单相交流调压电路课程设计报告书
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单相交流调压电路的设计
1 单相交流调压电路设计任务及设计目的 (2)
1.1电路设计任务 (2)
1.2电路设计目的 (2)
1.3主电路的原理分析 (2)
1.4主电路器件的选择 (3)
2 设计方案及选择 (5)
3 单相交流调压电路的设计 (5)
3.1主电路的设计 (5)
3.2控制电路的设计 (6)
3.2.1触发信号的种类 (6)
3.2.2触发电路设计 (7)
3.2.3总的电路图 (8)
4单相交流调压电路仿真结果及结果分析 (8)
4.1仿真结果 (8)
4.2结果分析 (11)
5 单相交流电压电路设计总电路图 (12)
总结 (13)
参考文献 (14)
1 单相交流调压电路设计任务及设计目的
1.1 电路设计任务
1 进行设计方案的比较,并选定设计方案。
2 完成单元电路的设计和主要元器件的说明。
3 完成主电路的原理分析,各主要元器件的选择。
4 驱动电路的设计。
5 电路的仿真。
1.2 电路设计目的
电力电子技术是专业技术基础课,做课程设计是为了让我们运用学过的电路原理的知识,独立进行查找资料,选择方案,设计电路,撰写报告,制作电路等,进一步加深对变流电路基本原理的理解,提高运用基本技能的能力,为今后的学习和工作打下良好的基础,同时也锻炼了自己的实践能力。
1.3电阻性负载的交流调压器的原理分析
其晶闸管VT1和VT2反并联连接,与负载电阻R串联接到交流电源上。当电源电压U2正半周开始时刻触发VT1,负半周开始时刻触发VT2,形同一个无触点开关。若正、负半周以同样的移相角α触发VT1和VT2,则负载电压有效值随α角而改变,实现了交流调压。移相角为α时的输出电压u的波形,如图1-1所示。
图1-1A 电阻性负载单相交流调压电路及波形图
1.4 主电路的原理分析
所谓交流调压就是将两个晶闸管反并联后串联在交流电路中,在每半个周波通过控制晶闸管开通相位,可以方便的调节输出电压的有效值。交流调压电路广泛用于灯光控制及异步电动机的软启动,也用于异步电动机调速。此外,在高电压小电流或低电
压大电流之流电源中,也常采用交流调压电路调节变压器一次电压。本次课程设计主要是研究单相交流调压电路的设计。由于交流调压电路的工作情况与负载的性质有很大的关系,本次实验对阻感负载予以重点讨论。图中的2个晶闸管也可以用一个双向晶闸管代替。在交流电源u1的正半周和负半周,分别对2个晶闸管的移相控制角进行控制就可以调节输出电压。单相交流调压电路的主电路图如下图
图1-1B 单相交流调压主电路
1.5主电路器件的选择
主电路中所用到得器件比较少,主要是200V单相交流电源,2个反并联的晶闸管,还有一个阻感负载。其中2反并联的晶闸管可用一个双相晶闸管代替,阻感负载可以用一个电阻和一个电感串联,也可以用一个串联谐振代替2个反并联的晶闸管。
晶闸管的选择:
1 选择正反向电压
可控硅在门极无信号,控制电流Ig为0时,在阳(A)一一阴(K)极之间加(J2)处于反向偏置,所以,器件呈高阻抗状态,称为正向阻断状态,若增大UAK而达到一定值VBO,可控硅由阻断突然转为导通,这个VBO值称为正向转折电压,这种导通是非正常导通,会减短器件的寿命。所以必须选择足够正向重复阻断峰值电压(VDRM)。在阳一一阴极之间加上反向电压时,器件的第一和第三PN结(J1和J3)处于反向偏置,呈阻断状态。当加大反向电压达到一定值VRB时可控硅的反向从阻断突然转变为导通状态,此时是反向击穿,器件会被损坏。而且VBO和VRB值随电压的重复施加而变小。在感性负载的情况下,如磁选设备的整流装置。在关断的时候会产生很高的电压( ∈=-Ldi/dt),如果电路上未有良好的吸收回路,此电压将会损坏可控硅器件。因此,器件也必须有足够的反向耐压VRRM。
可控硅在变流器(如电机车)中工作时,必须能够以电源频率重复地经受一定的过电压而不影响其工作,所以正反向峰值电压参数VDRM、VRRM应保证在正常使用电压峰值的2-3倍以上,考虑到一些可能会出现的浪涌电压因素,在选择代用参数的时候,只能向高一档的参数选取。
2 选择额定工作电流参数
可控硅的额定电流是在一定条件的最大通态平均电流IT,即在环境温度为+40℃和规定冷却条件,器件在阻性负载的单相工频正弦半波,导通角不少于l70℃的电路中,
当稳定的额定结温时所允许的最大通态平均电流。而一般变流器工作时,各臂的可控硅有不均流因素。可控硅在多数的情况也不可能在170℃导通角上工作,通常是少于这一角度。这样就必须选用可控硅的额定电流稍大一些,一般应为其正常电流平均值的1.5-2.0倍。
3 选择门极(控制级)参数
可控硅门极施加控制信号使它由阻断变成导通需经历一段时间,这段时问称开通时间tgt,它是由延迟时间td和上升时间tx组成,tr是从门极电流脉冲前沿的某一规定起(比如门极电流上升到终值的90%时起)到通态阳极电流IA达到终值的10%那瞬为止的时间隔,tr是阳极电流从l0%上升到90%所经历的时间。可见开通时间tgt与可控硅门极的可触发电压、电流有关,与可控硅结温,开通前阳极电压、开通后阳极电流有关,普通可控硅的tgt10μs以下。在外电路回路电感较大时可达几十甚至几百μs以上(阳极电流的上升慢)。在选用可控硅时,特别是在有串并联使用时,应尽量选择门极触发特征接近的可控硅用在同一设备上,特别是用在同一臂的串或并联位置上。这样可以提高设备运行的可靠性和使用寿命。如果触发特性相差太大的可控硅在串联运行时将引起正向电压无法平均分配,使tgt较长的可控硅管受损,并联运行时tgt较短的可控硅管将分配更大的电流而受损,这对可控硅器件是不利的。所以同一臂上串或并联的可控硅触发电压、触发电流要尽量一致,也就是配对使用。
在不允许可控硅有受干扰而误导通的设备中,如电机调速等,可选择门极触发电压、电流稍大一些的管子(如可触发电压VGT>2V,可触发电流IGT:>150mA)以保证不出现误导通,在触发脉冲功率强的电路中也可选择触发电压、电流稍大一点的管。在磁选矿设备中,特别是旧的窄脉冲触发电路中,可选择一些VG、IG低一些的管子,如VGT<1.5V、IGT在≤100mA以下。可减少触发不通而出现缺相运行。以上所述说明在某些情况下应对VGT和IGT参数进行选择。(以上举例对500A的可控硅参考参数)
4 选择关断时间(tg)
可控硅在阳极电流减少为0以后,如果马上就加上正向阳极电压,即使无门极信号,它也会再次导通,假如在再次加上正向阳极电压之前使器件承受一定时间的反向偏置电压,也不会误导通,这说明可控硅关断后需要一定的时间恢复其阻断能力。从电流过O 到器件能阻断重加正向电压的瞬间为止的最小时闻间隔是可控硅的关断时间tg,由反向恢复时间t和门极恢复时间t构成,普通可控硅的tg约150-200μs,通常能满足一般工频下变流器的使用,但在大感性负载的情况下可作一些选择。在中频逆转应用,如中频装置、电机车斩波器,变频调速等情况中使用,一定要对关断时间参数作选择,一般快速可控硅(即kk型晶闸管)的关断时间在10-50μs,其工作频率可达到1K-4KHZ;中速可控硅(即KPK型晶闸管)的关断时间在60-100μs,其工作频率可达几百至lKHZ,即电机车的变频频率。
5 晶闸管工作原理