线面角的三种求法
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
VB AB1C1 VABB1C1 3 SBB1C1 • AB 得h 12
5
设AB与面AB1C1D所成的角为 ,
则sin h 4
AB 5
最小角定理
如图,AO是平面π的 斜线,OB ⊥平面π于B, AD是π内不与AB重合的直 线∠OAB= ,∠BAD= ,
∠OAD= ,求证:cos
四面体ABCS中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB的中点,求(1)BC与平面SAB所成的角。(2)SC与平面ABC所成的 角。
(1) ∵SC⊥SB,SC⊥SA, ∴SC⊥平面SAB 故 SB是斜线BC 在平面SAB
上的射影, ∴∠SBC是直线BC与平面SAB所成的角为60°。 (2) 连结SM,CM,则SM⊥AB, 又∵SC⊥AB,∴AB⊥平面SCM, ∴面ABC⊥面SCM 过S作SH⊥CM于H, 则SH⊥平面ABC ∴CH即为 SC 在面ABC内的射影。 ∠SCH 为SC与平面ABC所成的角。 sin ∠SCH=SH/SC ∴SC与平面ABC所成的角的正弦值为√7/7
“垂线”是相对的,SC是面 SAB的垂线,又是面 ABC 的斜线. 作面 的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂 直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。
例题
例1 . 如图,在Rt△ ABC中,已知
∠C=90,AC=BC=1,PA⊥平面ABC,且 PA= 2 ,求PB与平面PAC所成的角.
=cos cos
证明: 证明:设 AO 1,则 AB AO cos cos
O
A B
C
D
AC AB cos cos cos ;
在RtOAC中 AC AO cos; cos cos cos
例3. 已知直线OA,OB,OC 两两 所成的角为60°, 求直线OA 与 面OBC 所成的角的余弦值。
线面角的三种求法
1、平面的斜线和平面所成的角
平面的一条斜线
和它在平面上的射影 所成的锐角,叫做这 条直线和这个平面所 成的角。
一条直线垂直于平面,它们 所成的角是直角;
一条直线和平面平行,或在平面内,它们 所成的角是0 的角。
直线和平面所成角的范围是[0,90]。
直接法
平面的斜线与斜线在平面内的射影所成的 角即为直线与平面所成的角。通常是解由 斜线段,垂线段,斜线在平面内的射影所 组成的直角三角形,垂线段是其中最重要 的元素,它可以起到联系各线段的作用。
练 习
1.AO与平面斜交,O为斜足,AO与平面
成角,B是A在上的射影,OD是内的
直线,∠BOD=30,∠AOD=60,则
sin =
6
解:
3
由最小角原理得
cosAOD cosBODcos
即cos 60 cos30 cos
。
A
O
B
C
D
cos 3
3
其中θ是斜线与平面所成的角, h是 垂线段 的长,l是斜线段的长,其中求出垂线段的 长(即斜线上的点到面的距离)既是关键 又是难点,为此可用三棱锥的体积自等来 求垂线段的长。
长方体ABCD A1B1C1D1 , AB 3,BC 2, A1A 4,求AB与面AB1C1D 所成的角的正弦值
设点B到平面 AB1C1D的距离为 h 1
A
B
αຫໍສະໝຸດ Baidu
O
D
C
解:∵∠AOB=∠AOC ∴ OA 在面OBC 内的射影在∠BOC 的平分线OD上,则∠AOD即为OA与面OBC所成的角,可知
∠DOC=30° ,cos∠AOC=cos∠AOD·cos∠DOC ∴cos60° =cos∠AOD·cos30°∴ cos∠AOD= √3/3 ∴ OA 与 面OBC所成的角的余弦值为√3/3。
P
A
B
C
解:PA ⊥平面ABC
PA 平面ABC
BC ⊥平面PAC
又AC ⊥BC PA AC=A
BC ⊥平面PAC
PB与平面PAC所角为∠BPC
AC=1, PA= 2
P
PC= 3
又BC=1,tan ∠BPC=
3 3
∠BPC=30
A
即BP与平面PAC所成的角为30 .
1
B 1 C
利用公式 sin h / l
5
设AB与面AB1C1D所成的角为 ,
则sin h 4
AB 5
最小角定理
如图,AO是平面π的 斜线,OB ⊥平面π于B, AD是π内不与AB重合的直 线∠OAB= ,∠BAD= ,
∠OAD= ,求证:cos
四面体ABCS中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB的中点,求(1)BC与平面SAB所成的角。(2)SC与平面ABC所成的 角。
(1) ∵SC⊥SB,SC⊥SA, ∴SC⊥平面SAB 故 SB是斜线BC 在平面SAB
上的射影, ∴∠SBC是直线BC与平面SAB所成的角为60°。 (2) 连结SM,CM,则SM⊥AB, 又∵SC⊥AB,∴AB⊥平面SCM, ∴面ABC⊥面SCM 过S作SH⊥CM于H, 则SH⊥平面ABC ∴CH即为 SC 在面ABC内的射影。 ∠SCH 为SC与平面ABC所成的角。 sin ∠SCH=SH/SC ∴SC与平面ABC所成的角的正弦值为√7/7
“垂线”是相对的,SC是面 SAB的垂线,又是面 ABC 的斜线. 作面 的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂 直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。
例题
例1 . 如图,在Rt△ ABC中,已知
∠C=90,AC=BC=1,PA⊥平面ABC,且 PA= 2 ,求PB与平面PAC所成的角.
=cos cos
证明: 证明:设 AO 1,则 AB AO cos cos
O
A B
C
D
AC AB cos cos cos ;
在RtOAC中 AC AO cos; cos cos cos
例3. 已知直线OA,OB,OC 两两 所成的角为60°, 求直线OA 与 面OBC 所成的角的余弦值。
线面角的三种求法
1、平面的斜线和平面所成的角
平面的一条斜线
和它在平面上的射影 所成的锐角,叫做这 条直线和这个平面所 成的角。
一条直线垂直于平面,它们 所成的角是直角;
一条直线和平面平行,或在平面内,它们 所成的角是0 的角。
直线和平面所成角的范围是[0,90]。
直接法
平面的斜线与斜线在平面内的射影所成的 角即为直线与平面所成的角。通常是解由 斜线段,垂线段,斜线在平面内的射影所 组成的直角三角形,垂线段是其中最重要 的元素,它可以起到联系各线段的作用。
练 习
1.AO与平面斜交,O为斜足,AO与平面
成角,B是A在上的射影,OD是内的
直线,∠BOD=30,∠AOD=60,则
sin =
6
解:
3
由最小角原理得
cosAOD cosBODcos
即cos 60 cos30 cos
。
A
O
B
C
D
cos 3
3
其中θ是斜线与平面所成的角, h是 垂线段 的长,l是斜线段的长,其中求出垂线段的 长(即斜线上的点到面的距离)既是关键 又是难点,为此可用三棱锥的体积自等来 求垂线段的长。
长方体ABCD A1B1C1D1 , AB 3,BC 2, A1A 4,求AB与面AB1C1D 所成的角的正弦值
设点B到平面 AB1C1D的距离为 h 1
A
B
αຫໍສະໝຸດ Baidu
O
D
C
解:∵∠AOB=∠AOC ∴ OA 在面OBC 内的射影在∠BOC 的平分线OD上,则∠AOD即为OA与面OBC所成的角,可知
∠DOC=30° ,cos∠AOC=cos∠AOD·cos∠DOC ∴cos60° =cos∠AOD·cos30°∴ cos∠AOD= √3/3 ∴ OA 与 面OBC所成的角的余弦值为√3/3。
P
A
B
C
解:PA ⊥平面ABC
PA 平面ABC
BC ⊥平面PAC
又AC ⊥BC PA AC=A
BC ⊥平面PAC
PB与平面PAC所角为∠BPC
AC=1, PA= 2
P
PC= 3
又BC=1,tan ∠BPC=
3 3
∠BPC=30
A
即BP与平面PAC所成的角为30 .
1
B 1 C
利用公式 sin h / l