B 、C 、D 、O 在同一平面内),已知AB a ,AD b ,∠BCO =α.则点A 到OC 的距离等于( )A .asinα+bsinαB .acosα+bcosαC .asinα+bcosαD .acosα+bsinα 11.如图,ABC 中,6AB AC AE AC DE ==⊥,,垂直平分AB 于点D ,则EC 的长为( )A .23B .43C .22D .4212.如图,若将四根木条钉成的矩形木框变形为平行四边形ABCD 的形状,并使得其面积变为原矩形面积的一半,则平行四边形ABCD 的内角BCD ∠的大小为( )A .100°B .120°C .135°D .150°13.如图,点A ,B ,C 在正方形网格的格点上,则sin ∠BAC=( )A .26B 26C 26D 13 14.如图,分别以直角三角形三边为边向外作等边三角形,面积分别为1S 、2S 、3S ;如图2,分别以直角三角形的三边为直径向外半圆,面积分别为4S 、5S 、6S .其中116S =,245S =,511S =,614S =,则34S S +=( )A .86B .64C .54D .48二、填空题15.计算:02cos 45|13|(3)π︒+---=_____.16.如图,在ABC 中,6AB BC ==,点O 为BC 中点,点P 是射线AO 上的一个动点,且 60AOC ∠=︒.要使得BCP 为直角三角形,CP 的长为 ________ .17.如图是一个地铁站入口的双翼闸机.它的双翼展开时,双翼边缘的端点A 与B 之间的距离为10cm ,双翼的边缘AC =BD =54cm ,且与闸机侧立面夹角∠PCA =∠BDQ =30°.当双翼收起时,可以通过闸机的物体的最大宽度为________cm .18.如图,ABC 内接于O ,AB AC =,直径AD 交BC 于点E ,若1DE =,2cos 3BAC ∠=,则弦BC 的长为______.19.如图,已知在Rt ABC 中,C 90,AC BC 2∠=︒==,点D 在边BC 上,将ABC 沿直线AD 翻折,使点C 落在点C '处,联结AC ',直线AC '与边CB 的廷长线相交于点F ,如果DAB BAF ∠∠=,那么BF =_________.20.将一副三角板如图摆放,使得一块三角板的直角边AC 和另一块三角板的斜边ME 重叠,点A 与点M 重合,已知AB=AC=8,则重叠的面积是__________.21.如图 1 的矩形ABCD 中,有一点E 在AD 上,现以BE 为折线将点A 往右折,如图2所示,再过点A 作 AF CD ⊥于点F ,如图3所示,若123,26,60AB BC BEA ︒∠===, 则图3中AF 的长度为____.22.如图,在四边形ABCD 中,AD =CD ,∠D=60°,∠A =105°,∠B =120°,则AD BC的值为__________.23.如图,在2×2的网格中,以顶点O 为圆心,以2个单位长度为半径作圆弧,交图中格线于点A ,则tan ∠ABO 的值为_____.24.在Rt △ABC 中,∠C =90°,AB =2AC ,则∠A =__°,∠B =___°.25.在△ABC 中,若()21cos 1tan 02A B -+-=,则∠C=____________. 26.如图,边长为6的正方形ABCD 绕点C 按顺时针方向旋转30后得到正方形EFCG ,EF 交AD 于点H ,则DH =____________.三、解答题27.(1)计算:|﹣1|﹣(3﹣π)016(﹣12)-1+2cos60°; (2)解方程:2x (x ﹣1)=x ﹣1.28.(1)计算:102272cos305)π-︒++;(2)解方程:3x 2﹣5x +2=0.29.已知:如图所示,ABC 在直角坐标平面内,三个顶点的坐标分别()0,3A ,()3,4B ,()2,2C ,(正方形网格中每个小正方形的边长是一个单位长度).()1画出ABC 关于x 轴对称的111A B C △,点1C 的坐标是____;tan _____.BAC ∠=()2以点B 为位似中心,在网格内画出222A B C △,使222A B C △与ABC 位似,且位似比为2:1,点2C的坐标是_____;()3A B C的周长为_______ .22230.如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD 的延长线于点E,点F为CE的中点,连接DB,DC,DF.(1)求∠CDE的度数;(2)求证:DF是⊙O的切线;(3)若AC=25DE,求tan∠ABD的值.参考答案【参考答案】一、选择题1.C2.B3.D4.C5.D6.B7.D8.C9.A10.D11.B12.D13.B14.C二、填空题15.﹣1【分析】原式利用特殊角的三角函数值绝对值的代数意义以及零指数幂法则计算即可得到结果【详解】解:原式==故答案为:﹣1【点睛】此题考查了实数的运算特殊角的三角函数值以及零指数幂熟练掌握运算法则是解16.或3或【分析】利用分类讨论①当∠BPC=90°时情况一:如图1利用直角三角形斜边的中线等于斜边的一半得出PO=BO易得△BOP为等边三角形利用锐角三角函数可得CP的长;情况二:如图2利用直角三角形斜17.64【分析】连接ABCD过点A作AE⊥CD于E过点B作BF⊥CD于F求出CEEFDF即可解決问题;【详解】解:如图连接ABCD过点A作AE⊥CD于E过点B作BF⊥CD于F∵AB//EFAE//BF∴18.【分析】连接OBOC由题意易得AE⊥BC则有BE=EC∠BOD=∠BAC设OB=3rOE=2r然后根据勾股定理可求解【详解】解:连接OBOC如图所示:∵内接于AD过圆心O∴AE⊥BC∴BE=EC∴∠19.【分析】首先根据题意画出图形再根据折叠的性质和可求出各角的度数再利用解直角三角形的知识分别求出CDDFBD的长度最后根据线段之间的和差关系即可求出结果【详解】解:如图所示:∵△ADC是由△ACD翻折20.【分析】过Q作QH⊥AC于H在△QHC中由于∠QCH=45°则CH=QH设CH=则QH=x在Rt△QHA中由于∠QAH=60°求得AH=然后利用CH+AH=AC求得的值再根据三角形面积公式计算得到结21.8【分析】作AH⊥BC于H则四边形AFCH是矩形AF=CHAH=CF在Rt△ABH中解直角三角形即可解决问题【详解】解:作AH⊥BC于H则四边形AFCH是矩形AF=CH在Rt△ABE 中∠BAE=9022.【分析】沿AB作垂线与C的延长线相交于M点可得到等边直角三角形和锐角为30°的直角三角形根据三角函数求解即可【详解】解:如图连接AC并过B点作BM⊥CM设BM=k∵AD=CD∠D=60°∴△ACD是23.2+【分析】连接OA过点A作AC⊥OB于点C由题意知AC=1OA=OB=2从而得出OC==BC=OB﹣OC=2﹣在Rt△ABC中根据tan∠ABO=可得答案【详解】如图连接OA过点A 作AC⊥OB于点24.6030【分析】在Rt△ABC中根据AB=2AC可得出∠B=30°∠A=60°【详解】解:如图在Rt△ABC中∵∠C=90°AB=2AC∴sin∠B==∴∠B=30°∴∠A=90°﹣∠B=90°﹣325.75°【分析】根据非负数性质得根据三角函数定义求出∠A=60°∠B=45°根据三角形内角和定理可得【详解】因为所以所以所以∠A=60°∠B=45°所以∠C=180°-∠A-∠B=75°故答案为:7526.【分析】过点F作FI⊥BC于点I延长线IF交AD于J根据含30°直角三角形的性质可求出FIFJ和JH的长度从而求出HD的长度【详解】解:过点F作FI⊥BC于点BC延长线AD 交AD于J由题意可知:CF三、解答题27.28.29.30.【参考解析】一、选择题1.C解析:C【分析】如图,设CP 交⊙O 于点D ,连接OA 、AD .由切线的性质易证△AOP 是含30度角的直角三角形,所以该三角形的性质求得半径=2;然后在等边△AOD 中得到AD=OA=2;最后通过解直角△ACD 来求AC 的长度.【详解】解:如图,设CP 交⊙O 于点D ,连接OA 、AD .设⊙O 的半径为r .∵PA 、PB 是⊙O 的切线,∠APB=60°,∴OA ⊥AP ,∠APO=12∠APB=30°. ∴OP=2OA ,∠AOP=60°,∴PC=2OA+OC=3r=6,则r=2,易证△AOD 是等边三角形,则AD=OA=2,又∵CD 是直径,∴∠CAD=90°,∴∠ACD=30°,∴AC=tan 30?AD 3故选:C .【点睛】 本题考查了切线的性质,圆周角定理.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.2.B解析:B【分析】过C 点作CH ⊥AD 延长线于H 点,由CH=AB=4求出AH 的长,再减去AD 即得到DH 的长,再在Rt △DCH 中使用勾股定理即可求出CD .【详解】解:如图所示,过C 点作CH ⊥AD 延长线于H 点,∵AD ∥BC ,∠B=90°,∴∠BAH=90°,且∠H=90°,∴四边形ABCH 为矩形,∴AB=CH=4,在Rt △ACH 中,3343AHCH AB , ∴DH=AH-AD=23∴在Rt △CDH 中,22121627CDDH CH ,故选:B .【点睛】本题考查了解直角三角形,熟练掌握30°,60°,90°三角形中三边之比为3::是解决本题的关键. 3.D解析:D【分析】分别算出∠A 的各个三角函数值即可得到正确选项.【详解】 解:由题意可得:2222345c a b =++=,∴3434sin ,cos ,tan ,,5543a b a b A A A cotA c c b a ======== ∴正确答案应该是D ,故选D .【点睛】 本题考查锐角三角函数的定义,正确理解锐角三角函数的定义是解题关键.4.C解析:C 【分析】设PA=PB=PB′=x ,在RT △PCB′中,根据sin αPC PB =',列出方程即可解决问题. 【详解】解:设PA=PB=PB′=x ,在RT △PCB′中,sin αPC PB ='∴1sin αx x-=∴x 1xsin α-=, ∴(1-sin α)x=1,∴x=11sin α-. 故选C .【点睛】 本题考查解直角三角形、三角函数等知识,解题的关键是设未知数列方程,属于中考常考题型.5.D 解析:D【分析】 过B 点作BD ⊥AC ,得AB 的长,AD 的长,利用锐角三角函数得结果. 【详解】解:过B 点作BD ⊥AC ,如图,由勾股定理得,221310+=222222+=cosA=2225510AD AB == 故选D .【点睛】本题考查了锐角三角函数和勾股定理,作出适当的辅助线构建直角三角形是解答此题的关键.6.B解析:B【分析】根据正切的定义得到BC=12AC ,根据勾股定理列式计算即可.【详解】在Rt △ABC 中,∠ACB=90°,tan ∠B=2, ∴AC BC=2, ∴BC=12AC ,由勾股定理得,AB 2=AC 2+BC 22=AC 2+(12AC )2, 解得,AC=2,故选B .【点睛】本题考查的是锐角三角函数的定义、勾股定理,掌握锐角A 的对边a 与邻边b 的比叫做∠A 的正切是解题的关键.7.D解析:D【分析】根据 B 关于 AE 的对称点为 B′,可得2AB AD '=,1AB D ∴等腰直角三角形,可得D B E '、、三点共线,可求出BE 的长.【详解】解:6,2AB AB AB AD AD ==='∴=', 又△DB′F 为等腰直角三角形,045FDB ∴∠=,又在矩形 ABCD ,090ADF ∠=,045ADB ∴='∠,又2AB AD '= AB D ∴'等腰直角三角形, 090AB D ∴='∠,090AB E ∠=',D BE ∴'、、三点共线,在等腰直角△RCE ,CE=CD=6,∴BE=BC-CE=6,故选D..【点睛】本题考查三角形的性质及解直角三角形,找出D B E '、、三点共线是解题关键. 8.C解析:C【分析】延长AB 交直线DC 于点F ,过点E 作EH ⊥AF ,垂足为点H ,在Rt △BCF 中利用坡度的定义求得CF 的长,则DF 即可求得,然后在直角△AEH 中利用三角函数求得AF 的长,进而求得AB 的长.【详解】解:延长AB 交直线DC 于点F ,过点E 作EH ⊥AF ,垂足为点H .∵在Rt △BCF 中,BF CF =1:3i =, ∴设BF=k ,则CF=3k ,BC=2k .又∵BC=12,∴k=6,∴BF=6,CF=63,∵DF=DC+CF ,∴DF=40+63,∵在Rt △AEH 中,tan ∠AEH=AH EH, ∴AH=tan37°×(40+63)≈37.785(米),∵BH=BF-FH ,∴BH=6-1.5=4.5.∵AB=AH-HB ,∴AB=37.785-4.5≈33.3.故选C .【点睛】本题考查了解直角三角形的应用,关键是根据仰角构造直角三角形,利用三角函数求解,注意利用两个直角三角形的公共边求解是解答此类题型的常用方法.9.A解析:A【分析】设BC=x ,在Rt ABC ∆中,90C ∠=︒,30BAC ∠=︒,可得,AB=2x ,3x ,由AD AB ==2x ,可得3x ,由AD AB =,可知,∠D=∠ABD=12∠BAC=15°,在Rt BDC ∆ 中,根据锐角正切三角函数的定义,即可求解.【详解】∵AD AB =,∴∠D=∠ABD ,∵∠BAC=∠D+∠ABD ,∴∠D=12∠BAC=15°, 设BC=x , ∵在Rt ABC ∆中,90C ∠=︒,30BAC ∠=︒,∴AB=2x ,AC=22(2)3x x x -=,∴CD=2x+3x =(23)x +,在Rt BDC ∆中,tan 23(23)BC x D DC x∠===-+ , ∴°tan15=23-,故选A.【点睛】本题主要考查锐角正切三角函数的定义,根据图形,设BC=x ,用含x 的代数式表示相关线段的长,是解题的关键.10.D解析:D【分析】根据题意,做出合适的辅助线,然后利用锐角三角函数即可表示出点A 到OC 的距离即可求解.【详解】解:作AE ⊥OC 于点E ,作AF ⊥OB 于点F ,∵四边形ABCD 是矩形,∴∠ABC=90°,∵∠ABC=∠AEC ,∠BCO=α,∴∠EAB=α,∴∠FBA=α,∵AB=a ,AD=b ,∴FO=FB+BO=a•cosα+b•sinα,故选:D .【点睛】本题考查解直角三角形、三角函数的定义、矩形的性质,解答本题的关键是明确题意,正确做出辅助线,利用数形结合的思想解答.11.B解析:B【分析】根据线段垂直平分线的性质得到AE=BE,由等腰三角形的性质得到∠B=∠BAE,根据三角形的外角的性质得到∠AEC=∠B+∠BAE=2∠B,求得∠C=30°,根据三角函数的定义即可得到结论.【详解】∵DE垂直平分AB于点D,∴AE=BE,∴∠B=∠BAE,∴∠AEC=∠B+∠BAE=2∠B,∵AB=AC,∴∠AEC=2∠C,∵AE⊥AC,∴∠EAC=90°,∴∠C=30°,∴CE=643 cos3032AC==︒,故选:B.【点睛】本题考查了线段垂直平分线的性质,等腰三角形的性质,三角形外角的性质以及特殊角的三角函数值.注意掌握数形结合思想的应用.12.D解析:D【分析】作AE⊥BC于E,根据平行四边形的面积=矩形面积的一半,得出AE=12AB,再由三角函数即可求出∠ABC的度数,即可得到答案.【详解】解:作AE⊥BC于E,如图所示:则∠AEB=90°,根据题意得:平行四边形的面积=BC•AE=12 BC•AB,∴AE=12AB , ∴sinB=12AE AB =, ∴∠ABC=30°,∴∠BCD=150°.故选:D .【点睛】本题考查了平行四边形的性质、矩形的性质、面积的计算以及三角函数;熟练掌握平行四边形和矩形的性质,并能进行推理计算是解决问题的关键.13.B解析:B【分析】作BD ⊥AC 于D ,根据勾股定理求出AB 、AC ,利用三角形的面积求出BD ,最后在直角△ABD 中根据三角函数的意义求解.【详解】解:如图,作BD ⊥AC 于D ,由勾股定理得,22223213,3332AB AC =+==+=∵1113213222ABC S AC BD BD =⋅=⨯=⨯⨯, ∴22BD =, ∴2262sin 13BD BAC AB ∠=== 故选:B .【点睛】本题考查了勾股定理,解直角三角形,三角形的面积,三角函数的意义等知识,根据网格构造直角三角形和利用三角形的面积求出BD 是解决问题的关键.14.C解析:C【分析】分别用AC ,AB 和BC 表示出123,,S S S ,然后根据222BC AB AC =-即可得出123,,S S S 的关系.同理,得出456,,S S S 的关系,从而可得答案.【详解】解:如图,1S 对应ACD ∆的面积,过D 作DH AC ⊥于H ,ACD ∆为等边三角形, 160,,,2DAC AH CH AC AD AC ∴∠=︒=== sin 60,DH AD ∴︒=33,22DH AD AC ∴== 2113,24S AC DH AC ∴=•=同理:222333,,44S BC S AB == ∵222BC AB AC =-, ∴213,S S S -=如图2,同理可得:456S S S =+,∴3421564516111454.S S S S S S +=-++=-++=故选:C .【点睛】本题考查了勾股定理、等边三角形的性质.锐角三角函数等知识点,其中勾股定理:如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么222+=a b c .二、填空题15.﹣1【分析】原式利用特殊角的三角函数值绝对值的代数意义以及零指数幂法则计算即可得到结果【详解】解:原式==故答案为:﹣1【点睛】此题考查了实数的运算特殊角的三角函数值以及零指数幂熟练掌握运算法则是解解析:3﹣1【分析】原式利用特殊角的三角函数值,绝对值的代数意义,以及零指数幂法则计算即可得到结果.【详解】解:原式=22311 2⨯+--=31-故答案为:3﹣1【点睛】此题考查了实数的运算,特殊角的三角函数值,以及零指数幂,熟练掌握运算法则是解本题的关键.16.或3或【分析】利用分类讨论①当∠BPC=90°时情况一:如图1利用直角三角形斜边的中线等于斜边的一半得出PO=BO易得△BOP为等边三角形利用锐角三角函数可得CP的长;情况二:如图2利用直角三角形斜解析:33或3或37.【分析】利用分类讨论,①当∠BPC=90°时,情况一:如图1,利用直角三角形斜边的中线等于斜边的一半得出PO=BO,易得△BOP为等边三角形,利用锐角三角函数可得CP的长;情况二:如图2,利用直角三角形斜边的中线等于斜边的一半可得结论.②当∠CBP=90°时,如图3,由对顶角的性质可得∠AOC=∠BOP=60°,易得∠BPO=30°,易得BP的长,利用勾股定理可得CP的长.【详解】解:①当∠CPB=90°时,情况一:(如图1),∵点O为BC中点,∴AO=BO,∴PO=BO,∵∠AOC=60°,∴∠BOP=60°,∴△BOP为等边三角形,∵AB=BC=6,∴CP=CB•sin60°=6×32=33;情况二:如图2,∵点O为BC中点,∴AO=BO,∵∠CPB=90°,∴PO=BO=CO,∵∠AOC=60°,∴△COP为等边三角形,∴CP=CO=3,②当∠CBP=90°时,如图3,∵∠AOC=∠BOP=60°,∴∠BPO=30°,∴BP=33 tan303OB==︒,在直角三角形CBP中,22226(33)37 BC BP+=+=故答案为:333或37【点睛】本题主要考查了勾股定理,含30°直角三角形的性质和直角三角形斜边的中线,分类讨论,数形结合是解答此题的关键.17.64【分析】连接ABCD过点A作AE⊥CD于E过点B作BF⊥CD于F求出CEEFDF即可解決问题;【详解】解:如图连接ABCD过点A作AE⊥CD于E过点B作BF⊥CD于F∵AB//EFAE//BF∴解析:64【分析】连接AB,CD,过点A作AE⊥CD于E,过点B作BF⊥CD于F,求出 CE , EF , DF 即可解決问题;【详解】解:如图,连接AB,CD,过点A作AE⊥CD于E,过点B作BF⊥CD于F.∵AB//EF,AE//BF,∴四边形ABFE是平行四边形,∵∠AEF=90°,∴四边形AEFB是矩形,∴EF=AB=10(cm),∵AE//PC,∴∠PCA=∠CAE=30°,∴CE=AC•sin30°=27(cm),同法可得DF=27(cm),∴CD=CE+EF+DF=27+10+27=64(cm),故答案为64.【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线面构造直角三角形解决问题.18.【分析】连接OBOC由题意易得AE⊥BC则有BE=EC∠BOD=∠BAC设OB=3rOE=2r然后根据勾股定理可求解【详解】解:连接OBOC如图所示:∵内接于AD过圆心O∴AE⊥BC∴BE=EC∴∠解析:5【分析】连接OB、OC,由题意易得AE⊥BC,则有BE=EC,∠BOD=∠BAC,设OB=3r,OE=2r,然后根据勾股定理可求解.【详解】解:连接OB 、OC ,如图所示:∵ABC 内接于O ,AB AC =,AD 过圆心O ,∴AE ⊥BC , ∴BE=EC ,BD DC =,∴∠BAD=∠CAD ,∵∠BOD=2∠BAD ,∴∠BAC=∠BOD , ∵2cos 3BAC ∠=, ∴2cos 3BOD ∠=, ∵DE=1,∴设OB=3r ,OE=2r ,则有: 321r r =+,解得:1r =,∴3,2OB OE ==,∴在Rt △BEO 中,225BE OB OE -=, ∴25BC = 故答案为5【点睛】本题主要考查垂径定理、三角形内接圆的性质及圆周角定理,熟练掌握垂径定理、三角形内接圆的性质及圆周角定理是解题的关键.19.【分析】首先根据题意画出图形再根据折叠的性质和可求出各角的度数再利用解直角三角形的知识分别求出CDDFBD 的长度最后根据线段之间的和差关系即可求出结果【详解】解:如图所示:∵△ADC 是由△ACD 翻折 解析:32【分析】首先根据题意画出图形,再根据折叠的性质和DAB BAF ∠∠=,可求出各角的度数,再利用解直角三角形的知识分别求出CD ,DF ,BD 的长度,最后根据线段之间的和差关系即可求出结果.【详解】解:如图所示:∵△ADC’是由△ACD 翻折得到,∴DAC 'DAC ∠∠=, ∵DAB BAF ∠∠=, ∴DAC 2DAB ∠∠=. ∵AC 45B ∠=︒, ∴DAB BAF=15∠∠=︒.∴30CAD ∠=︒.在Rt △ACD 中,AC=2 ∴23tan 30CD AC =⋅︒= ,43cos30AC AD ==︒ . ∵'ADC F DAC ∠=∠+∠∴'30F DAC ∠=∠=︒ . ∴433DF AD ==. 23432232BF CD DF BC∴=+-=-= 故答案为32.【点睛】本题考查了翻折的性质和解 直角三角形的知识,根据题意画出图形是解题的关键.20.【分析】过Q 作QH ⊥AC 于H 在△QHC 中由于∠QCH=45°则CH=QH 设CH=则QH=x 在Rt △QHA 中由于∠QAH=60°求得AH=然后利用CH+AH=AC 求得的值再根据三角形面积公式计算得到结 解析:48163-【分析】过Q 作QH ⊥AC 于H ,在△QHC 中,由于∠QCH=45°,则CH=QH ,设CH=x ,则QH=x ,在Rt △QHA 中,由于∠QAH=60°,求得AH=33x ,然后利用CH+AH=AC 求得x 的值,再根据三角形面积公式计算得到结果.【详解】过Q 作QH ⊥AC 于H ,如图,∠ACB=45°,∠DME=60°,AC=8,在△QHC 中,∠QCH=45°,∴CH=QH ,设CH=x ,则QH=x ,在Rt △QHA 中,∠QAH=60°, ∴AH=QH tan 60︒3x , ∵CH+AH=AC , ∴383x x +=, 解得:(433x =,∴QAC 12S =QH•AC (14338481632=⨯⨯=- 故答案为:483-【点睛】本题主要考查了解直角三角形,作出辅助线构造直角三角形,利用条件求得AC 边上的高是解题的关键.21.8【分析】作AH ⊥BC 于H 则四边形AFCH 是矩形AF=CHAH=CF 在Rt △ABH中解直角三角形即可解决问题【详解】解:作AH⊥BC于H则四边形AFCH是矩形AF=CH在Rt△ABE中∠BAE=90解析:8【分析】作AH⊥BC于H,则四边形AFCH是矩形,AF=CH,AH=CF. 在Rt△ABH中,解直角三角形即可解决问题.【详解】解:作AH⊥BC于H,则四边形AFCH是矩形,AF=CH.在Rt△ABE中,∠BAE=90°,∠BEA=60°∴∠ABE=180°-∠A-∠BEA=180°-90°-60°=30°由题意得∠ABH=90°-2∠ABE=90°-30°×2=30°在Rt△ABH中,∠ABH=30°,3,BC=26∴BH=AB cos30°332=18∴CH=BC-BH=26-18=8.即AF=8.故答案为8.【点睛】本题考查了翻折变换,矩形的性质及解直角三角形等知识.解题的关键是学会添加辅助线,构造直角三角形来解决问题.22.【分析】沿AB作垂线与C的延长线相交于M点可得到等边直角三角形和锐角为30°的直角三角形根据三角函数求解即可【详解】解:如图连接AC并过B点作BM⊥CM设BM=k∵AD=CD∠D=60°∴△ACD是解析:6 2【分析】沿AB作垂线与C的延长线相交于M点,可得到等边直角三角形和锐角为30°的直角三角形,根据三角函数求解即可.【详解】解:如图连接AC 并过B 点作BM ⊥CM ,设BM=k ,∵AD =CD ,∠D=60°,∴△ACD 是等边三角形,AD=AC ,∵∠A =105°,∠B =120°,∠DAC=60°,∴∠MBC=60°,∠BCM=30°,∠BAC=45°,∵BM=k ,∴BC=2k ,MC=BM tan 30=3, ∵∠BAC=45°,∠MCA=45°, ∴AD=AC=MC 3k sin 4522=6k , ∴6k 6==AD BC . 【点睛】 本题考查了特殊角的三角函数值和公式的应用,正确应用公式和作出辅助线是解题的关键.3tan 303=,sin45=22. 23.2+【分析】连接OA 过点A 作AC ⊥OB 于点C 由题意知AC=1OA=OB=2从而得出OC==BC=OB ﹣OC=2﹣在Rt △ABC 中根据tan ∠ABO=可得答案【详解】如图连接OA 过点A 作AC ⊥OB 于点解析:3.【分析】连接OA ,过点A 作AC ⊥OB 于点C ,由题意知AC=1、OA=OB=2,从而得出22OA AC -3、BC=OB ﹣OC=23Rt △ABC 中,根据tan ∠ABO=AC BC 可得答案.【详解】如图,连接OA ,过点A 作AC ⊥OB 于点C ,则AC=1,OA=OB=2,∵在Rt△AOC中,OC=222221OA AC-=-=3,∴BC=OB﹣OC=2﹣3,∴在Rt△ABC中,tan∠ABO=123ACBC=-=2+3.故答案是:2+3.【点睛】本题考查了解直角三角形,根据题意构建一个以∠ABO为内角的直角三角形是解题的关键.24.6030【分析】在Rt△ABC中根据AB=2AC可得出∠B=30°∠A=60°【详解】解:如图在Rt△ABC中∵∠C=90°AB=2AC∴sin∠B==∴∠B=30°∴∠A =90°﹣∠B=90°﹣3解析:60 30【分析】在Rt△ABC中,根据AB=2AC,可得出∠B=30°,∠A=60°.【详解】解:如图,在Rt△ABC中,∵∠C=90°,AB=2AC,∴sin∠B=ACAB =12,∴∠B=30°,∴∠A=90°﹣∠B=90°﹣30°=60°.故答案为:60,30.【点睛】此题考查有一个角是30°的直角三角形的性质,根据三角函数求解较简单.25.75°【分析】根据非负数性质得根据三角函数定义求出∠A=60°∠B=45°根据三角形内角和定理可得【详解】因为所以所以所以∠A=60°∠B=45°所以∠C=180°-∠A-∠B=75°故答案为:75解析:75°【分析】根据非负数性质得1cos 0,1tan 02A B -=-=,根据三角函数定义求出∠A=60°,∠B=45°,根据三角形内角和定理可得.【详解】 因为()21cos 1tan 02A B -+-= 所以1cos 0,1tan 02A B -=-= 所以1cos ,tan 12A B == 所以∠A=60°,∠B=45°所以∠C=180°-∠A-∠B=75°故答案为:75°【点睛】考核知识点:特殊锐角三角函数.熟记特殊锐角三角函数值是关键.26.【分析】过点F 作FI ⊥BC 于点I 延长线IF 交AD 于J 根据含30°直角三角形的性质可求出FIFJ 和JH 的长度从而求出HD 的长度【详解】解:过点F 作FI ⊥BC 于点BC 延长线AD 交AD 于J 由题意可知:CF解析:23【分析】过点F 作FI ⊥BC 于点I ,延长线IF 交AD 于J ,根据含30°直角三角形的性质可求出FI 、FJ 和JH 的长度,从而求出HD 的长度.【详解】解:过点F 作FI ⊥BC 于点BC ,延长线AD 交AD 于J ,由题意可知:CF=BC=6,∠FCB=30°,∴FI=3,CI=33∵JI=CD=6,∴JF=JI-FI=6-3=3,∵∠HFC=90°,∴∠JFH+∠IFC=∠IFC+∠FCB=90°,∴∠JFH=∠FCB=30°,设JH=x ,则HF=2x ,∴由勾股定理可知:(2x )2=x 2+32,∴∴DH=DJ-JH==故答案为:【点睛】本题考查正方形的性质,涉及正方形的性质,勾股定理,旋转的性质,含30°的直角三角形的性质,本题属于中等题型.三、解答题27.(1)3;(2)x 1=1,x 2=0.5.【分析】(1)根据实数的混合运算顺序和运算法则计算即可;(2)利用因式分解法求解即可.【详解】(1)原式=1﹣1+4+(﹣2)+2×12=3; (2)∵2x (x ﹣1)=x ﹣1.∴2x (x ﹣1)﹣(x ﹣1)=0,∴(x ﹣1)(2x ﹣1)=0,则x ﹣1=0或2x ﹣1=0,解得x 1=1,x 2=0.5.【点睛】本题主要考查实数的运算、解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键. 28.(1)322)12213x x ==,. 【分析】 (1)先计算负整数指数幂、化简二次根式,代入三角函数值、计算零指数幂,最后计算加减可得答案;(2)利用因式分解法求解即可.【详解】(1)1022cos30)π-︒++1212=+133312=+-+ 2232=+; (2)∵23520x x -+=,∴()()1320x x --=,则10x -=或320x -=,解得12213x x ==,. 【点睛】 本题主要考查了实数的混合运算,特殊角的三角函数值,解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.29.(1)画图见解析;1C 的坐标是(2,-2);tan BAC ∠=1;(2)画图见解析;2C 的坐标是(1,0);(3)45210+.【分析】(1)将△ABC 关于x 轴对称得到△A 1B 1C 1,如图所示,找出所求点坐标;证明ABC 是等腰直角三角形即可求出tan BAC ∠的值;(2)以点B 为位似中心,在网格内画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 位似,且位似比为2:1,如图所示,找出所求点坐标即可.(3)先求出△ABC 的周长,再根据222A B C 与ABC 的位似比为2:1,即可求出222A B C 的周长.【详解】解:(1)111A B C 如图所示,点C 1的坐标是(2,-2);∵222125AC =+=,222125BC =+=,2221310AB =+=,∴222=,AC BC AB+=,AC BC∴ABC是等腰直角三角形,∴45∠=,BAC∠=tan45=1;∴tan BAC故答案是:(2,-2);1;(2)△A2B2C2如图所示,2C的坐标是(1,0);故答案是:(1,0);A B C与ABC的位似比为(3)∵△ABC的周长551025102222:1,∴A B C的周长为2(2510)=4510222故答案为:510【点睛】此题考查了作图-位似变换与对称变换及三角函数值的求法,熟练掌握位似变换与对称变换的性质是解本题的关键.30.(1)90°;(2)证明见解析;(3)2.【分析】(1)根据圆周角定理即可得∠CDE的度数;(2)连接DO,根据直角三角形的性质和等腰三角形的性质易证∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,即可判定DF是⊙O的切线;(3)根据已知条件易证△CDE∽△ADC,利用相似三角形的性质结合勾股定理表示出AD,DC的长,再利用圆周角定理得出tan∠ABD的值即可.【详解】解:(1)解:∵对角线AC为⊙O的直径,∴∠ADC=90°,∴∠EDC=90°;(2)证明:连接DO,∵∠EDC=90°,F是EC的中点,∴DF=FC,∴∠FDC=∠FCD,∵OD=OC,∴∠OCD=∠ODC,∵∠OCF=90°,∴∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,∴DF是⊙O的切线;(3)解:如图所示:可得∠ABD=∠ACD,∵∠E+∠DCE=90°,∠DCA+∠DCE=90°,∴∠DCA=∠E,又∵∠ADC=∠CDE=90°,∴△CDE∽△ADC,∴DC DEAD DC=,∴DC2=AD•DE∵AC=25DE,∴设DE=x,则AC=25x,则AC2﹣AD2=AD•DE,期(25x)2﹣AD2=AD•x,整理得:AD2+AD•x﹣20x2=0,解得:AD=4x或﹣4.5x(负数舍去),则DC=22(25)(4)2x x x-=,故tan∠ABD=tan∠ACD=422AD xDC x==.。
人教版初3数学9年级下册 第28章(锐角三角函数)单元复习卷(含解析)
人教版九年级数学下第二十八章 锐角三角函数 单元复习卷一、单选题1.如图所示的是某超市入口的双买闸门,当它的双翼展开时,双翼边缘的端点A 与B 之间的距离为10cm ,双翼的边缘AC =BD =54cm ,且与闸机侧立面夹角∠PCA =∠BDQ =30°,求当双翼收起时,可以通过闸机的物体的最大宽度是()A .74cmB .64cmC .54cmD .44cm2.如图,△ABC 的三个顶点都在方格纸的格点上,则cosA 的值是( )A B C D 3.如图所示,15AOP BOP ∠=∠=︒,//PC OA ,PD OA ⊥.若4PC =,则PD 的值为( )A .1.5B .4C .2D .14.对于一个位置确定的图形,如果它的所有点都在一个水平放置的矩形内部或边上,且该图形与矩形每条边都至少有一个公共点(如图1),那么这个矩形水平方向的边长我们称为该图形的宽,矩形铅垂方向的边长我们称为该图形的高.如图2,已知菱形ABCD 的边长为1,菱形的边AB 水平放置,如果该菱形的高是宽的23,那么菱形的宽是( )A .1813B .139C .32D .25.在 Rt ABC 中,90C ∠=,5AB =,3BC =,则 sin A 的值是( )A .35B .53C .45D .346.如图,ABC 的顶点都是正方形网格中的格点,则sin BAC ∠=( ).A .15B .13C D 7.在Rt △ABC 中,∠C=90°,如果1sin 3A =,那么sinB 的值是( )A B .C D .38.如图,在平面直角坐标系中,直线y =﹣2x +4与x 轴交于点A ,与y 轴交于点B ,与直线y =kx 交于点C (4,n ),则tan ∠OCB 的值为( )A .13B C D .389.角α,β满足045αβ<<<︒︒,下列是关于角α,β的命题,其中错误的是()A .0sin α<<B .0tan 1β<<C .cos sin βα<D .sin cos βα<10.如图,在4个均由16个小正方形组成的网格正方形中,各有一个格点三角形,那么这4个三角形中,与众不同的是( )A.B.C.D.二、填空题11.已知平面直角坐标系xOy中,O为坐标原点,点P的坐标为(5,12),那么OP 与x轴正半轴所夹角的余弦值为_____.12.在Rt△ABC中,∠C=90°,AB=17,BC=8,则sin B=_____.13.如图,一艘船由A港沿北偏东65︒方向航行30km至B港,然后再沿北偏西40︒方向航行至C港,C港在A港北偏东20︒方向,则A,C两港之间的距离为______km.14.观光塔是潍坊市区的标志性建筑.为测量其高度,如图,一人先在附近一楼房的底端A点处观测观光塔顶端C处的仰角是60°,然后爬到该楼房顶端B点处观测观光塔底部D处的俯角是30°,已知楼房高AB约是45 m,根据以上观测数据可求观光塔的高CD是______m.15.如图,在Rt △ABC 中,AB 的垂直平分线交BC 边于点E.若BE=2,∠B =22.5°,则AC 的长为_______.16.在Rt ABC 中,190,cos 2C A ︒∠==,那么A ∠的度数是___________.17.取一张边长为4的正方形纸折五角星.操作步骤如下:①按如图1、图2的方法对折两次,将图2展开后得到图3;②如图4所示折出正方形ABCD 对角线的交点O ,将纸片折叠,使得点H 与点O 重合,折痕为EF ,再将四边形EFOG 折叠,使得EF 与FO 重合;③最后再将∠CFO 沿着FO 折叠,得到图5,沿图中虚线PM 剪一刀.展开得图6.(1)若图6中∠ABC=36°,则图5中∠MPN=________°;(2)小王认为此时∠OFC=36°.小黄同学提出了质疑!若已知.请求出sin ∠OFC=________,这样就可以知道谁的判断是正确的.18.如图一,矩形纸片ABCD 中,已知:5:3AB BC =,先按图二操作,将矩形纸片ABCD 沿过点A 的直线折叠,使点D 落在边AB 上的点E 处,折痕为AF ;再按图(三)操作:沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则的余弦值________.HAF19.如图,在△ABC中,AC=6,BC=8,D、E分别在CA、CB上,点F在△ABC 内.若四边形CDFE是边长为2的正方形,则sin∠FBA=__.三、解答题20.如图,电线杆CD上的C处引拉线CE,CF固定电线杆,在离电线杆6米的B处安置测角仪(点B,E,D在同一直线上),在A处测得电线杆上C处的仰角为30°,已知测角仪的高AB=1.5米,BE=2.3米,求拉线CE的长,(精确到0.1米)参考数据≈1.41,≈1.73.21.在平面直角坐标系xOy中,给出如下定义:对于⊙C及⊙C外一点P,M,N是⊙C上两点,当∠MPN最大,称∠MPN为点P关于⊙C的“视角”.直线l与⊙C相离,点Q在直线l上运动,当点Q关于⊙C的“视角”最大时,则称这个最大的“视角”为直线l关于⊙C的“视角”.(1)如图,⊙O的半径为1,①已知点A(1,1),直接写出点A关于⊙O的“视角”;已知直线y = 2,直接写出直线y = 2关于⊙O的“视角”;②若点B关于⊙O的“视角”为60°,直接写出一个符合条件的B点坐标;(2)⊙C的半径为1,①C的坐标为(1,2),直线l: y=kx + b(k > 0)经过点D(1-,0),若直线l关于⊙C的“视角”为60°,求k的值;②圆心C在x轴正半轴上运动,若直线y ⊙C的“视角”大于120°,直接写出圆心C的横坐标xC的取值范围.22.为了测量某单位院内旗杆AB的高度,在地面距离旗杆底部B的15米C处放置高度为1.8米的测角仪CD,测得旗杆顶端A的仰角(∠ADE)为54°.求旗杆AB的高度(结果精确到1米).(参考数据:sin 54°≈0.81,cos 54°≈0.59,tan 54°≈1.38)23.如图,AB是⊙O的直径,BC⊥AB,垂足为点B,连接CO并延长交⊙O于点D、E,连接AD并延长交BC于点F.(1)试判断∠CBD与∠CEB是否相等,并证明你的结论;(2)求证:BD CD BE BC=(3)若BC=32AB,求tan∠CDF的值.24.如图,052D型驱逐舰“昆明舰”执行任务后正返回葫芦岛军港C,途经渤海海域A 处时,葫芦岛军港C的中国海军发现点A在南偏东30°方向上,旅顺军港B的中国海军发现点A在正西方向上.已知军港C在军港B的北偏西60°方向,且B、C两地相距120海里,(计算结果保留根号)(1)求出此时点A到军港C的距离;(2)若“昆明舰”从A处沿AC方向向军港C驶去,当到达A'时,测得军港B在A'的南偏东75°的方向上,求此时“昆明舰”的航行距离.25.如图,甲船在A处发现乙船在北偏东的60 的B处,如果此时乙船正以每小时10海里的速度向正北方向行驶,而甲船的速度是海里/小时,这时甲船向________方向行驶才能最快追上乙.26.苏北五市联合通过网络投票选出了一批“最有孝心的美少年”.根据各市的入选结果制作出如下统计表,后来发现,统计表中前三行的所有数据都是正确的,后两行中有一个数据是错误的.请回答下列问题:a________,b=________;(1)统计表=(2)统计表后三行中哪一个数据是错误的?该数据的正确值是多少?(3)组委会决定从来自宿迁市的4位“最有孝心的美少年”中,任选两位作为苏北五市形象代言人,A 、B 是宿迁市“最有孝心的美少年”中的两位,问A 、B 同时入选的概率是多少?并请画出树状图或列出表格.区域频数频率宿迁4a 连云港70.175淮安b0.2徐州100.25盐城120.27527.图①、②分别是某种型号跑步机的实物图与示意图.已知踏板CD 长为1.6m ,CD 与地面DE 的夹角∠CDE 为12°,支架AC 长为0.8m ,∠ACD 为80°,求跑步机手柄的一端A 的高度h (精确到0.1m ).(参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)28.当一个角固定不变,而某种图形在该角的内部变化,则我们称这个角为墙角.(1)如图1,墙角O ∠=30°,如果AB=3,长度不变,在角内滑动,当OA=6时,则求出此时OB 的长度.(2)如图2,墙角O ∠=30°,如果在AB 的右边作等边ABC ∆,AB=3,长度不变,滑动过程中,请求出点O 与点C 的最大距离.(3)如图3,墙角sin O =35时,如果点E 是O ∠一条边上的一个点,DEF ∠=90°,其两条边与O ∠另一条边交于点F 与点D ,求OFOD的最大值.答案第1页,共26页参考答案:1.B 【解析】【分析】首先过A 作AM 垂直PC 于点M ,过点B 作BN 垂直DQ 于点N ,再利用三角函数计算AM 和BN ,从而计算出MN.【详解】解:根据题意过A 作AM 垂直PC 于点M ,过点B 作BN 垂直DQ 于点N54AC BD cm ==30ACP BDQ ︒∠=∠=MC ND =∴ AMC BDN∆≅∆1sin 3054272AM BN AC ︒∴===⨯= 所以2271064MN =⨯+= 故选B.【点睛】本题主要考查直角三角形的应用,关键在于计算AM 的长度,这是考试的热点问题,应当熟练掌握.2.D 【解析】【分析】根据勾股定理,可得AC 的长,根据锐角三角函数的余弦等于邻边比斜边,可得答案.【详解】如图:,由勾股定理,得由锐角三角函数的余弦等于邻边比斜边,得cosA=AD AC 故选D .【点睛】本题考查了锐角三角函数的定义,先求斜边,再求锐角三角函数的余弦.3.C【解析】【分析】如图(见解析),先根据平行线的性质可得15OPC AOP ∠=∠=︒,再根据三角形的外角性质可得30OP C BO E C P P ∠+∠=∠=︒,然后利用直角三角形的性质可得122PE PC ==,最后根据角平分线的性质即可得.【详解】如图,过点P 作PE OB ⊥于点E ,,15//AOP BO PC O P A ∠︒∠== ,15OPC AOP ∠∴∠==︒,30OPC BO PCE P ∴∠=∠+∠=︒,在Rt CEP △中,114222PE PC ==⨯=,又15AOP BOP ∠︒∠== ,PE OB ⊥,PD OA ⊥,2PD PE ∴==,故选:C .【点睛】本题考查了平行线的性质、三角形的外角性质、直角三角形的性质、角平分线的性质等知识点,通过作辅助线,利用直角三角形和角平分线的性质是解题关键.4.A【解析】【分析】先根据要求画图,设AF=x,则CF=23x,根据勾股定理列方程可得结论.【详解】解:在菱形上建立如图所示的矩形EAFC,设AF=x,则CF=23 x,在Rt△CBF中,CB=1,BF=x-1,由勾股定理得:BC2=BF2+CF2,12=(x−1)2+(23x)2,解得:x=1813或0(舍),则该菱形的宽是18 13,故选A.【点睛】本题考查了新定义、矩形和菱形的性质、勾股定理,理解新定义中矩形的宽和高是关键.5.A【解析】【分析】根据正弦函数是对边比斜边,可得答案.【详解】解:sinA=BC AB =35.故选A .【点睛】本题考查了锐角正弦函数的定义.6.D【解析】【分析】根据题意和图形,可以得到AC 、BC 和AB 的长,然后根据等面积法可以求得CD 的长,从而可以得到sin BAC ∠的值.【详解】解:作CD ⊥AB ,交AB 于点D ,由图可得,AC =BC =2,AB =∵242AB CD BC =⨯⨯,422=⨯,解得,CD∴sin ∠BAC =CD AC ==,故选:D .【点睛】本题考查解直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答.7.A【解析】【分析】一个角的正弦值等于它的余角的余弦值.【详解】∵Rt△ABC中, ∠C=90°,sin A=13,∴cos A,∴∠A+∠B=90°,∴sin B=cos A故选A.【点睛】本题主要考查锐角三角函数的定义,根据sinA得出cosA的值是解题的关键.8.A【解析】【分析】先将点A点B坐标表示出来,把点C代入直线AB可得出C点坐标为(4,-4),过B做垂线垂直于直线OC交于点E,求出BE和EC的长即可求出答案【详解】过B 作BE ⊥直线OC 交于点E由题意可得,点A 坐标为(2,0)点B 坐标为(0,4)把C 点横坐标代入直线y=-2x+4,可得y=-4故点C 坐标为(4,-4)∴直线OC :y=-x∴∠EOB=45°,即△OEB 是等腰直角三角形∵在△OEB 中,OB=4,∴同理可得∴∴tan ∠OCB=BE EC 13故正确答案为A【点睛】此题主要考查两点距离和三角函数,三角函数一定要构造出直角三角形,找出对应边的长度是解题关键9.C【解析】【分析】由角α,β满足045αβ<<<︒︒,确定锐角三角函数的增减性,sin α随α的增大而增大,cos β随β的增大而减小,tan β随β的增大而增大,利用45°函数值的分点即可确定答案.【详解】解:角α,β满足045αβ<<<︒︒,sin α随α的增大而增大,cos β随β的增大而减小,tan β随β的增大而增大,A.∵sin 45︒∴0<sin α,选项A 正确,不合题意;B .∵tan 45=1︒,∴0tan 1β<<,选项B 正确,不合题意;C .sin 45︒cos 45︒,cos βα><,cos sin βα>,选项C 不正确,D .sin 45︒cos 45︒cos αβ><,sin cos βα<,选项D 正确,不符合题意.故选择:C .【点睛】本题考查锐角三角函数值的大小比较问题,掌握函数的增减性质利用45°函数值的特殊关系是解题关键.10.A【解析】【详解】试题分析:仔细分析各选项中格点三角形的特征即可作出判断.仔细分析图形特征可得A 不是直角三角形,B 、C 、D 均为直角三角形,故选A.考点:格点三角形的特征点评:本题属于基础应用题,只需学生熟练掌握格点中互相垂直的线段的特征,即可完成.11.513【解析】【分析】根据三角函数的定义解答.【详解】如图作PA ⊥x 轴,垂足为A .OP 13=,cos ∠POA =513.故答案为513.本题考查了勾股定理和锐角三角函数的定义,利用坐标系求出三角形的边长是关键步骤.12.1517【解析】【分析】首先利用勾股定理求出AC 的长,再利用锐角三角函数关系得出sinB 的值.【详解】解:在Rt △ABC 中,∠C =90°,AB =17,BC =8,∴AC 15==,∴sin B =1517AC AB =.故答案为:1517.【点睛】此题主要考查了锐角三角函数关系以及勾股定理,正确掌握锐角三角函数关系是解题关键.13.+【解析】【分析】根据题意得,6520CAB ∠=︒-︒,402060ACB ∠=︒+︒=︒,30AB =,过B 作BE AC ⊥于E ,解直角三角形即可得到结论.【详解】解:根据题意得,652045CAB ∠=︒-︒=︒,402060ACB ∠=︒+︒=︒,30AB =,过B 作BE AC ⊥于E ,90AEB CEB ∴∠=∠=︒,在Rt ABE ∆中,45ABE ∠=︒ ,30AB =,AE BE ∴===在Rt CBE ∆中,60ACB ∠=︒ ,CE ∴=∴=+=AC AE CE∴,C两港之间的距离为km,A故答案为:【点睛】本题考查了解直角三角形的应用,方向角问题,三角形的内角和,是基础知识比较简单.14.135【解析】【详解】试题分析:根据题意可得:∠BDA=30°,∠DAC =60°,在Rt△ABD中,因为AB=45m,所以AD=,所以在Rt△ACD中,CD= .考点:解直角三角形的应用.15【解析】【分析】先根据线段垂直平分线的性质得出AE=BE=2,故∠EAB=∠B=22.5°,由三角形外角的性质得出∠AEC的度数,再根据锐角三角函数的定义即可得出结论.【详解】解:∵AB的垂直平分线交BC边于点E,BE=2,∠B=22.5°∴AE=BE=2,∴∠EAB=∠B=22.5°.∵∠AEC是△ABE的外角,∴∠AEC=∠B+∠EAB=45°.∵∠C=90°,∴【点睛】本题考查的是线段垂直平分线的性质,解直角三角形,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.16.60【解析】【分析】直接利用特殊角的三角函数值得出答案.【详解】∵∠C=90°,cos A12=,∴∠A=60°.故答案为:60°.【点睛】本题考查了特殊角的三角函数值,正确记忆相关数据是解题的关键.17.18 3 5【解析】【分析】(1)由折叠的性质可得到∠ABC=2∠MPN,即可求解;(2)过点O作OM⊥BC于点M,设OF=FH=x,BM=k,则MH=3k,利用勾股定理求得x=53k,求得∠OFC的正弦函数即可比较得出结论.【详解】解:(1)由图5和图6可知∠ABC=2∠MPN=36°,∴∠MPN=36°÷2=18°;(2)过点O作OM⊥BC于点M,由题意可知MC=MO=MB=12BC=12HB .设OF=FH=x ,BM=k ,则MH=3k ,在Rt △OFM 中,OM=k ,OF=HF=x ,MF=3k-x ,∴222OM MF OF +=,即()2223k x k x +-=,整理得:6kx=10k 2,∴x=53k ,∴3553OM k sin OFC OF k ∠===,∵,35≠,∴∠OFC≠36°.【点睛】本题考查了矩形与折叠问题,勾股定理的应用,正弦函数等,作出常用辅助线构建直角三角形是解题的关键.18【解析】【分析】设AB =5,BC =3,根据折叠的性质,结合勾股定理求出AH ,过H 作HM ⊥AF ,垂足为M ,解直角三角形AHF ,求出AM ,最后根据余弦的定义计算即可.【详解】解:∵四边形ABCD 是矩形,AB :BC =5:3,设AB =5,BC =3,由折叠可知:AD =AE =BC =DF =3,FH =FC =2,则EH =EF -HF =3-2=1,∴AH又AF =H 作HM ⊥AF ,垂足为M ,设AM =x ,则MF =x ,则2222AH AM HF MF -=-,即()22222x x -=-,解得:x =AM =∴cos ∠HAF =AM AH ,.【点睛】本题考查翻折变换、矩形的性质、勾股定理、解直角三角形等知识,解题的关键是灵活运用折叠的性质,掌握解直角三角形的一般方法.19【解析】【分析】过点F 作FG ⊥AB 于G ,连接AF ,根据正方形的性质可得CD =CE =DF =EF =2,∠C =∠ADF =90°,从而得到AD =4,BE =6,再由勾股定理可得AB =10,AF =BF =,然后设BG =x ,再由勾股定理FG =2,即可求解.【详解】解:过点F 作FG ⊥AB 于G ,连接AF ,∵四边形CDFE 是边长为2的正方形,∴CD =CE =DF =EF =2,∠C =∠ADF =90°,∵AC =6,BC =8,∴AD =4,BE =6,∴AB 10,AF =BF ,设BG =x ,∵FG 2=AF 2﹣AG 2=BF 2﹣BG 2,∴(2﹣(10﹣x )2=()2﹣x 2,解得:x =6,∴FG 2,∴sin ∠FBA =FG BF【点睛】本题主要考查了求正弦值,勾股定理,正方形的性质,熟练掌握勾股定理,正方形的性质是解题的关键.20.6.2.【解析】【分析】过点A 作AM ⊥CD 于点M ,可得四边形ABDM 为矩形,根据A 处测得电线杆上C 处得仰角为23°,在△ACM 中求出CM 的长度,然后在Rt △CDE 中求出CE 的长度.【详解】过点A 作AM ⊥CD 于点M ,则四边形ABDM 为矩形,AM=BD=6米,在Rt △ACM 中,∵∠CAM=30°,AM=6米,∴CM=AM•tan ∠,∴CD=(米),在Rt △CDE 中,ED=6﹣2.3=3.7(米),∴≈6.2(米).21.(1)① 90&#ξΦ0B0;,60&#ξΦ0B0;;②本题答案不唯一,如:B (0,2);(3)113C x -<<.【解析】【详解】试题分析:(1)由题意可知,点P 关于⊙O 的“视角”是指从点P 引出两条射线,当两条射线和⊙O 相切时,两条射线所形成的的夹角就是点P 关于⊙O 的“视角”;直线l 关于⊙O 的“视角”是指当直线l 与⊙O 相离时,直线l 上的点Q 距离圆心O 最近时,点Q 关于⊙O 的“视角”就是直线l 关于⊙O 的“视角”;由此可根据已知条件解答第一问;(2)①由题意可知,若直线l 关于⊙C 的“视角”为60°,则说明在直线l 上存在一点P 距离点C 最近,且点P 关于⊙C 的“视角”为60°,则此时点P 是l 与以点C 为圆心,2为半径的圆相切的切点,如图1,过点C 作CH ⊥x 轴于点H ,PE ⊥x 轴于点E ,由已知分析可得DP=DH=∠PDE=60°,在△PDE 中可求得DE 和PE 的长,得到点P 的坐标,把P 、D 的坐标代入直线l 的解析式可求得k 的值;②如图2,由已知易得直线l 与x 轴相交于点A (-1,0),与y 轴相交于点B (0,若此时直线l 关于⊙C 的视角∠EPF=120°,由已知条件求得OC 的长,可得点C 的坐标;如图3,当沿着x 轴向左移动时,直线l 关于⊙C 的视角会变大,当直线l 和⊙C 相切于点P 时,由已知条件可求得OC 的长,可得此时点C 的坐标;综合起来可得C x 的取值范围.试题解析:(1)①如下图,当点A的坐标为(1,1)时,易得点A关于⊙O的视角为90°;∵直线y=2上距离圆心O最近的点是直线y=2与y轴的交点P,过点P作⊙O的两条切线PC、PD,切点为C、D,则直线y=2关于⊙O的视角是∠CPD,连接OD,由已知条件可求得∠OPD=30°,∴∠CPD=60°,即直线y=2关于⊙O的视角为60°.②由①中第2小问可知,满足条件的点B在以O为圆心,2为半径的圆上,这样的点很多,比如说点B(0,2).(2)①∵直线l: y=kx + b(k > 0)经过点D(1-,0),-+=.∴()1k b0∴b k=-.∴直线l: y kx k=+-.设点P在直线l上,若点P关于⊙C的“视角”为60°,则点P在以C为圆心,2为半径的圆上.∵直线l关于⊙C的“视角”为60°,∴此时,点P是直线l上与圆心C的距离最短的点.∴CP⊥直线l.即直线l是以C为圆心,2为半径的圆的一条切线,如图1所示.作过点C作CH⊥x轴于点H,PE⊥x轴于点E,∴点H的坐标为(1,0),又∵点D 的坐标为(1 0),-,∴DH =.∴tan ∠CDH=CH DH =∴∠CDH=30°,∠PDH=60°,∴DE=PD ⋅PE= PD ⋅sin60°=3,∴1,∴点P 的坐标(13).把点P 的坐标代入l : y kx k =+-,解得: k .②如图2,由已知易得直线l 与x 轴相交于点A (-1,0),与y 轴相交于点B (0,若此时直线l 关于⊙C 的视角∠EPF=120°,则∠EPC=60°,∠PEC=90°,CE=1,∴∠PCE=30°,∴PC=1=cos30 =AC=4cos303PC = ,∴OC=AC-OA=13,∴此时C x =13;如图3,当沿着x 轴向左移动时,直线l 关于⊙C 的视角会变大,当直线l 和⊙C 相切于点P 时,连接CP ,∵在△ABO 中,AO=1,,∴tan ∠BAO=BO AO=∴∠BAO=60°,∴AC=sin 60PC∴1,∴此时C x 1,综上所述,C x 的取值范围为:113c x -<<.点睛:解这道题的基础是弄懂两个定义的本质,(1)圆外一点关于圆的视角就是:“过圆外一点向圆引两条切线,这两条切线的夹角就是这个点关于这个圆的视角”;(2)当直线和圆相离时,这条直线关于这个圆的视角就是“过圆心向这条直线作垂线,垂足关于这个圆的视角就是这条直线关于这个圆的视角”.22.23米【解析】【分析】根据锐角三角函数求得线段AE ,从而求得旗杆AB 的高度.【详解】解:在Rt △ADE 中,∵ tan ∠ADE =AE DE,∠ADE =54°,∴ tan 15 1.3820.7AE DE ADE ≈=⨯⋅∠=又∵ 1.8BE CD ==,∴ 20.7 1.822.523AB AE BE =+=+=≈答:旗杆AB 的高度约为23 m .【点睛】此题主要考查了利用三角函数解直角三角形,熟练掌握并应用三角函数的定义是解题的关键.23.(1)∠CBD 与∠CEB 相等,证明见解析;(2)证明见解析;(3)tan ∠. 【解析】【详解】试题分析:(1)由AB 是⊙O 的直径,BC 切⊙O 于点B ,可得∠ADB=∠ABC=90°,由此可得∠A+∠ABD=∠ABD+∠CBD=90°,从而可得∠A=∠CBD ,结合∠A=∠CEB 即可得到∠CBD=∠CEB ;(2)由∠C=∠C ,∠CEB=∠CBD ,可得∠EBC=∠BDC ,从而可得△EBC ∽△BDC ,再由相似三角形的性质即可得到结论;(3)设AB=2x ,结合BC=32AB ,AB 是直径,可得BC=3x ,OB=OD=x ,再结合∠ABC=90°,可得x ,CD=-1)x ;由AO=DO ,可得∠CDF=∠A=∠DBF ,从而可得△DCF ∽△BCD ,由此可得:CD DF BC BD =,这样即可得到tan ∠CDF=tan ∠DBF=DF BD .试题解析:(1)∠CBD 与∠CEB 相等,理由如下:∵BC 切⊙O 于点B ,∴∠CBD=∠BAD ,∵∠BAD=∠CEB ,∴∠CEB=∠CBD ,(2)∵∠C=∠C ,∠CEB=∠CBD ,∴∠EBC=∠BDC ,∴△EBC ∽△BDC ,∴BD CD BE BC=;(3)设AB=2x ,∵BC=32AB ,AB 是直径,∴BC=3x ,OB=OD=x ,∵∠ABC=90°,∴x ,∴CD=)x ,∵AO=DO ,∴∠CDF=∠A=∠DBF ,∴△DCF ∽△BCD ,∴CD DF BC BD =∵tan ∠DBF=DF BD∴tan ∠点睛:解答本题第3问的要点是:(1)通过证∠CDF=∠A=∠DBF ,把求tan ∠CDF 转化为求tan ∠DBF=DF BD;(2)通过证△DCF ∽△BCD ,得到DF CD BD BC =.24.(1)(2)60-海里.【解析】【分析】(1)延长BA ,过点C 作CD ⊥BA 延长线于点D ,在Rt ACD ∆中利用利用三角函数即可求解;(2)过点A '作A 'N ⊥BC 于点N ,可证A 'B 平分∠CBA ,根据角平分线的性质、三角函数即可求解.【详解】解:(1)延长BA ,过点C 作CD ⊥BA 延长线于点D由题意可得:∠CBD 30=︒,BC=120则DC=60故60cos30DC AC AC ︒===解得:AC=答:此时点A 到军港C 的距离为(2)过点A '作A 'N ⊥BC 于点N可得∠1=30︒,∠BA 'A=45︒则∠2=15︒,即A 'B 平分∠CBA设AA '=x ,则A '故CA '=2A 'N=2x =x +=∴x 60=-答:此时“昆明舰”的航行距离为60-海里.【点睛】此题主要考查方向角的应用,灵活运用三角函数是解题关键.25.北偏东30【解析】【分析】构建两个直角三角形后,令BD=x ,则AB=2x ,;BC=a ,则.在RT △ACD 中运用勾股定理可求出a 和x 之间的关系,从而得到AB=BC ,依据三角形外角和定理,从而求出∠CAB,又因为∠BAD已知,则可找到所行驶方向.【详解】设甲船在C处追上乙船,根据题意知CD⊥AD,∴∠ADB=90 ,∠BAD=30∴AB=2BD,由勾股定理得:AD,∵乙船正以每小时10海里的速度向正北方向行驶,而甲船的速度是/小时,∴设BC=a,则AC a,又在Rt△ABD中,令BD=x,则AB=2x,AD,又∵在Rt△ADC中,2AC=22AD DCa (舍负),∴x=2又在Rt△ABD中,AB=2x,∴AB=a,∴AB=BC,∴∠C=∠CAB,∴∠ABD=∠C+∠CAB,∴∠ABD=2∠C.∵∠ABD=60∴∠C=30∴∠CAD =60∴这时甲船应朝北偏东30 方向行驶,才能最快追上乙船.【点睛】解直角三角形的应用-方向角问题.26.(1)0.1,8;(2)盐城市对应频数12这个数据是错误的,该数据的正确值是11;(3)16【解析】【分析】(1)利用连云港的频数及频率求出总数,再根据a 的频数、b 的频率利用公式即可求出答案;(2)计算各组的频率和是否得1,根据频率计算各组频数是否正确,由此即可判断出错误的数据;(3)设来自宿迁的4位“最有孝心的美少年”为A 、B 、C 、D ,列表表示所有可能的情况,再根据概率公式计算即可.【详解】(1)∵连云港市频数为7,频率为0.175,∴数据总数为70.17540÷=,∴4400.1a =÷=,400.28b =⨯=.故答案为0.1,8;(2)∵0.10.1750.20.250.2751++++=,∴各组频率正确,∵400.2751112⨯=≠,∴盐城市对应频数12这个数据是错误的,该数据的正确值是11;(3)设来自宿迁的4位“最有孝心的美少年”为A 、B 、C 、D ,列表如下:AB C D ABA CA DA B ABCB DB C AC BC DCD AD BD CD∵共有12种等可能的结果,A、B同时入选的有2种情况,∴A、B同时入选的概率是:16.【点睛】此题考查统计计算能力,正确理解频数分布表,依据表格得到相应的信息,能正确计算总数,部分的数量,部分的频率,利用列表法求事件的概率.27.1.1m.【解析】【详解】试题分析:过C点作FG⊥AB于F,交DE于G.在Rt△ACF中,根据CF=AC•sin∠CAF 求出CF的长,在Rt△CDG中,根据CG=CD•sin∠CDE求出CG的长,然后根据FG=FC+CG计算即可.试题解析:解:过C点作FG⊥AB于F,交DE于G.∵CD与地面DE的夹角∠CDE为12°,∠ACD为80°,∴∠ACF=90°+12°﹣80°=22°,∴∠CAF=68°,在Rt△ACF中,CF=AC•sin∠CAF≈0.744m,在Rt△CDG中,CG=CD•sin∠CDE≈0.336m,∴FG=FC+CG≈1.1m.故跑步机手柄的一端A的高度约为1.1m.考点:解直角三角形的应用.28.(1)(2)3;(3)1 4【解析】【分析】(1)过A 点作OB 的垂线AE ,证明E 点与B 点重合即可求得OB 的长;(2)在点A 运动过程中,AB 长不变,∠AOB=30°不变,考虑到同弧所对的圆周角不变,所以构造半径为3且过AB 两点的圆O ',易知O O '=3,C O '=O 、O '、C 三点共线时,得最值;(3)过点F 做FG ⊥OE 与点G ,过点D 做DH ⊥OE 与点H ,根据sin O =35,不妨设FG=3a ,DH=3b ,则OG=4a ,OH=4b ,GH=4b-4a (b a ≥),证明FGE ∆∽EHD ∆,根据相似三角形的对应边成比例求解即可.【详解】(1)如图1,过A 点作AE ⊥OB ,∵∠O=30°,OA=6∴AE=132OA = 又AB=3,AE ⊥OB∴B 点与E 点重合∴OB =(2)如图2,在C 点的另一侧作等边三角形ABO ',连接O O ',连接O 'C 交AB 于点,则∠A O 'B=60°,以O '为圆心,以3为半径作圆,则A 、B 点在圆上,又因为∠AOB=30°=12∠A O 'B ,故O 点在圆上,当O 、O '、C 三点共线时,点O 与点C 的距离最大.∵△ABC 、△AB O '为等边三角形∴四边形AO 'BC 为菱形∴O 'C 与AB 互相垂直平分,AD=1322AB =,∠CAD=60°∴CD=tan AD CAD ⋅∠∴O 'C=2CD=∴当O 、O '、C 三点共线时,点O 与点C 的最大距离为当OO '+O 'C 3=+ (3)如图:过点F 做FG ⊥OE 与点G ,过点D 做DH ⊥OE 与点H ,∴∠DHE=∠FGE=90°∵sin O =35,设FG=3a ,DH=3b ,则OG=4a ,OH=4b ,GH=4b-4a (b a ≥)∵DEF ∠=90°∴∠DEH+∠FEG=90°,∠FEG+∠EFG=90°∴∠DEH=∠EFG=∴FGE ∆∽EHD ∆ ∴FG GE EH DH= ∴••FG DH GE EH=即9(44)ab GE b a GE =--∴24()90GE b a GE ab --+=∵0∆≥∴216)360b a ab --≥(化简后得到:4(4)0b a b a --≥()∵b a ≥,∴40b a -≥,∴40b a -≥∴4b a≥∵FG//DH ,∴OF OD =OG OH =44a b ≤4a a =14【点睛】本题考查的是新定义问题,综合利用三角函数、相似三角形的性质与判断、圆的性质等解答,难度较大,正确的添加辅助线,根据圆或相似三角形是解答的关键.。
数学:第二十八章锐角三角函数复习课件(人教新课标九年级下)
上一页
☆ 应用练习
1.已知角,求值 2.已知值,求角
确定角的范围
3. 当∠A为锐角,且cosA=
1 5
3. 确定值的范围
4. 确定角的范围
那么( D ) (A)0°<∠A≤ 30 ° (B) 30°<∠A≤45°
(C)45°<∠A≤ 60 ° (D) 60°<∠A≤ 90 °
1 3
4. 当∠A为锐角,且sinA=
上一页 下一页
☆ 应用练习
1.已知角,求值 2.已知值,求角
求锐角A的值
1. 已知 tgA= 3 ,求锐角A . 2. 已知2cosA -
3 =0, 3 =0 3
∠A=60° ∠A=30°
求锐角A的度数 . 解:∵ 2cosA -
∴ 2cosA =
∴cosA=
3 2
∴∠A= 30°
上一页 下一页
下一页
☆ 应用练习
1.已知角,求值
求下列各式的值
1. 2sin30°+3tg30°+ctg45° 2. cos245°+ tg60°cos30°
=2 + d 3
=2
= 3 - 2o 2 = 4 +2 o3
cos 45o sin 30o 3. cos 45o sin 30o coso 4. tg 45o sin 60o ctg90o
3 2
1 2 3 2
上一页 下一页
☆ 应用练习
1.已知角,求值 2.已知值,求角
确定角的范围
1. 当∠A为锐角,且tgA的值 大于 3 时,∠A( B )
3
3. 确定值的范围
4. 确定角的范围
(A)小于30° (C) 小于60°
28章-锐角三角函数(全章课件)资料
2)如图,sinA=
BC( ×)
AB
练一练
2.在Rt△ABC中,锐角A的对边和斜边同时扩大
100倍,sinA的值( C A.扩大100倍 C.不变
) 1
B.缩小 100
D.不能确定
3.如图 A 300
B
1
3 则 sinA=___2___ .
C 7
练习 B 根据下图,求sinA和sinB的值.
如图,Rt△ABC中,直角边AC、BC小于斜边AB,
sin A BC <1
AB
sin B AC AB
<1
A
C
所以0<sinA <1, 0<sinB <1, 如果∠A < ∠B,则BC<AC , 那么0< sinA <sinB <1
探究
精讲
如图,在Rt△ABC中,∠C= 90°,当锐角A确定时,∠A 的对边与斜边的比就随之确 定,此时,其他边之间的比 是否也确定了呢?为什么?
C
tan α >0,
定义中应该注意的几个问题:
1、sinA、cosA、tanA是在直角三角形中定义的, ∠A是锐角(注意数形结合,构造直角三角形)。
2、sinA、 cosA、tanA是一个比值(数值)。
3、sinA、 cosA 、tanA的大小只与∠A的大小有关, 而与直角三角形的边长无关。
若已知锐角α的始边在x轴的正半轴上,(顶点
28章 锐角三角函数
A
如图,任意画一个Rt△ABC,使∠C=
90°,∠A=45°,计算∠A的对边与斜
边的比 BC ,你能得出什么结论?
AB
C
B
在Rt△ABC中,∠C=90°,由于∠A=45°,所以Rt△ABC是等 腰直角三角形,由勾股定理得
28章 锐角三角函数专题 解直角三角形实际应用的基本模型初中数学模型
(2)“母子”型 模型 已知三角形中的两角(∠1 和∠2)及其中一边, 模型分 在三角形外边作高 BC,构造两个直角三角形求 析 解,以高 BC 为桥梁是解题的关键
3.(成都中考)越来越多太阳能路灯的使用,既点亮了城市的风景,也是我市积极 落实节能环保的举措.某校学生开展综合实践活动,测量太阳能路灯电池板离地面 的高度.如图,已知测倾器的高度为 1.6 米,在测点 A 处安置测倾器,测得点 M 的 仰角∠MBC=33°,在与点 A 相距 3.5 米的测点 D 处安置测倾器,测得点 M 的仰角 ∠MEC=45°(点 A,D 与 N 在一条直线上),求电池板离地面的高度 MN 的长.(结 果精确到 1 米,参考数据:sin 33°≈0.54,cos 33°≈0.84,tan 33°≈0.65)
ME x+25 5 公楼 AB 的高度约为 20 米
(2)一般梯形模型 模型
模型 过较短的底 AD 作梯形的两条高 AE 和 DF,构造一个长方 分析 形和两个直角三角形,分别解两个直角三角形再加减求解
7.某轮滑特色学校准备建立一个如图①的轮滑技巧设施,从侧面看如图②,横 截面为梯形,高 1 米,AD 长为 2 米,坡道 AB 的坡度为 1∶1.5,DC 的坡度为 1∶2.
+40 3 .∴小山 BC 的高度为(10+40 3 )米
模型二:四边形模型 (1)直角梯形模型
模型
模型 过较短的底 AB 作直角梯形的高 BE,构造一个矩形和一
分析
个直角三角形,先解直角三角形再加减求解
6.如图,某办公楼 AB 的后面有一建筑物 CD,当光线与地面的夹角是 22°时, 办公楼在建筑物的墙上留下高 2 米的影子 CE,而当光线与地面夹角是 45°时,办公 楼顶 A 在地面上的影子 F 与墙角 C 有 25 米的距离(点 B,F,C 在一条直线上).求办 公楼 AB 的高度.(参考数据:sin 22°≈25 ,cos 22°≈1156 ,tan 22°≈25 )
【单元练】杭州市第二中学九年级数学下册第二十八章《锐角三角函数》经典复习题(含答案解析)
一、选择题1.菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为()A.5:1B.4:1C.3:1D.2:1A解析:A【分析】先根据菱形的性质求出菱形的边长,再根据菱形的高与边长的关系求出∠A,进而可求出∠ADC,从而可得答案.【详解】解:如图,DE是菱形ABCD的高,DE=1cm,∵菱形ABCD的周长是8cm,∴AD=2cm,在Rt△ADE中,∵DE=12AD,∴∠A=30°,∵AB∥DC,∴∠A+∠ADC=180°,∴∠ADC=150°,∴∠ADC:∠A=150°:30°=5:1.故选:A.【点睛】本题考查了菱形的性质和30°角的直角三角形的性质,属于基本题型,熟练掌握上述知识是解题的关键.2.如图,将一副三角尺如图所示叠放在一起,则BECE的值是()A3B.33C.2 D.32B解析:B 【分析】设AC=AB=x ,求得3tan 33AC x CD x D ===,根据相似三角形的性质即可得到结论. 【详解】 解:设AC=AB=x , 则3tan 33AC x CD x D ===, ∵∠BAC=∠ACD=90°,∴∠BAC+∠ACD=180°,∴AB ∥CD ,∴△ABE ∽△DCE , ∴333BE AB x CE CD x===, 故选:B .【点睛】本题主要考查相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.3.如图,在4×5的正方形网格中,每个小正方形的边长都是1,ΔABC 的顶点都在这些小正方形的顶点上,那么cos ∠ACB 值为( )A 35B 17C .35D .45C 解析:C【分析】如图,过点A 作AH BC ⊥于H .利用勾股定理求出AC 即可解决问题.【详解】解:如图,过点A 作AH BC ⊥于H .在Rt ACH ∆中,4AH =,3CH =,2222435AC AH CH ∴=++,3cos 5CH ACH AC ∴∠==, 故选:C .【点睛】本题考查解直角三角形,解题的关键是学会添加常用辅助线,构造直角三角形解决问题. 4.在△ABC 中,∠C=90º,AC=3,AB=4,则下列结论正确的是( )A .34sinA =B .34cos A =C .34tan A =D .34cot A =B 解析:B【分析】按照锐角三角函数的定义求各函数值即可.【详解】解:如图,由勾股定理可得BC=2222437AB AC -=-=选项A ,74BC sinA AB ==,故错误; 选项B ,3cos 4AC A AB ==,故正确; 选项C ,7tan 3BCA AC ,故错误; 选项D ,337cot77AC A BC ===,故错误; 故应选:B【点睛】 本题考查了锐角三角函数定义,解答关键是按照相关锐角三角函数定义解题. 5.如图,一块矩形木板ABCD 斜靠在墙边,( OC ⊥OB ,点A 、B 、C 、D 、O 在同一平面内),已知AB a ,AD b ,∠BCO =α.则点A 到OC 的距离等于( )A .asinα+bsinαB .acosα+bcosαC .asinα+bcosαD .acosα+bsinαD解析:D【分析】 根据题意,做出合适的辅助线,然后利用锐角三角函数即可表示出点A 到OC 的距离即可求解.【详解】解:作AE ⊥OC 于点E ,作AF ⊥OB 于点F ,∵四边形ABCD 是矩形,∴∠ABC=90°,∵∠ABC=∠AEC ,∠BCO=α,∴∠EAB=α,∴∠FBA=α,∵AB=a ,AD=b ,∴FO=FB+BO=a•cosα+b•sinα,故选:D .【点睛】本题考查解直角三角形、三角函数的定义、矩形的性质,解答本题的关键是明确题意,正确做出辅助线,利用数形结合的思想解答.6.如图,ABC 中,6AB AC AE AC DE ==⊥,,垂直平分AB 于点D ,则EC 的长为( )A .3B .3C .22D .42解析:B【分析】根据线段垂直平分线的性质得到AE=BE ,由等腰三角形的性质得到∠B=∠BAE ,根据三角形的外角的性质得到∠AEC=∠B+∠BAE=2∠B ,求得∠C=30°,根据三角函数的定义即可得到结论.【详解】∵DE 垂直平分AB 于点D ,∴AE=BE ,∴∠B=∠BAE ,∴∠AEC=∠B+∠BAE=2∠B ,∵AB=AC ,∴∠AEC=2∠C ,∵AE ⊥AC ,∴∠EAC=90°,∴∠C=30°,∴CE=643cos3032AC ==︒, 故选:B .【点睛】 本题考查了线段垂直平分线的性质,等腰三角形的性质,三角形外角的性质以及特殊角的三角函数值.注意掌握数形结合思想的应用.7.如图,在Rt ABC ∆中,BC=4,AC=3,90C ∠=︒,则sinB 的值为( )A .45B .34C .35D .43C 解析:C 【分析】由勾股定理求出AB 的长度,即可求出sinB 的值.【详解】解:在Rt ABC ∆中,BC=4,AC=3,90C ∠=︒,∴22345AB +=,∴35AC sinB AB ==, 故选:C .【点睛】 本题考查了求角的正弦值,以及勾股定理,解题的关键是正确求出AB 的值.8.如图,在△ABC 中,∠ABC =90°,D 为BC 的中点,点E 在AB 上,AD ,CE 交于点F ,AE =EF =4,FC =9,则cos ∠ACB 的值为( )A .35B .59C .512D .45D 解析:D【分析】如图,延长AD 到M ,使得DM=DF ,连接BM .利用全等三角形的性质证明BM=CF=9,AB=BM ,利用勾股定理求出BC ,AC 即可解决问题.【详解】解:如图,延长AD 到M ,使得DM=DF ,连接BM .∵BD=DC ,∠BDM=∠CDF ,DM=DF ,∴△BDM ≌△CDF (SAS ),∴CF=BM=9,∠M=∠CFD ,∵CE ∥BM ,∴∠AFE=∠M ,∵EA=EF ,∴∠EAF=∠EFA ,∴∠BAM=∠M ,∴AB=BM=9,∵AE=4,∴BE=5,∵∠EBC=90°, ∴2222135EC BE -=-,∴2222912AB BC ++,∴cos ∠ACB=124155BC AC == , 故选:D .【点睛】此题考查解直角三角形,全等三角形的判定和性质,等腰三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.9.如图,平行四边形ABCD 中,AB ⊥AC ,AB =3,BC =7,对角线AC ,BD 相交于点O ,将直线AC 绕点O 顺时针旋转,分别交B C ,AD 于点E ,F ,下列说法:①在旋转过程中,AF =CE . ②OB =AC ,③在旋转过程中,四边形ABEF 的面积为212,④当直线AC 绕点O 顺时针旋转30°时,连接BF ,DE 则四边形BEDF 是菱形,其中正确的是( )A .①②④B .① ②C .①②③④D .② ③ ④A 解析:A【分析】 ①通过证明AOF COE ≅△△即可判断;②分别利用勾股定理求出OB,AC 的长度即可得出答案;③先利用ABC 的面积求出AG 的长度,然后利用梯形的面积公式求解即可; ④易证四边形BEDF 是平行四边形,然后通过角度得出90DOF ∠=︒,然后证明DOF DOE ≅,则有DF DE =,则可证明结论.【详解】∵四边形ABCD 是平行四边形,,//,AO CO AD BC AD BC ∴== ,AFO CEO ∴∠=∠ .在AOF 和COE 中,AFO CEO AOF COE AO CO ∠=∠⎧⎪∠=∠⎨⎪=⎩()AOF COE AAS ∴≅,AF CE OF OE ∴==,故①正确;∵AB ⊥AC ,90BAC ∴∠=︒ .∵AB 3BC 7222AC BC AB ∴=-= ,112AO AC ∴== , 222OB AO AB ∴=+=,OB AC ∴=,故②正确;过点A 作AG BC ⊥交BC 于点G ,1122ABC S AB AC BC AG =⋅=⋅ , 3222177AB AC AG BC ⋅⨯∴=== , 11221()73227ABEF S AF BE AG ∴=+⋅=⨯⨯=四边形 ,故③错误; 连接DE,BF ,,AF CE AD BC ==,DF BE ∴= .∵//DF BE ,∴四边形BEDF 是平行四边形.3sin 2AB AOB OB ∠== , 60AOB ∴∠=︒ .30AOF ∠=︒,180603090DOF ∴∠=︒-︒-︒=︒,90DOE ∴∠=︒.在DOF △和DOE △中,FO OE DOF DOE DO DO =⎧⎪∠=∠⎨⎪=⎩()DOF DOE SAS ∴≅,DF DE ∴=,∴四边形BEDF 是菱形,故④正确;所以正确的有:①②④,故选:A .【点睛】本题主要考查平行四边形的性质,全等三角形的判定及性质,勾股定理和锐角三角函数,掌握平行四边形的性质,全等三角形的判定及性质,勾股定理和锐角三角函数是解题的关键.10.如图,学校环保社成员想测量斜坡CD 旁一棵树AB 的高度,他们先在点C 处测得树顶B 的仰角为60°,然后在坡顶D 测得树顶B 的仰角为30°,已知斜坡CD 的长度为10m ,DE 的长为5m ,则树AB 的高度是( )m .A .10B .15C .3D .35B解析:B【分析】 先根据CD =10m ,DE =5m 得出∠DCE =30°,故可得出∠DCB =90°,再由∠BDF =30°可知∠DBE =60°,由DF ∥AE 可得出∠BGF =∠BCA =60°,故∠GBF =30°,所以∠DBC =30°,再由锐角三角函数的定义即可得出结论.【详解】解:在Rt △CDE 中,∵CD =10m ,DE =5m ,∴sin ∠DCE =51102DE CD ==, ∴∠DCE =30°.∵∠ACB =60°,DF ∥AE ,∴∠BGF =60°∴∠ABC =30°,∠DCB =90°.∵∠BDF =30°,∴∠DBF =60°,∴∠DBC =30°,∴BC =10103tan3033CD ==︒(m ), ∴AB =BC •sin60°=10332⨯=15(m ). 故选:B .【点睛】 本题考查的是解直角三角形的应用-仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键.二、填空题11.如图,点O 为正八边形ABCDEFGH 的中心,连接DA 、DB ,则=ADB ∠______度;若4OA =,则该正八边形的面积为______.225【分析】连接OAOB 由正八边形的性质求出得到过A作于K 可证得是等腰直角三角形利用正弦的定义求出AK 由三角形面积公式即可得出答案【详解】解:连接OAOB ∵ABCDEFGH 是正八边形∴∴过A 作于K 解析:22.5 322【分析】连接OA 、OB ,由正八边形的性质求出45AOB ∠=︒,得到22.5ADB ∠=︒,过A 作AK OB ⊥于K ,可证得AKO ∆是等腰直角三角形,利用正弦的定义求出AK ,由三角形面积公式即可得出答案.【详解】解:连接OA 、OB ,∵ABCDEFGH 是正八边形,∴360845AOB ∠=︒÷=︒,∴122.52ADB AOB ∠=∠=︒, 过A 作AK OB ⊥于K ,∴90AKO ∠=︒,∵45AOB ∠=︒,,∴AKO ∆是等腰直角三角形,∵4OA =,∴422AK ===∴11422OAB S OB AK ∆=⋅=⨯⨯=∴正八边形ABCDEFGH 88OAB S ∆==⨯=故答案为:22.5,.【点睛】本题考查的是正多边形的有关计算以及锐角三角函数,掌握正多边形的中心角的计算方法、熟记锐角三角函数的定义是解题的关键.12.在平面直角坐标系xOy 中,已知一次函数y =kx +b (k ≠0)的图象过点P (1,1),与x 轴交于点A ,与y 轴交于点B ,且tan ∠ABO =2,那么点A 的坐标是_____.(﹣10)或(30)【分析】依题意得即可得一次函数解析式为所以由tan ∠ABO =2得到且可解得或进而求得结论【详解】解:∵一次函数的图象经过点∴即∴一次函数解析式为∴一次函数与x 轴y 轴的交点坐标为(解析:(﹣1,0)或(3,0)【分析】依题意得1k b =+,即1b k =-,可得一次函数解析式为1y kx k =+-,所以1k OA k -=,1OB k =-,由tan ∠ABO =2得到121k k k -=-且1k ≠可解得12k =或12k =-,进而求得结论. 【详解】解:∵一次函数y kx b =+的图象经过点()1,1P ,∴1k b =+,即1b k =-,∴一次函数解析式为1y kx k =+-,∴一次函数1y kx k =+-与x 轴、y 轴的交点坐标为(1k k -,0)、(0,1k -), ∴1k OA k-=,1OB k =-, ∵tan 2OA ABO OB∠==,∴121kkk-=-且1k≠,解得,12k=或12k=-,当12k=时,OA=1,此时点A在x轴负半轴上,所以点A坐标为(﹣1,0),当12k=-时,OA=3,此时点A在x轴正半轴上,所以点A坐标为(3,0),∴A点的坐标是1,0或3,0故答案为:(﹣1,0)或(3,0).【点睛】本题考查了一次函数图象上点的坐标特征,解答本题的关键是求出函数图象与x轴、y轴的交点坐标.解决本题时要注意点A的坐标有两种情况,不要漏解.13.某人顺着山坡沿一条直线型的坡道滑雪,当他滑过130米长的路程时,他所在位置的竖直高度下降了50米,则该坡道的坡比是_________.【分析】首先根据勾股定理求得滑行的水平距离然后根据坡比的定义即可求解【详解】解:滑行的水平距离是:=120(米)故坡道的坡比是:50:120=故答案是:【点睛】本题考查了勾股定理以及坡比的定义正确求解析:5 12【分析】首先根据勾股定理求得滑行的水平距离,然后根据坡比的定义即可求解.【详解】2213050-(米),故坡道的坡比是:50:120=512.故答案是:5 12.【点睛】本题考查了勾股定理,以及坡比的定义,正确求得滑行的水平距离是关键.14.如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C处测得A ,B 两点的俯角分别为45和30.若飞机离地面的高度CH 为1200米,且点H ,A ,B 在同一水平直线上,则这条江的宽度AB 为______米(结果保留根号).【解析】【分析】在和中利用锐角三角函数用CH表示出AHBH 的长然后计算出AB 的长【详解】由于在中米在米米故答案为【点睛】本题考查了解直角三角形的应用——仰角俯角问题题目难度不大解决本题的关键是用含C 解析:()120031- 【解析】 【分析】在Rt ACH 和Rt HCB 中,利用锐角三角函数,用CH 表示出AH 、BH 的长,然后计算出AB 的长.【详解】由于CD//HB , CAH ACD 45∠∠∴==,B BCD 30∠∠==,在Rt ACH 中,CAH 45∠∴=,AH CH 1200∴==米,在Rt HCB ,CH tan B HB∠=, CH 12001200HB 12003(tan B tan3033∠∴====米), ()AB HB HA 120031200120031∴=-=-=-米, 故答案为()120031-. 【点睛】本题考查了解直角三角形的应用——仰角、俯角问题,题目难度不大,解决本题的关键是用含CH 的式子表示出AH 和BH .15.在矩形纸片ABCD 中,AB =6,BC =8.将矩形纸片折叠,使点C 与点A 重合,则折痕的长是______.【分析】先利用勾股定理得出AC 根据翻折变换的性质可得AC ⊥EFOC=AC 然后利用∠ACB 的正切列式求出OF 再求出△AOE 和△COF 全等根据全等三角形对应边相等可得OE=OF 从而求出折痕的长【详解】解解析:152【分析】先利用勾股定理得出AC ,根据翻折变换的性质可得AC ⊥EF ,OC=12AC ,然后利用∠ACB 的正切列式求出OF ,再求出△AOE 和△COF 全等,根据全等三角形对应边相等可得OE=OF ,从而求出折痕的长.【详解】解:如图∵AB=6,BC=8,∴AC==10,∵折叠后点C 与点A 重合,∴AC ⊥EF ,OC=12AC=12×10=5, ∵tan ∠ACB=OF CO =AB CB , ∴OF 5=68, 解得OF=154, ∵矩形对边AD ∥BC ,∴∠OAE=∠OCF ,在△AOE 和△COF 中 OAE OCF OA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AOE ≌△COF (ASA ),∴OE=OF=154, ∴EF=152故答案为152【点睛】本题考查了翻折变换的性质,矩形的性质,勾股定理,锐角三角函数的定义,全等三角形的判定与性质,熟练掌握相关知识是解题的关键.16.如图,我市在建高铁的某段路基横断面为梯形ABCD ,DC ∥AB ,BC 长为6米,坡角β为45°,AD 的坡角α为30°,则AD 的长为 ________ 米 (结果保留根号)【分析】过C 作CE ⊥AB 于EDF ⊥AB 于F 分别在Rt △CEB 与Rt △DFA 中使用三角函数即可求解【详解】解:过C 作CE ⊥AB 于EDF ⊥AB 于F 可得矩形CEFD 和Rt △CEB 与Rt △DFA ∵BC=6∴ 解析:62 【分析】 过C 作CE ⊥AB 于E ,DF ⊥AB 于F ,分别在Rt △CEB 与Rt △DFA 中使用三角函数即可求解.【详解】解:过C 作CE ⊥AB 于E ,DF ⊥AB 于F ,可得矩形CEFD 和Rt △CEB 与Rt △DFA , ∵BC=6,∴CE=2sin 456322BC ︒=⨯=, ∴DF=CE=32,∴62sin 30DF AD ==︒, 故答案为:62.【点睛】此题考查了解直角三角形的应用-坡度坡角问题,难度适中,解答本题的关键是构造直角三角形和矩形,注意理解坡度与坡角的定义.17.图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC ,BD (点A 与点B 重合),点O 是夹子转轴位置,O E ⊥AC 于点E ,OF ⊥BD 于点F ,OE=OF=1cm ,AC =BD =6cm , CE =DF , CE :AE =2:3.按图示方式用手指按夹子,夹子两边绕点O 转动.(1)当E ,F 两点的距离最大值时,以点A ,B ,C ,D 为顶点的四边形的周长是_____ cm .(2)当夹子的开口最大(点C 与点D 重合)时,A ,B 两点的距离为_____cm .16【分析】(1)当EOF 三点共线时EF 两点间的距离最大此时四边形ABCD 是矩形可得AB=CD=EF=2cm 根据矩形的性质求出周长即可(2)当夹子的开口最大(点C 与D 重合)时连接OC 并延长交AB 于点解析:16 6013 【分析】(1)当E 、O 、F 三点共线时,E 、F 两点间的距离最大,此时四边形ABCD 是矩形,可得AB=CD=EF=2cm ,根据矩形的性质求出周长即可. (2)当夹子的开口最大(点C 与D 重合)时,连接OC 并延长交AB 于点H ,可得CH AB ⊥,AH=BH ,利用已知先求出125CE cm =,在Rt △OEF 中利用勾股定理求出CO 的长,由sin OE AH ECO CO AAC∠==,求出AH ,从而求出AB=2AH 的长. 【详解】 (1)当E 、O 、F 三点共线时,E 、F 两点间的距离最大,此时四边形ABCD 是矩形, ∴AB=CD=EF=2cm ,∴以点A ,B ,C ,D 为顶点的四边形的周长为2+6+2+6=16cm .(2)当夹子的开口最大(点C 与D 重合)时,连接OC 并延长交AB 于点H ,∴CH AB ⊥,AH=BH ,∵AC=BD=6cm ,CE ∶AE=2∶3,∴125CE cm =, 在Rt △OEF 中,22135CO OE CE =+=,∵sin OE AH ECO CO AAC ∠==,3013AH =, ∴AB=2AH=6013. 故答案为16,6013. 【点睛】本题主要考查了勾股定理与旋转的结合,做题时准确理解题意利用已知的直角三角形进行求解是解题的关键.18.如图,已知直线l :y =33x ,过点A (0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;…;按此作法继续下去,则点A 4的坐标为_____.(0256)【分析】利用锐角三角函数分别计算得到的坐标利用规律直接得到答案【详解】解:∵l :y =x ∴l 与x 轴的夹角为30°∵AB ∥x 轴∴∠ABO =30°∵OA =1∴AB =∵A1B ⊥l ∴∠ABA1=6解析:(0,256)【分析】利用锐角三角函数分别计算得到12,A A 的坐标,利用规律直接得到答案.【详解】解:∵l :y 3 ∴l 与x 轴的夹角为30°∵AB ∥x 轴∴∠ABO =30°∵OA =1∴AB 3∵A 1B ⊥l∴∠ABA 1=60°∴AA 1=3∴A 1(0,4)同理可得A 2(0,16)…∴A 4纵坐标为44=256∴A 4(0,256)故答案为:(0,256).【点睛】本题考查的是一次函数综合题,先根据所给一次函数判断出一次函数与x 轴夹角是解决本题的突破点;根据含30°的直角三角形的特点依次得到123,,A A A …的点的坐标是解决本题的关键.19.已知直角三角形一个锐角60°,斜边长为4,那么此直角三角形斜边上的的高是________.【分析】由直角三角形中30°角所对的直角边等于斜边的一半可求出30°角对应的直角边再由勾股定理可知求出另一直角边进而求出斜边上的高【详解】解:如下图所示BC=4∠B=30°∠C=60°由直角三角形中 解析:3【分析】由直角三角形中30°角所对的直角边等于斜边的一半,可求出30°角对应的直角边,再由勾股定理可知求出另一直角边,进而求出斜边上的高.【详解】 解:如下图所示,BC=4,∠B=30°,∠C=60°由直角三角形中,30°角所对的直角边等于斜边的一半知:AC=12BC=2 由勾股定理知:2222=422 3.-=-=AB BC AC在Rt △ABH 中,AH=123. 3【点睛】本题考查了直角三角形中30°角所对的直角边等于斜边的一半、勾股定理等相关知识,熟练掌握直角三角形的性质是解题的关键.20.如图,在ABC ∆中,3AB AC cm ==,120A ∠=︒,AB 的垂直平分线分别交,AB BC 于,D E ,则EC 的长为_________.【分析】根据等腰三角形的性质可求出两底角的度数连接AE 可得出AE=BE 推出解直角三角形即可得出答案【详解】解:∵∴连接AE ∵ED 垂直平分AB ∴AE=BE ∵∴∴故答案为:【点睛】本题考查的知识点是等腰 解析:23 【分析】 根据等腰三角形的性质可求出两底角的度数,连接AE ,可得出AE=BE ,30EAD =∠°,推出90EAC ∠=︒,解直角三角形即可得出答案.【详解】解:∵3AB AC cm ==,120A ∠=︒,∴1(180120)302B C ,连接AE ,∵ED 垂直平分AB ,∴AE=BE ,30EAD =∠°,∵120A ∠=︒,∴90EAC ∠=︒, ∴323cos3032AC CE ===︒ 故答案为:23.【点睛】本题考查的知识点是等腰三角形的性质、解直角三角形、垂直平分线的性质,综合性较强,但难度不大.三、解答题21.如图,在ABC 中,AD BC ⊥,BE AC ⊥,垂足分别为D ,E ,AD 与BE 相交于点F .(1)求证:ACD △∽BFD △;(2)当tan 1ABD ∠=,3AC =时,求BF 的长.解析:(1)见解析;(2)3【分析】(1)由90C DBF ∠+∠=︒,90C DAC ∠+∠=︒,推出DBF DAC ∠=∠,由此即可证明;(2)先证明AD BD =,由ACD △∽BFD △,得1AC AD BF BD==,即可解决问题. 【详解】(1)证明:∵AD BC ⊥,BE AC ⊥,∴90BDF ADC BEC ∠=∠=∠=︒,∴90C DBF ∠+∠=︒,90C DAC ∠+∠=︒,∴DBF DAC ∠=∠,∴ACD △∽BFD △. (2)∵tan 1ABD ∠=,90ADB ∠=︒,∴1AD BD=, ∴AD BD =,∵ACD △∽BFD △,∴1AC AD BF BD ==,∴3BF AC ==.【点睛】本题考查相似三角形的判定和性质、三角函数等知识,解题的关键是熟练掌握相似三角形的判定和性质,属于中考常考题型.22.计算:2cos30°+tan60°﹣16+(π﹣3.14)0解析:233-【分析】原式利用特殊角的三角函数值,以及零指数幂法则计算即可得到结果.【详解】原式=323412⨯+-+ 333=+-233=-【点睛】此题考查了含特殊角的三角函数值的实数的运算,熟练掌握特殊角的三角函数值是解本题的关键.23.如图,某大楼的顶部竖有一块广告牌CD ,小李在山坡的坡脚A 处测得广告牌底部D 的仰角为60︒,沿坡面AB 向上走到B 处测得广告牌顶部C 的仰角为45︒,已知山坡AB 的坡度1:3i =,6AB =米,广告牌CD 的高度为3米.()1求点B 距水平面AE 的高度BH ;()2求楼房DE 的高度.(测角器的高度忽略不计,结果保留根号)解析:(1)3米;(2993+)米. 【分析】 (1)在Rt △ABH 中,通过解直角三角形求出BH ;(2)过B 作BG ⊥DE 于G ,设AE=x 米,用x 表示出BG 、CG 、CE ,然后表示出DE 的长,在△ADE 根据三角函数列出方程,解方程后即可求出楼房DE 的高度.【详解】解:(1)Rt △ABH 中,i=tan ∠BAH= 1333=, ∴∠BAH=30°,∴BH= 12AB=3米; (2)如图,过B 作BG ⊥DE 于G ,设AE=x 米,∵BH ⊥HE ,GE ⊥HE ,BG ⊥DE ,∴四边形BHEG 是矩形.∵由(1)得:BH=3,AH= 33 ∴BG=AH+AE=(33)米,EG= BH=3, Rt △BGC 中,∠CBG=45°, ∴CG=BG=33,∴CE=CG+EG=3+33,∴DE=CE-CD=3+3333, Rt △ADE 中,∠DAE=60°,∴tan 603DE AE==, ∴333x x =,∴9332x +=, ∴DE =339332+= 9932+. 答:楼房DE 993+)米. 【点睛】 此题综合考查了仰角、坡度的定义,能够正确地构建出直角三角形,将实际问题化归为解直角三角形的问题是解答此类题的关键.24.已知:如图所示,ABC 在直角坐标平面内,三个顶点的坐标分别()0,3A ,()3,4B ,()2,2C ,(正方形网格中每个小正方形的边长是一个单位长度). ()1画出ABC 关于x 轴对称的111A B C △,点1C 的坐标是____;tan _____.BAC ∠=()2以点B 为位似中心,在网格内画出222A B C△,使222A B C △与ABC 位似,且位似比为2:1,点2C 的坐标是_____; ()2223A B C 的周长为_______ .解析:(1)画图见解析;1C 的坐标是(2,-2);tan BAC ∠=1;(2)画图见解析;2C 的坐标是(1,0);(3)510【分析】(1)将△ABC 关于x 轴对称得到△A 1B 1C 1,如图所示,找出所求点坐标;证明ABC 是等腰直角三角形即可求出tan BAC ∠的值;(2)以点B 为位似中心,在网格内画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 位似,且位似比为2:1,如图所示,找出所求点坐标即可.(3)先求出△ABC 的周长,再根据222A B C 与ABC 的位似比为2:1,即可求出222A B C 的周长.【详解】解:(1)111A B C 如图所示,点C 1的坐标是(2,-2);∵222125AC =+=,222125BC =+=,2221310AB =+=,∴222AC BC AB +=,AC BC =,∴ABC 是等腰直角三角形,∴45BAC ∠=,∴tan BAC ∠= tan 45=1;故答案是:(2,-2);1;(2)△A 2B 2C 2如图所示,2C 的坐标是(1,0);故答案是:(1,0);(3)∵△ABC 的周长55102510222A B C 与ABC 的位似比为2:1,∴222A B C 的周长为2(2510)=4510 故答案为:510【点睛】此题考查了作图-位似变换与对称变换及三角函数值的求法,熟练掌握位似变换与对称变换的性质是解本题的关键.25.有一只拉杆式旅行箱(图1),其侧面示意图如图2所示,已知箱体长50cm AB =,拉杆BC 的伸长距离最大时可达35cm ,点A 、B 、C 在同一条直线上,在箱体底端装有圆形的滚筒A ,A 与水平地面切于点D ,在拉杆伸长至最大的情况下,当点B 距离水平地面38cm 时,点C 到水平面的距离CE 为59cm ,设AF ∥MN .(1)求A 的半径长;(2)当人的手自然下垂拉旅行箱时,人感觉较为舒服,某人将手自然下垂在C 端拉旅行箱时,CE 为80cm ,64CAF ∠=︒,求此时拉杆BC 的伸长距离.(精确到1cm ,参考数据:sin 640.90︒≈,cos640.39︒≈,tan64 2.1︒≈)解析:(1)圆形滚轮的半径AD 的长是8cm ;(2)拉杆BC 的伸长距离为30cm .【分析】(1)作BH ⊥AF 于点K ,交MN 于点H ,则△ABK ∽△ACG ,设圆形滚轮的半径AD 的长是xcm ,根据相似三角形的对应边的比相等,即可列方程求得x 的值;(2)求得CG 的长,然后在直角△ACG 中,求得AC 即可解决问题;【详解】(1)作BH AF ⊥于点K ,交MN 于点H .则BK CG ,ABK ACG ∆∆∽.设圆形滚轮的半径AD 的长是cm x . 则BK AB CG AC =,即3850595035x x -=-+, 解得:8x =.则圆形滚轮的半径AD 的长是8cm ;(2)在Rt ACG ∆中,80872(cm)CG =-=.则sin CG CAF AC ∠=∴AC=72=sin 0.9CG CAF ∠=80(cm)∴805030(cm)BC AC AB =-=-=.【点睛】本题考查解直角三角形的应用,相似三角形的判定与性质,锐角三角函数等知识,关键把实际问题转化为数学问题加以计算.26.(1)sin 6045260cos30tan tan ︒-︒+︒︒. (2)tan 45cos6030sin 60tan ︒-︒⨯︒︒. 解析:(1)2)13. 【分析】(1)首先求出特殊角的三角函数值,然后根据实数加减混合运算法则计算即可;(2)首先求出特殊角的三角函数值,然后化简,然后根据实数加减混合运算法则计算即可.【详解】(1)sin 6045260cos30tan tan ︒-︒+︒︒=1-+(2)tan 45cos6030sin 60tan ︒-︒⨯︒︒=11-=3 =13. 【点睛】本题考查了特殊锐角三角函数值的混合运算,关键是记忆30 º、45 º和60º的三角函数值.27.已知等边三角形ABC .(1)用尺规作图找出ABC∆外心O.(2)设等边三角形的边长为4,求外接圆的半径.解析:(1)见解析;(2)43 3【分析】(1)作AB,BC的垂直平分线交于点O,则点O即为所求;(2)根据正三角形的每个内角为60°和三角形外接圆的相关知识解答.【详解】(1)如图所示,点O即为所求ABC∆外心.(2)如图,O是等边△ABC的外接圆,连接OA、OB、OC,延长AO交BC于D,∵OB=OC,∴点O在BC的垂直平分线上,又∵ABC是等边三角形,4AB BC AC===,∴点A在BC的垂直平分线上,∴AO是BC的垂直平分线,∴OD⊥BC,BD=BC=2,∴190602ODB BOD BOC∠=︒∠=∠=︒,,∴43 sin603BDOB===︒【点睛】本题考查正多边形外接圆的问题,解答此题要明确两点:(1)正多边形的中心和外接圆圆心重合;(2)正三角形每个内角每条边都相等.28.已知:直线3y kx k =+,交x 轴于B ,交y 轴于A ,且3OA OB =.(1)如图1,求直线AB 的解析式;(2)如图2,点D 在AO 上且AD t =连接BD ,过BD 作DE BD ⊥于D ,过A 作AE y ⊥轴于A ,E 点的横坐标为m ,求m 与t 的函数关系式;(3)如图3,在(2)的条件下,点P 在BD 的延长线上,P 的横坐标为t ,点F 在EA 的延长线上,点N 在AD 上,连接FN ,连接PF 并延长交直线AB 于点M ,若E BPM ∠=,2ANF ADE ∠=∠,2AN DN =,求点M 的坐标.解析:(1)y=3x+9;(2)m=2133t t -;(3)M(1,10). 【分析】(1)先设OB b =,表示出A 、B 的坐标,代入求解即可;(2)根据lBD lDE k k ⋅= -1,得出93t -·t m=-1,变形求解即可; (3)首先得出直线BD 的解析式,再得出直线NF 为:y=222mt m t -,设F(n ,9),得出直线FD ,再根据直线AB 求解即可.【详解】解:(1)设OB b =,∴B(-b,0),∵OA=3OB ,∴A(0,3b),∵A 、B 在直线y=kx+k 上,代入得3033bk k k b -+=⎧⎨=-⎩, 解得:33k b =⎧⎨=⎩ ,∴y=3x+9; (2)由(1)知A(0,9),B(-3,0),∵AE ⊥y 轴,∴E(m ,9),∵AD=t ,∴D(0,9-t),∵BD ⊥DE ,∴lBD lDE k k ⋅= -1,而lBD k =93t -,lDE k =t m, ∴93t -·t m=-1, ∴-t²+9t+3m=0, ∴m=2133t t -;(3)由(2)和(1)知:直线BD 为:y=993t x t -+- , ∵P 在直线BD 上且横坐标为t , ∴P(t ,26273t t -++), ∵AN=2DN ,∴N(0,9-t),∵∠ANF=2∠ADE 且lDE k =t m,则直线NF 为:y=222mt m t - , 设F(n ,9),则22223t mt n m t =-,解得n=223m t m-, ∴F(223m t m-,9), 由F 、P 得FP l :y=222222()933m t m t x m t mt m---+--①, 由(1)得:AB l :y=3x+9②,∵∠E=∠BPM ,∴tan ∠E=tan ∠BPM③,由M 为AB 和PF 的交点,联立①②③得:M(1,10).【点睛】本题考查了一次函数的性质、待定系数法等知识,解题的关键是学会利用参数、构建方程解决问题.。
人教版九年级数学下《第二十八章锐角三角函数》单元练习题含答案
第二十八章锐角三角函数一、选择题1.在Rt△ABC中,∠C=90°,AB=6,cos B=,则BC的长为()A. 4B. 2C.D.2.在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,则sin A等于()A.B.C.D.3.在Rt△ABC中,∠C=90°,a=1,b=,则∠A等于()A. 30°B. 45°C. 60°D. 90°4.如图,电线杆CD的高度为h,两根拉线AC与BC相互垂直,∠CAB=α,则拉线BC的长度为(A、D、B在同一条直线上)()A.B.C.D.h·cosα5.如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是()A. 5米B. 6米C. 6.5米D. 12米6.Rt△ABC中,∠C=90°,AB=13,AC=5,则sin B的值为()A.B.C.D.7.在Rt△ABC中,∠C=90°,AB=6,AC=4,则cos A的值是()A.B.C.D.8.如图,在一笔直的海岸线l上有A、B两个观测站,C离海岸线l的距离(即CD的长)为2,从A 测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向,则AB的长()A. 2 kmB. (2+)kmC. (4-2) kmD. (4-) km9.在高为100米的楼顶测得地面上某目标的俯角为α,那么楼底到该目标的水平距离是() A. 100tanα米B. 100cotα米C. 100sinα米D. 100cosα米10.把△ABC三边的长度都扩大为原来的3倍,则锐角A的余弦函数值()A.不变B.缩小为原来的C.扩大为原来的3倍D.不能确定二、填空题11.若2cosα-=0,则锐角α=____________度.12.在Rt△ABC中,∠C=90°,AB=2BC,现给出下列结论:①sin A=;②cos B=;③tan A=;④tan B=,其中正确的结论是__________(只需填上正确结论的序号)13.如图,已知点A(0,1),B(0,-1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则sin ∠BAC=____________.14.已知∠A的补角是120°,则tan A=________.15.如图是一斜坡的横截面,某人沿着斜坡从P处出发,走了13米到达M处,此时在铅垂方向上上升了5米,那么该斜坡的坡度是____________.16.汽车沿着坡度为1∶7的斜坡向上行驶了50米,则汽车升高了____________米.17.已知0°<θ<30°,且sinθ=km+(k为常数且k<O),则m的取值范围是__________.18.在Rt△ABC中,∠C=90°,BC=3,sin A=,那么AB=__________.19.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则sin ∠ABC=________.20.如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为________米.(精确到1米,参考数据:≈1.73)三、解答题21.如图,初三一班数学兴趣小组的同学欲测量公园内一棵树DE的高度,他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°.朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°,已知A点的高度AB为2米,台阶AC的坡度为(即AB∶BC=),且B,C,E三点在同一条直线上,请根据以上条件求出树DE的高度.(测量器的高度忽略不计)22.南海是我国的南大门,如图所示,某天我国一艘海监执法船在南海海域正在进行常态化巡航,在A处测得北偏东30°方向上,距离为20海里的B处有一艘不明身份的船只正在向正东方向航行,便迅速沿北偏东75°的方向前往监视巡查,经过一段时间后,在C处成功拦截不明船只,问我海监执法船在前往监视巡查的过程中行驶了多少海里(最后结果保留整数)?(参考数据:cos 75°=0.2588,sin 75°=0.9659,tan 75°=3.732,=1.732,=1.414)23.如图,图①是某电脑液晶显示器的侧面图,显示屏AO可以绕点O旋转一定的角度.研究表明:显示屏顶端A与底座B的连线AB与水平线BC垂直时(如图②),人观看屏幕最舒适.此时测得∠BAO=15°,AO=30 cm,∠OBC=45°,求AB的长度.(结果精确到0.1 cm)(参考数据:sin 15°≈0.259,cos 15°≈0.966,tan 15°≈0.268,≈1.414)24.小明周日在广场放风筝,如图,小明为了计算风筝离地面的高度,他测得风筝的仰角为60°,已知风筝线BC的长为20米,小明的身高AB为1.75米,请你帮小明计算出风筝离地面的高度.(结果精确到0.1米,参考数据≈1.41,≈1.73)25.如图,一艘海轮位于灯塔P的北偏东53°方向,距离灯塔100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处.(1)在图中画出点B,并求出B处与灯塔P的距离(结果取整数);(2)用方向和距离描述灯塔P相对于B处的位置.(参考数据:sin 53°=0.80,cos 53°=0.60,tan 53°=0.33,=1.41)26.如图,在Rt△ABC中,∠C=90°,M是直角边AC上一点,MN⊥AB于点N,AN=3,AM=4,求cos B的值.27.如图是某小区的一个健身器材,已知BC=0.15 m,AB=2.70 m,∠BOD=70°,求端点A到地面CD的距离(精确到0.1 m).(参考数据:sin 70°≈0.94,cos 70°≈0.34,tan 70°≈2.75)28.在△ABC中,∠C=90°,AC=7,BC=24,求sin A,sin B的值.答案解析1.【答案】A【解析】如图,∵∠C=90°,∴cos B=,∴BC=AB cos B=6×=4,故选A.2.【答案】B【解析】sin A==,故选B.3.【答案】A【解析】如图所示:∵在Rt△ABC中,∠C=90°,a=1,b=,∴tan A==.∴∠A=30°,故选A.4.【答案】B【解析】∵∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,∴∠CAD=∠BCD,在Rt△BCD中,∵cos ∠BCD=,∴BC==,故选B.5.【答案】A【解析】在如图AC=13,作CB⊥AB,∵cosα==,∴AB=12,∴BC===5,∴小车上升的高度是5 m.故选A.6.【答案】A【解析】∵Rt△ABC中,∠C=90°,AB=13,AC=5,∴sin B==.故选A.7.【答案】B【解析】cos A===.故选B.8.【答案】C【解析】在CD上取一点E,使BD=DE,可得∠EBD=45°,AD=DC=2,∵从B测得船C在北偏东22.5°的方向,∴∠BCE=∠CBE=22.5°,∴BE=EC.设AB=x,则DE=BD=AD-AB=2-x,∴EC=BE=BD=(2-x),∵DE+EC=CD,∴2-x+(2-x)=2,解得x=4-2,即AB=4-2.故选C.9.【答案】B【解析】∵∠BAC=α,BC=100 m,∴AB=BC·cotα=100cotαm.故选B.10.【答案】A【解析】因为△ABC三边的长度都扩大为原来的3倍所得的三角形与原三角形相似,所以锐角A的大小没改变,故锐角A的余弦函数值也不变.故选A.11.【答案】45°【解析】∵2cosα-=0,∴cosα=,又∵cos 45°=,∴锐角α=45°.12.【答案】②③④【解析】如图所示:∵在Rt△ABC中,∠C=90°,AB=2BC,∴sin A==,故①错误;∴∠A=30°,∴∠B=60°,∴cos B=cos 60°=,故②正确;∵∠A=30°,∴tan A=tan 30°=,故③正确;∵∠B=60°,∴tan B=tan 60°=,故④正确.故答案为②③④.13.【答案】【解析】∵A(0,1),B(0,-1),∴AB=2,OA=1,∴AC=2,由勾股定理,得OC==,∴在Rt△AOC中,sin ∠OAC=sin ∠BAC==.14.【答案】【解析】∵∠A的补角是120°,∴∠A=180°-120°=60°,∴tan A=tan 60°=.15.【答案】5∶12【解析】如图所示,由题意可知,PM=13 m,MC=5米,∴PC==12,∴MC∶PC=5∶12,故答案为5∶12.16.【答案】5【解析】∵坡度为1∶7,∴设坡角是α,则sinα==,∴上升的高度是50×=5(米).17.【答案】<m<【解析】∵0°<θ<30°,∴sin 0°<sinθ<sin 30°,即0<km+<,∴<km<,∴<m<.18.【答案】18【解析】在Rt△ABC中,∵∠C=90°,sin A==,∴AB=3×6=18.19.【答案】【解析】∵小正方形边长为1,∴AB2=8,BC2=10,AC2=2;∴AB2+AC2=BC2,∴△ABC是直角三角形,且∠CAB=90°,∴sin ∠ABC===.20.【答案】208【解析】由题意可得:tan 30°===,解得:BD=30,tan 60°===,解得DC=90,故该建筑物的高度为BC=BD+DC=120≈208(m).21.【答案】解∵AF⊥AB,AB⊥BE,DE⊥BE,∴四边形ABEF为矩形,∴AF=BE,EF=AB=2,设DE=x,在Rt△CDE中,CE===x,在Rt△ABC中,∵=,AB=2,∴BC=2,在Rt△AFD中,DF=DE-EF=x-2,∴AF===(x-2),∵AF=BE=BC+CE.∴(x-2)=2+x,解得x=6.答:树DE的高度为6米.【解析】由于AF⊥AB,则四边形ABEF为矩形,设DE=x,在Rt△CDE中,CE===x,在Rt△ABC中,得到=,求出BC,在Rt△AFD中,求出AF,由AF=BC+CE 即可求出x的长.22.【答案】解过B作BD⊥AC,∵∠BAC=75°-30°=45°,∴在Rt△ABD中,∠BAD=∠ABD=45°,∠ADB=90°,由勾股定理,得BD=AD=×20=10(海里),在Rt△BCD中,∠C=15°,∠CBD=75°,∴tan ∠CBD=,即CD=10×3.732=52.77048,则AC=AD+DC=10+10×3.732=66.91048≈67(海里),即我海监执法船在前往监视巡查的过程中行驶了67海里.【解析】过B作BD⊥AC,在直角三角形ABD中,利用勾股定理求出BD与AD的长,在直角三角形BCD中,求出CD的长,由AD+DC求出AC的长即可.23.【答案】解过O点作OD⊥AB交AB于D点.在Rt△ADO中,∵∠A=15°,AO=30,∴OD=AO·sin 15°≈30×0.259≈7.77(cm)AD=AO·co s 15°≈30×0.966≈28.98(cm)又∵在Rt△BDO中,∠OBC=45°,∴BD=OD=7.77(cm),∴AB=AD+BD=36.75≈36.8(cm).答:AB的长度为36.8 cm.【解析】过O点作OD⊥AB交AB于D点,根据∠A=15°,AO=30可知OD=AO·sin 15°,AD=AO·cos 15°,在Rt△BDO中根据∠OBC=45°可知,BD=OD,再根据AB=AD+BD即可得出结论.24.【答案】解∵在Rt△CBE中,sin 60°=,∴CE=BC·sin 60°=20×≈17.3 m,∴CD=CE+ED=17.3+1.75=19.05≈19.1 m.答:风筝离地面的高度是19.1 m.【解析】先根据锐角三角函数的定义求出CE的长,再由CD=CE+ED即可得出结论.25.【答案】解(1)如图,作PC⊥AB于C,在Rt△PAC中,∵PA=100,∠PAC=53°,∴PC=PA·sin ∠PAC=100×0.80=80,在Rt△PBC中,∵PC=80,∠PBC=∠BPC=45°,∴PB=PC=1.41×80≈113,即B处与灯塔P的距离约为113海里;(2)∵∠CBP=45°,PB≈113海里,∴灯塔P位于B处北偏西45°方向,且距离B处约113海里.【解析】(1)根据方向角的定义结合已知条件在图中画出点B,作PC⊥AB于C,先解Rt△PAC,得出PC=PA·sin ∠PAC=80,再解Rt△PBC,得出PB=PC=1.41×80≈113;(2)由∠CBP=45°,PB≈113海里,即可得到灯塔P位于B处北偏西45°方向,且距离B处约113海里.26.【答案】解∵∠C=90°,MN⊥AB,∴∠C=∠ANM=90°,∴∠A+∠B=90°,∠A+∠AMN=90°,∴∠B=∠AMN,又AN=3,AM=4,∴MN==,∴cos B=cos ∠AMN==.【解析】根据“同角的余角相等”,可得∠B=∠AMN,又AN=3,AM=4,由勾股定理得MN=,故 cos B=cos ∠AMN.27.【答案】解作AE⊥CD于E,BF⊥AE于F,则四边形EFBC是矩形,∵OD⊥CD,∠BOD=70°,∴AE∥OD,∴∠A=∠BOD=70°,在Rt△AFB中,∵AB=2.7,∴AF=2.7×cos 70°≈2.7×0.34=0.918,∴AE=AF+BC≈0.918+0.15=1.068≈1.1 m,答:端点A到地面CD的距离是1.1 m.【解析】作AE⊥CD于E,BF⊥AE于F,则四边形EFBC是矩形,求出AF、EF即可解决问题.28.【答案】解在△ABC中,∠C=90°,AC=7,BC=24,由勾股定理,得AB===25,sin A==,sin B==.【解析】根据勾股定理,可得AC的长,根据锐角的正弦为对边比斜边,可得答案.。
九年级人教版数学第二学期第28章锐角三角函数整章知识详解
九年级数学第28章锐角三角函数
【例】求下列各式的值.
(1) cos260°+sin260°
(2) csoins4455
-tan45
【解析】(1)cos²60°+sin²60°
cos²60°表示 (cos60°)², 即cos60°的平方.
=( 12)²+(
3 2
)²
=1;
(2)cos 45 tan 45
九年级数学第28章锐角三角函数
2.(黄冈中考)在△ABC中,∠C=90°,sinA=
则tanB=( B )
A. 4
B. 3
C. 3
D. 4
3
4
5
5
3.(丹东中考)如图,小颖利用有一
个锐角是30°的三角板测量一棵树的高度, 30 已知她与树之间的水平距离BE为5m,AB为 °A
B 1.5m(即小颖的眼睛距地面的距离),那
九年级数学第28章锐角三角函数
【例】如图,在Rt△ABC中,∠C=90°,BC=6,sinA= 3 ,
求cosA,tanB的值.
5
B
【解析】 sinA BC ,
AB
6
AB BC 6 5 10,
sinA 3
又 AC AB2 BC2 102 62 8,
A
C
cosA AC 4 , tanB AC 4 .
100
D.不能确定
3.如图 A
B
1
3
,则 sinA=___2___ .
30°
C
7
九年级数学第28章锐角三角函数
1.(温州中考)如图,在△ABC中,∠C=90°, AB=13,
徐州市九年级数学下册第二十八章《锐角三角函数》综合知识点复习(答案解析)
学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.已知:如图,四边形AOBC 是矩形,以O 为坐标原点,OB 、OA 分别在x 轴、y 轴上,点A 的坐标为(0,3),∠OAB =60°,以AB 为轴对折后,C 点落在D 点处,则D 点的坐标为( )A .33(3,)22-B .33(3,)22--C .33(,3)22D .(3,33)- 2.若菱形的边长为2cm ,其中一内角为60°,则它的面积为( ) A .232cm B .23cm C .22cm D .223cm3.如图,在O 中,E 是直径AB 延长线上一点,CE 切O 于点E ,若2CE BE =,则E ∠的余弦值为( )A .35B .45C .34D .43 4.在ABC 中,若21cos |1tan |02A B ⎛⎫-+-= ⎪⎝⎭,则C ∠的度数是( ) A .45︒ B .60︒ C .75︒ D .105︒ 5.如图,这是某市政道路的交通指示牌,BD 的距离为5m ,从D 点测得指示牌顶端A 点和底端C 点的仰角分别是60°和45°,则指示牌的高度,即AC 的长度是( )A .53mB .52mC .()5352m -D .()535m - 6.如图,△ABC 的三个顶点均在格点上,则cos A 的值为( )A .12B .55C .2D .2557.如图,将一副三角尺如图所示叠放在一起,则BE CE的值是( )A .3B .33C .2D .32 8.如图,O 是ABC 的外接圆,60BAC ∠=︒,若O 的半径OC 为1,则弦BC 的长为( )A .12B 3C .1D 39.在△ABC 中,∠C=90º,AC=3,AB=4,则下列结论正确的是( )A .34sinA =B .34cos A =C .34tan A =D .34cot A =10.在△ABC 中,若cosA=22,tanB=3,则这个三角形一定是( ) A .锐角三角形 B .直角三角形C .钝角三角形D .等腰三角形 11.某兴趣小组想测量一座大楼 AB 的高度.如图,大楼前有一段斜坡BC ,已知 BC 的长为 12 米它的坡度1:3i = .在离 C 点 40 米的 D 处,用测量仪测得大楼顶端 A 的仰角为 37度,测角仪DE 的高度为 1.5米,求大楼AB 的高度约为( )米(sin 370.60,cos370.80,tan 370.75,3 1.73︒=︒=︒==)A .39.3B .37.8C .33.3D .25.712.如图,点A ,B ,C 在正方形网格的格点上,则sin ∠BAC=( )A .26B .2626C .2613D .131313.如图,为测量瀑布AB 的高度,测量人员在瀑布对面山上的D 点处测得瀑布顶端A 点的仰角是30,测得瀑布底端B 点的俯角是10︒,AB 与水平面垂直.又在瀑布下的水平面测得27.0CG m =,17.6GF m =(注:C 、G 、F 三点在同一直线上,CF AB ⊥于点F ),斜坡20.0CD m =,坡角40ECD ∠=︒,那么瀑布AB 的高度约为( ).(精确到0.1m 3 1.73≈,sin 400.64︒≈,cos400.77︒≈,tan 400.84︒≈,sin100.17︒≈,cos100.98︒≈,tan100.18︒≈)A .44.8mB .45.4mC .47.4mD .114.6m 14.在半径为1的O 中,弦AB 、AC 的长度分别是3,2,则BAC ∠为( )度. A .75 B .15或30 C .75或15 D .15或45二、填空题15.如图,在矩形ABCD 中,6BC =,4cos 5CAB ∠=, P 为对角线AC 上一动点,过线段BP 上的点M 作EF BP ⊥,交AB 边于点E ,交BC 边于点 F ,点N 为线段EF 的中点,若四边形BEPF 的面积为18,则线段BN 的最大值为 ________ .16.如图,正方形ABCD 绕点B 逆时针旋转30°后得到正方形BEFG ,EF 与AD 相交于点H ,延长DA 交GF 于点K .若正方形ABCD 边长为3,则AH=__.17.如图,MN 是半径为1的O 的直径,点A 在O 上,30AMN ∠=︒,点B 是AN 的中点,点P 是直径MN 上一个动点,则PA PB +的最小值为______.18.已知在矩形ABCD 中,AC =12,∠ACB =15°,那么顶点D 到AC 的距离为_____. 19.计算:112tan 6032()2-+---____. 20.如图,矩形ABCD 中,AD=1,CD=3,连接AC ,将线段AC 、AB 分别绕点A 顺时针旋转90°至AE 、AF ,线段AE 与弧BF 交于点G ,连接CG ,则图中阴影部分面积为__.21.在Rt △ABC 中,∠C =90°,AB =2AC ,则∠A =__°,∠B =___°.22.如图:在矩形ABCD 中,4AB =,8BC =,对角线AC ,BD 相交于点O ,过点O 作OE AC ⊥交AD 于点E .求OE 的长是 .23.如图,ABCD 中,∠DAB =30°,AB =8,BC =3,P 为边CD 上的一动点,则PB +12PD 的最小值等于__________.24.乐乐同学的身高为166cm ,测得他站立在阳光下的影长为83cm ,紧接着他把手臂竖直举起,测得影长为103cm ,那么乐乐竖直举起的手臂超出头顶的长度约为___________cm .25.如图,在ABC ∆中,90A ∠=︒,10BC =,3sin 5B ∠=,D 是BC 边上的一个动点(异于B 、C 两点),过点D 分别作AB 、AC 边的垂线,垂足分别为E 、F ,则EF 的最小值是________.26.锐角α和锐角β互余,记f =sinα+sinβ,则f 的取值范围为_____.参考答案三、解答题27.如图,以ABC ∆的一边BC 为直径的O ,交AB 于点D ,连结CD ,OD ,已知 1902A DOC ∠+∠=︒.(1)判断AC 是否为O 的切线?请说明理由.(2)①若60A ∠=︒,1AD =,求O 的半径.②若DOC α∠=︒,AC m =,OB r =,请用含r 、α的代数式表示m . 28.(1)计算:|﹣1|﹣(3﹣π)0+16+(﹣12)-1+2cos60°; (2)解方程:2x (x ﹣1)=x ﹣1.29.如图,在△ABC 中,BD 、CE 是△ABC 的高,连接DE .(1)求证:ABD ∽ ACE ;(2)若∠BAC =60°,BC =2DE 的长.30.图1是某小型汽车的侧面示意图,其中矩形ABCD 表示该车的后备箱,在打开后备箱的过程中,箱盖ADE 可以绕点A 逆时针方向旋转,当旋转角为60°时,箱盖ADE 落在AD E '的位置(如图2所示),已知90AD =厘米,30DE =厘米,40EC =厘米.(1)求点D到BC的距离;(2)求E、E 两点的距离.【参考答案】一、选择题1.A2.D3.B4.C5.D6.D7.B8.D9.B10.A11.C12.B13.B14.C二、填空题15.【分析】在△ABC中求出AC与AB的长点P在AC上则6≤BP≤8由点N为线段EF的中点∠ABC=90º则EF=2BN根据四边形BEPF的面积为18利用对角线乘积的一半求面积得BN 与PB成反比例PB最16.1【分析】连接BH证明Rt△ABH≌△Rt△EBH(HL)得出∠ABH=30°在Rt△ABH中解直角三角形即可【详解】解:连接BH如图所示:∵四边形ABCD和四边形BEFG是正方形∴∠BAH=∠AB17.【详解】解:如解图作点关于直线的对称点连接则线段的长就是的最小值作直径连接∵为的中点点关于直线对称∴∴故答案为:【点睛】本题考查了与圆有关的基础知识如直径的性质圆心角及圆周角的性质18.3【分析】先利用三角函数的值分别求出AB及BC然后利用三角形ADC面积的两种表示形式可求出DE的长【详解】如图过点D作DE⊥AC于点E在这里先推导出sin15°的值:如图设中D是AC上一点则设则由题19.【分析】先利用特殊的三角函数值计算再利用绝对值和负指数得出结论【详解】解:原式=故答案为:【点睛】本题涉及特殊角的三角函数值绝对值负整数指数幂3个考点在计算时需要针对每个考点分别进行计算然后根据实数20.﹣【分析】由勾股定理得到AC=2由三角函数的定义得到∠CAB=30°根据旋转的性质得到∠CAE=∠BAF=90°求得∠BAG=60°然后根据图形的面积即可求得【详解】在矩形ABCD中∵AD=1CD=21.6030【分析】在Rt△ABC中根据AB=2AC可得出∠B=30°∠A=60°【详解】解:如图在Rt△ABC中∵∠C=90°AB=2AC∴sin∠B==∴∠B=30°∴∠A=90°﹣∠B=90°﹣322.【分析】利用矩形的性质求解再证明利用锐角三角函数可得答案【详解】矩形矩形故答案为:【点睛】本题考查的是矩形的性质解直角三角形知识掌握以上知识点是解题关键23.4【分析】过点P作PE⊥AD交AD的延长线于点E由锐角三角函数可得EP=即PB+=PB+PE则当点B点P点E三点共线且BE⊥AD时PB+PE有最小值即最小值为BE【详解】解:如图过点P作PE⊥AD交24.40【分析】如下图利用∠BCA=∠E可得对应的正切值相等转化为线段比可得BD长【详解】如下图AB为乐乐身高BD是乐乐手臂超出头顶部分AC是乐乐站立在阳光下的影长AE是乐乐举起手臂后的影长根据题意AC25.【分析】先利用求得AC的长再证明四边形AEDF是矩形推出EF=AD根据垂线段最短即可解决问题;【详解】解:如图连接AD在△ABC中∵∠BAC=90°∴∴AC=6∴AB==10∵DF⊥ACDE⊥BC∴26.1<f≤【分析】根据锐角三角函数的定义即可求出答案【详解】∵α+β=90°∴sinβ=sin (90°−α)=cosα∴f=sinα+cosα=sin(α+45°)∵α是锐角∴<sin(α+45°)≤三、解答题27.28.29.30.【参考解析】一、选择题1.A解析:A【分析】如图,作 DE x 轴于点E ,灵活运用三角函数解直角三角形来求点 D 的坐标.【详解】解:如图,作DE⊥x轴于点E,∵点A的坐标为(0,3),∴OA=3.又∵∠OAB=60°,∴OB=OA•tan∠OAB=33,∠ABO=30°.∴BD=BC=OA=3.∵根据折叠的性质知∠ABD=∠ABC=60°,∴∠DBE=30°,∴DE=12BD=32,BE=332∴OE=33-332=332,∴E33(3,)22.故选:A.【点睛】本题考查了矩形的性质、坐标与图形性质以及折叠问题,翻折前后对应角相等,对应边相等;注意构造直角三角形利用相应的三角函数值求解.2.D解析:D【分析】连接AC,过点A作AM⊥BC于点M,根据菱形的面积公式即可求出答案.【详解】连接AC,过点A作AM⊥BC于点M,∵菱形的边长为2cm,∴AB=BC=2cm,∵有一个内角是60°,∴∠ABC=60°,∴AM=ABsin60°3,∴此菱形的面积为:2×323=(2cm ).故选:D .【点睛】本题考查菱形的性质,特殊角的三角函数值,解题的关键是熟练运用菱形的性质. 3.B解析:B【分析】连接OC ,则∠OCE=90°,设OC=OB=x ,22CE BE k ==,根据勾股定理即可列出方程222(2)()x k x k +=+,解得32x k =,再根据余弦的定义即可求得答案. 【详解】解:如图,连接OC ,∵CE 切O 于点E ,∴∠OCE=90°,设OC=OB=x ,22CE BE k ==,∵在Rt OCE △中,222OC CE OE +=,∴222(2)()x k x k +=+,解得32x k =, ∴52OE OB BE k =+=, ∴24cos 552CE k E OE k ===,故选:B .【点睛】本题考查了切线的性质、勾股定理以及锐角三角函数,熟练掌握切线的性质以及勾股定理是解决本题的关键.4.C解析:C【分析】根据偶次方和绝对值的非负性可得1cos 02A -=,1tan 0B -=,利用特殊角的三角函数值可得A ∠和B 的度数,利用三角形内角和定理即可求解.【详解】 解:21cos |1tan |02A B ⎛⎫-+-= ⎪⎝⎭, 21cos 0,|1tan |02A B ⎛⎫∴-=-= ⎪⎝⎭, 1cos 02A ∴-=,1tan 0B -=,则1cos 2A =,tan 1B =, 解得:60A ∠=︒,45B ∠=︒,则180604575C ∠=︒-︒-︒=︒.故选:C .【点睛】本题考查偶次方和绝对值的非负性、特殊角的三角函数值、三角形内角和定理,熟悉特殊角的三角函数值是解题的关键. 5.D解析:D【分析】由题意可得到BD=BC=5,根据锐角三角函数关系得出方程,然后解方程即可.【详解】解:由题意可得:∠CDB=∠DCB=45°,∴BD=BC=5,设AC=x m ,则AB=(x +5)m ,在Rt △ABD 中,tan60°=AB BD ,则55x +=解得:5x =,即AC 的长度是()5m ;故选:D .【点睛】此题主要考查了解直角三角形的应用,正确应用锐角三角函数关系是解题关键. 6.D解析:D【分析】过B 点作BD ⊥AC ,得AB 的长,AD 的长,利用锐角三角函数得结果.【详解】解:过B 点作BD ⊥AC ,如图,由勾股定理得, 221310+= 222222+=cosA=2225510AD AB == 故选D .【点睛】本题考查了锐角三角函数和勾股定理,作出适当的辅助线构建直角三角形是解答此题的关键.7.B解析:B【分析】设AC=AB=x ,求得3tan 33AC CD x D ===,根据相似三角形的性质即可得到结论. 【详解】解:设AC=AB=x , 则3tan 3AC CD x D ===, ∵∠BAC=∠ACD=90°,∴∠BAC+∠ACD=180°,∴AB ∥CD ,∴△ABE ∽△DCE , ∴33BE AB CE CD x=== 故选:B .【点睛】本题主要考查相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.8.D解析:D【分析】先作OD⊥BC于D,由于∠BAC=60°,根据圆周角定理可求∠BOC=120°,又OD⊥BC,根据垂径定理可知∠BOD=60°,BD =12BC,在Rt△BOD 中,利用特殊三角函数值易求BD,进而可求BC.【详解】解:如右图所示,作OD⊥BC于D,∵∠BAC=60°,∴∠BOC=120°,又∵OD⊥BC,∴∠BOD=60°,BD=12BC,∴BD=sin60°×OB=3,∴BC=2BD=23,故答案是23.【点睛】本题考查了圆周角定理、垂径定理、特殊三角函数计算,解题的关键是作辅助线OD⊥BC,并求出BD.9.B解析:B【分析】按照锐角三角函数的定义求各函数值即可.【详解】解:如图,由勾股定理可得BC=2222437AB AC-=-=选项A,74BCsinAAB==,故错误;选项B ,3cos 4AC A AB ==,故正确; 选项C ,7tan 3BCA AC ,故错误;选项D,cot7AC A BC ===,故错误; 故应选:B【点睛】 本题考查了锐角三角函数定义,解答关键是按照相关锐角三角函数定义解题. 10.A解析:A【解析】试题∵cos A =2,tan B , ∴∠A =45°,∠B =60°.∴∠C =180°-45°-60°=75°.∴△ABC 为锐角三角形.故选A .11.C解析:C【分析】延长AB 交直线DC 于点F ,过点E 作EH ⊥AF ,垂足为点H ,在Rt △BCF 中利用坡度的定义求得CF 的长,则DF 即可求得,然后在直角△AEH 中利用三角函数求得AF 的长,进而求得AB 的长.【详解】解:延长AB 交直线DC 于点F ,过点E 作EH ⊥AF ,垂足为点H .∵在Rt △BCF中,BF CF=i =∴设BF=k ,则k ,BC=2k .又∵BC=12,∴k=6,∴BF=6,CF=∵DF=DC+CF ,∴DF=40+∵在Rt △AEH 中,tan ∠AEH=AH EH,∴AH=tan37°×(40+63)≈37.785(米),∵BH=BF-FH ,∴BH=6-1.5=4.5.∵AB=AH-HB ,∴AB=37.785-4.5≈33.3.故选C .【点睛】本题考查了解直角三角形的应用,关键是根据仰角构造直角三角形,利用三角函数求解,注意利用两个直角三角形的公共边求解是解答此类题型的常用方法.12.B解析:B【分析】 作BD ⊥AC 于D ,根据勾股定理求出AB 、AC ,利用三角形的面积求出BD ,最后在直角△ABD 中根据三角函数的意义求解. 【详解】解:如图,作BD ⊥AC 于D ,由勾股定理得,22223213,3332AB AC =+==+= ∵1113213222ABC S AC BD BD =⋅=⨯=⨯⨯, ∴2BD =, ∴2262sin 13BD BAC AB ∠=== 故选:B .【点睛】本题考查了勾股定理,解直角三角形,三角形的面积,三角函数的意义等知识,根据网格构造直角三角形和利用三角形的面积求出BD是解决问题的关键.13.B解析:B【分析】如图,作DM⊥AB于M,DN⊥EF于N,在Rt△DCN中,求出CN即可得到FN的长,由四边形DMFN是矩形可得DM的长,然后分别在Rt△ADM和Rt△DMB中,解直角三角形求出AM,BM即可解决问题.【详解】解:如图,作DM⊥AB于M,DN⊥EF于N,在Rt△DCN中,CN=CD•cos40°≈20.0×0.77=15.4(米),∵CF=CG+GF=44.6(米),∴FN=CN+CF=60.0(米),易得四边形DMFN是矩形,∴DM=FN=60.0(米),在Rt△ADM中,AM=DM•tan30°=3 1.7360.060.0=34.633(米),在Rt△DMB中,BM=DM•tan10°≈60.0×0.18=10.8(米),∴AB=AM+BM=45.4(米),即瀑布AB的高度约为45.4米,故选:B.【点睛】本题考查解直角三角形的应用—仰角俯角问题,坡度坡角问题等知识,解题的关键是灵活运用三角函数解决问题,属于中考常考题型.14.C解析:C【分析】根据题意画出草图,因为C点位置待定,所以分情况讨论求解.【详解】利用垂径定理可知:AD=3222AE =, .sin ∠3∴∠AOD=60°; sin ∠2,∴∠AOE=45°; ∴∠BAC=75°.当两弦共弧的时候就是15°.故选:C .【点睛】此题考查垂径定理,特殊三角函数的值,解题关键在于画出图形.二、填空题15.【分析】在△ABC 中求出AC 与AB 的长点P 在AC 上则6≤BP≤8由点N 为线段EF 的中点∠ABC=90º则EF=2BN 根据四边形BEPF 的面积为18利用对角线乘积的一半求面积得BN 与PB 成反比例PB 最解析:154 【分析】在△ABC 中,6BC =,4cos 5CAB ∠=求出AC 与AB 的长,点P 在AC 上 则6≤BP≤8,由点N 为线段EF 的中点,∠ABC=90º,则EF=2BN ,根据四边形BEPF 的面积为18,EF BP ⊥利用对角线乘积的一半求面积得,PB BN=18,BN 与PB 成反比例, PB 最小时,BN 最大,当PB ⊥AC 时,PB 最小,求出最小值即可.【详解】在△ABC 中,6BC =,4cos 5CAB ∠=, ∵22sin cos 1CAB CAB ∠+∠=, ∴2243sin =1cos =155CAB CAB ⎛⎫∠-∠-= ⎪⎝⎭, 由正弦函数定义BC sin =ACCAB ∠,∴AC=BC6==103sin5CAB∠,由勾股定理得AB=2222AC1068BC-=-=,点P在AC上则6≤BP≤8,∵点N为线段EF的中点,由∠ABC=90º,∴EF=2BN,∵四边形BEPF的面积为18,EF BP⊥,∴S四边形EBFP=11PB EF=PB2BN=PB BN=1822⨯,∴PB BN=18,∴18BN=PB,当PB最小时,BN最大,当PB⊥AC时,PB最小,即S△ABC=11AB BC=AC BP 22BP最小=AB BC8624== AC105⨯BN最大=1815= 2445故答案为:154.【点睛】本题考查锐角三角函数解直角三角形与点到直线距离最短问题,掌握锐角三角函数及其之间的关系,会用锐角三角函数解直角三角形,掌握垂线段最短,会利用面积或勾股定理求BP的最小值,解题时要理解BP最小,BN最大是解题关键.16.1【分析】连接BH证明Rt△ABH≌△Rt△EBH(HL)得出∠ABH=30°在Rt△ABH中解直角三角形即可【详解】解:连接BH如图所示:∵四边形ABCD 和四边形BEFG是正方形∴∠BAH=∠AB解析:1【分析】连接BH ,证明Rt △ABH ≌△Rt △EBH (HL ),得出∠ABH =30°,在Rt △ABH 中解直角三角形即可.【详解】解:连接BH ,如图所示:∵四边形ABCD 和四边形BEFG 是正方形,∴∠BAH=∠ABC=∠BEH=∠F=90°,由旋转的性质得:AB=EB ,∠CBE=30°,∴∠ABE=60°,在Rt △ABH 和Rt △EBH 中,∵BH=BH ,AB=EB ,∴Rt △ABH ≌△Rt △EBH (HL ),∴∠ABH=∠EBH=12∠ABE=30°, ∴AH=AB•tan ∠33, 故答案为:1.【点睛】本题考查了旋转的性质、正方形的性质、全等三角形的判定与性质、解直角三角形.能正确作出辅助线得出Rt △ABH ≌△Rt △EBH ,从而求得∠ABH =30°是解题关键.17.【详解】解:如解图作点关于直线的对称点连接则线段的长就是的最小值作直径连接∵为的中点点关于直线对称∴∴故答案为:【点睛】本题考查了与圆有关的基础知识如直径的性质圆心角及圆周角的性质 2【详解】解:如解图,作点B 关于直线MN 的对称点B ',连接AB ',则线段AB '的长就是PA PB +的最小值,作O 直径AC ,连接CB ',∵30AMN ∠=︒,B 为AN 的中点,点B 、B '关于直线MN 对称,∴45C ∠=︒, ∴sin 452AB AC '=⋅︒=2【点睛】本题考查了与圆有关的基础知识,如直径的性质、圆心角及圆周角的性质.18.3【分析】先利用三角函数的值分别求出AB 及BC 然后利用三角形ADC 面积的两种表示形式可求出DE 的长【详解】如图过点D 作DE ⊥AC 于点E 在这里先推导出sin15°的值:如图设中D 是AC 上一点则设则由题解析:3【分析】先利用三角函数的值分别求出AB 及BC ,然后利用三角形ADC 面积的两种表示形式可求出DE 的长.【详解】如图,过点D 作DE ⊥AC 于点E ,在这里先推导出sin15°的值:如图,设Rt ABC 中,A 15,C 90∠=︒∠=︒,D 是AC 上一点,BDC 30∠=︒,则ABD 15∠=︒,AD BD =,设BC x =,则AD BD 2x ==,DC 3x =,AC (32)x =+2222[(32)](62)AB AB BC x x ∴=+=+⨯+=+,BC 62sin15sin A AB 4(62)x x -∴︒====+由题意得:AB =AC sin ∠ACB =6﹣2,BC =62,S △ADC =12AD •DC =12AC •DE =9, ∴DE =3.故答案为:3.【点睛】此题考查的是矩形的性质,解答本题的关键是根据∠ACB 的度数求出AB 及AC 的长,这要求我们熟练掌握三角函数值的求解方法.19.【分析】先利用特殊的三角函数值计算再利用绝对值和负指数得出结论【详解】解:原式=故答案为:【点睛】本题涉及特殊角的三角函数值绝对值负整数指数幂3个考点在计算时需要针对每个考点分别进行计算然后根据实数解析:4【分析】先利用特殊的三角函数值计算,再利用绝对值和负指数得出结论.【详解】解:原式=22224=+=+故答案为:4.【点睛】本题涉及特殊角的三角函数值、绝对值、负整数指数幂3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.20.﹣【分析】由勾股定理得到AC=2由三角函数的定义得到∠CAB=30°根据旋转的性质得到∠CAE=∠BAF=90°求得∠BAG=60°然后根据图形的面积即可求得【详解】在矩形ABCD 中∵AD=1CD=解析:2π﹣2【分析】由勾股定理得到AC=2,由三角函数的定义得到∠CAB=30°,根据旋转的性质得到∠CAE=∠BAF=90°,求得∠BAG=60°,然后根据图形的面积即可求得.【详解】在矩形ABCD 中,∵AD=1,,∵AC=2,tan ∠CAB=3BC AD AB CD ==, ∴∠CAB=30°,∵线段AC 、AB 分别绕点A 顺时针旋转90°至AE 、AF ,∴∠CAE=∠BAF=90°,∴∠BAG=60°,∵,∴阴影部分面积=S △ABC +S 扇形ABG -S △ACG 1112222π=+=-故答案为:2π 【点睛】考查了扇形的面积计算,解题关键是灵活运用矩形、旋转的性质和熟记扇形的面积计算公式.21.6030【分析】在Rt △ABC 中根据AB =2AC 可得出∠B =30°∠A =60°【详解】解:如图在Rt △ABC 中∵∠C =90°AB =2AC ∴sin ∠B ==∴∠B =30°∴∠A =90°﹣∠B =90°﹣3解析:60 30【分析】在Rt △ABC 中,根据AB =2AC ,可得出∠B =30°,∠A =60°.【详解】解:如图,在Rt △ABC 中,∵∠C =90°,AB =2AC ,∴sin ∠B =AC AB=12, ∴∠B =30°, ∴∠A =90°﹣∠B =90°﹣30°=60°.故答案为:60,30.【点睛】此题考查有一个角是30°的直角三角形的性质,根据三角函数求解较简单.22.【分析】利用矩形的性质求解再证明利用锐角三角函数可得答案【详解】矩形矩形故答案为:【点睛】本题考查的是矩形的性质解直角三角形知识掌握以上知识点是解题关键 5【分析】利用矩形的性质求解AC ,再证明OAE ACB ∠=∠,利用锐角三角函数可得答案.【详解】矩形ABCD ,4AB =,8BC =,222290,4845,ABC AC AB BC ∴∠=︒=++=4125,,82OA OC tan ACB ==∠== 矩形ABCD ,//,AD BC ∴,OAE ACB ∴∠=∠,OE OA ⊥1tan tan ,2OAE ACB ∴∠=∠= 1,2=OE ∴=【点睛】本题考查的是矩形的性质,解直角三角形知识,掌握以上知识点是解题关键. 23.4【分析】过点P 作PE ⊥AD 交AD 的延长线于点E 由锐角三角函数可得EP =即PB+=PB+PE 则当点B 点P 点E 三点共线且BE ⊥AD 时PB+PE 有最小值即最小值为BE 【详解】解:如图过点P 作PE ⊥AD 交解析:4【分析】过点P 作PE ⊥AD ,交AD 的延长线于点E ,由锐角三角函数可得EP =12PD ,即PB+12PD =PB+PE ,则当点B,点P ,点E 三点共线且BE ⊥AD 时,PB+PE 有最小值,即最小值为BE .【详解】解:如图,过点P 作PE ⊥AD ,交AD 的延长线于点E ,∵AB ∥CD∴∠EDP =∠DAB =30°,∴sin ∠EDP =12EP DP = ∴EP =12PD ∴PB +12PD =PB +PE ∴当点B ,点P ,点E 三点共线且BE ⊥AD 时,PB +PE 有最小值,即最小值为BE , ∵sin ∠DAB =12BE AB = ∴BE =12AB =4 故答案为:4【点睛】本题考查了平行四边形的性质,垂线段最短,锐角三角函数的性质,作出适当的辅助线是解题的关键.24.40【分析】如下图利用∠BCA=∠E 可得对应的正切值相等转化为线段比可得BD 长【详解】如下图AB 为乐乐身高BD 是乐乐手臂超出头顶部分AC 是乐乐站立在阳光下的影长AE 是乐乐举起手臂后的影长根据题意AC解析:40【分析】如下图,利用∠BCA=∠E ,可得对应的正切值相等,转化为线段比可得BD 长.【详解】如下图,AB 为乐乐身高,BD 是乐乐手臂超出头顶部分,AC 是乐乐站立在阳光下的影长,AE 是乐乐举起手臂后的影长根据题意,AC=83cm ,AB=166cm ,AE=103cm∵是阳光照射的影长,∴CB ∥ED∴∠BCA=∠E∴tan ∠BCA=tan ∠E ,即:166********BD += 解得:BD=40故答案为:40【点睛】本题考查三角函数的运用,解题关键是将题干抽象成数学模型,然后再利用三角函数的特点求解. 25.【分析】先利用求得AC 的长再证明四边形AEDF 是矩形推出EF =AD 根据垂线段最短即可解决问题;【详解】解:如图连接AD 在△ABC 中∵∠BAC =90°∴∴AC =6∴AB ==10∵DF ⊥ACDE ⊥BC ∴ 解析:245【分析】先利用10BC =,3sin 5B ∠=求得AC 的长,再证明四边形AEDF 是矩形,推出EF =AD ,根据垂线段最短即可解决问题; 【详解】解:如图,连接AD .在△ABC 中,∵∠BAC =90°,10BC =,3sin 5B ∠=, ∴3105AC =, ∴AC =6, ∴AB 2268+=10,∵DF ⊥AC ,DE ⊥BC ,∴∠DFA =∠DEA =∠BAC =90°,∴四边形AEDF 是矩形,∴EF =AD ,∴当AD ⊥BC 时,AD 的值最小,此时EF 最小值=AD =245AC AB BC =, 故答案为:245. 【点睛】本题考查矩形的判定和性质、垂线段最短、勾股定理等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型. 26.1<f≤【分析】根据锐角三角函数的定义即可求出答案【详解】∵α+β=90°∴sinβ=sin (90°−α)=cosα∴f =sinα+cosα=sin (α+45°)∵α是锐角∴<sin (α+45°)≤解析:1<2【分析】根据锐角三角函数的定义即可求出答案.【详解】∵α+β=90°,∴sinβ=sin (90°−α)=cosα,∴f =sinα+cosαsin (α+45°)∵α是锐角,∴2<sin (α+45°)≤1, ∴1<,故答案为:1<.【点睛】本题考查锐角三角函数,解题的关键是正确理解锐角三角函数的定义,本题属于中等题型.三、解答题27.(1)是,见解析;(2)①r =②2tan 2m r α︒=. 【分析】(1)∠ABC=12∠DOC ,而∠A+12∠DOC=90°,即可求解;(2)在Rt △ACD 中,CD=AD÷tan ∠ACD=1÷3 (3)在Rt △ABC 中,tan ∠ABC=22AC m tan BC r α︒==,即可求解. 【详解】解:(1)是,理由:∵∠ABC=12∠DOC , 而∠A+12∠DOC=90°, ∴∠A+∠ABC=90°,∴AC 是⊙O 的切线;(2)∵AC 是圆的切线,∴∠ACD+∠DCB=90°,∵BC 是圆的直径,∴∠DCB+∠ABC=90°,∴∠ACD=∠ABC=90°-∠A=30°,在Rt △ACD 中,CD=AD÷tan ∠;而∠DOC=2∠ABC=60°,∴△COD 为等边三角形,∴圆的半径为(3)∠ABC=12∠DOC=12α°, 在Rt △ABC 中,tan ∠ABC=22AC m tan BC r α︒==, 即m=2r 2tanα︒.【点睛】 本题考查了切线的判定与性质,涉及到解直角三角形、等边三角形的性质等,解题的关键是灵活运用判定与性质.28.(1)3;(2)x 1=1,x 2=0.5.【分析】(1)根据实数的混合运算顺序和运算法则计算即可;(2)利用因式分解法求解即可.【详解】(1)原式=1﹣1+4+(﹣2)+2×12=3; (2)∵2x (x ﹣1)=x ﹣1.∴2x (x ﹣1)﹣(x ﹣1)=0,∴(x ﹣1)(2x ﹣1)=0,则x ﹣1=0或2x ﹣1=0,解得x 1=1,x 2=0.5.【点睛】本题主要考查实数的运算、解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键. 29.(1)见解析;(2)【分析】(1)找出公共角即可求出相似(2)根据~ABD ACE ∆∆得出一个比例式AE AD AC AB=,再根据两边对应成比例且夹角相等得出~ADE ABC ∆∆,再结合60的余弦值即可求出答案.【详解】解:(1)证明:,BD CE 是ABC ∆的高90ADB AEC ∴∠=∠=A A ∠=∠~ABD ACE ∴∆∆(2)~ABD ACE ∆∆AB AD AC AE∴= AE AD AC AB∴= A A ∠=∠~ADE ABC ∴∆∆DE AD BC AB∴= 60BAC ∠=1cos 2AD BAC AB ∴∠== 又6BC ==DE ∴=【点睛】本题主要考察了相似三角形,三角函数等知识点,能找出根据第一个相似三角形的比例式来证第二个相似三角形是解题关键.30.(1)点D′到BC 的距离为()厘米;(2)E 、E′两点的距离是厘米.【分析】(1)过点D′作D′H ⊥BC ,垂足为点H ,交AD 于点F ,利用旋转的性质可得出AD′=AD=90厘米,∠DAD′=60°,利用矩形的性质可得出∠AFD′=∠BHD′=90°,在Rt △AD′F 中,通过解直角三角形可求出D′F 的长,结合FH=DC=DE+CE 及D′H=D′F+FH 可求出点D′到BC 的距离; (2)连接AE ,AE′,EE′,利用旋转的性质可得出AE′=AE ,∠EAE′=60°,进而可得出△A EE′是等边三角形,利用等边三角形的性质可得出EE′=AE ,在Rt △ADE 中,利用勾股定理可求出AE 的长度,结合EE′=AE 可得出E 、E′两点的距离.【详解】解:(1)过点D′作D′H ⊥BC ,垂足为点H ,交AD 于点F ,如图3所示.由题意,得:AD′=AD=90厘米,∠DAD′=60°.∵四边形ABCD是矩形,∴AD∥BC,∴∠AFD′=∠BHD′=90°.在Rt△AD′F中,D′F=AD′•sin∠DAD′=90×sin60°=453厘米.又∵CE=40厘米,DE=30厘米,∴FH=DC=DE+CE=70厘米,∴D′H=D′F+FH=(453+70)厘米.答:点D′到BC的距离为(453+70)厘米.(2)连接AE,AE′,EE′,如图4所示.由题意,得:AE′=AE,∠EAE′=60°,∴△AEE′是等边三角形,∴EE′=AE.∵四边形ABCD是矩形,∴∠ADE=90°.在Rt△ADE中,AD=90厘米,DE=30厘米,∴223010=+=AE AD DE∴10厘米.答:E、E′两点的距离是10厘米.【点睛】本题考查了解直角三角形的应用、矩形的性质、等边三角形的判定与性质以及勾股定理,解题的关键是:(1)通过解直角三角形求出D′F的长度;(2)利用勾股定理求出AE的长度.。