开关电源各种拓扑集锦

合集下载

开关电源各种拓扑集锦

开关电源各种拓扑集锦

开关电源各种拓扑集锦电源网讯给出六种基本DC/DC变换器拓扑 依次为buck,boost,buck-boost,cuk,zeta,sepic变换器500) {this.resized=true; this.width=500; this.alt=‘这是一张缩略图,点击可放大。

n按住CTRL,滚动鼠标滚轮可自由缩放’;this.style.cursor=‘hand’}” jQuery1287363863453=“137”> 500) {this.resized=true; this.width=500; this.alt=‘这是一张缩略图,点击可放大。

n按住CTRL,滚动鼠标滚轮可自由缩放’;this.style.cursor=‘hand’}”jQuery1287363863453=“138”> 500) {this.resized=true; this.width=500; this.alt=‘这是一张缩略图,点击可放大。

n按住CTRL,滚动鼠标滚轮可自由缩放’;this.style.cursor=‘hand’}” jQuery1287363863453=“140”>500) {this.resized=true; this.width=500; this.alt=‘这是一张缩略图,点击可放大。

n按住CTRL,滚动鼠标滚轮可自由缩放’;this.style.cursor=‘hand’}”jQuery1287363863453=“141”> 500) {this.resized=true; this.width=500; this.alt=‘这是一张缩略图,点击可放大。

n按住CTRL,滚动鼠标滚轮可自由缩放’;this.style.cursor=‘hand’}” jQuery1287363863453=“143”>500) {this.resized=true; this.width=500; this.alt=‘这是一张缩略图,点击可放大。

开关电源拓扑结构。

开关电源拓扑结构。

D1

NU o NU o Ui
N是变压器的变压比
Uo

Up Ni
iL

iL1 N
Hale Waihona Puke I L max N
2Io N

2U o NR
Ui D1Ts NL
i L1

Ui D1Ts L
L Ui D1Ts R 2U o
Flyback变换器的优缺点比较
优点: 1、电路简单,能高效提供多路直流输出,因此适合多组输 出的要求,并可通过调节占空比D1的大小升压或降压。 2、输出功率为20~100w,可以同时输出不同的电压且有较 好的电压调整率。不需接输出滤波电感,使反激变换器成本 降低,体积减小。 缺点: 1、输出的纹波电压较大,外特性差,负载调整精度不高, 因此输出功率受到限制,通常应用于150W 以下。适用于相对 固定的负载。 2、与其他隔离变换器相比效率较低。
K由接通突然转为关断瞬间,流过变压器初级线 圈的电流i1突然为0,由于磁通不能突变,因此, 在K关断的Toff期间,变压器铁心中的磁通主要由 N2线圈回路中的电流来维持,N2中产生反激电流 ,流过D向电容C和负载R供电。
开关管导通 时等效电路
开关管关断 时等效电路
Buck-Boost拓扑结构简介
反激式变压器开关电源的工作情况同BUCK-BOOST拓扑极为相似。
另两种电感电流模式的介绍
CCM模式 D1+D2=1
DCM模式 D1+D2<1
Uo D1 Ui (D1 D2 )
二、Boost拓扑结构——升压式变换电路(非隔离)
Boost变换器:也称升压式变换器,是一种输出电压高 于输入电压的单管不隔离直流变换器。 该稳压电路元器件与前面讲的Buck变换电路一样,只是 摆放位置不同,由此导致其功能也不同。

开关电源常见拓扑结构

开关电源常见拓扑结构
现在您正浏览在第6页,共43页。
BUCK降压电路
❖ 上图是BUCK电路的经典模型。晶体管,二极管,电感,电 容和负载构成了主回路,下方的控制回路一般采用PWM芯 片控制占空比决定晶体管的通断。
❖ BUCK电路的功能:把直流电压Ui转换成直流电压Uo, 实现降压的目的
现在您正浏览在第7页,共43页。
❖ D1是K闭合,D导通的时间Ton占总周期Ts的比例,D2是 K关断,D截止的时间Toff占总周期Ts的比例
❖ 由以上两式相等可以得到电压增益M=Vo/Vi=1/(1-D1), 此时D1+D2=1
❖ 由此处可知BOOST电路是一种升压电路,输入小于输出
现在您正浏览在第21页,共43页。
DCM模式下的电压增益比
BUCK拓扑的精简模型
❖ 上图是简化之后的BUCK电路主回路。下面分析输出电压的产生 1、K闭合后,D关断,电流流经L,L是储能滤波电感,它的作用是在K接通 Ton期间限制大电流通过,防止输入电压Ui直接加到负载R上,对R进行电压冲 击,同时把电感电流IL转化成磁能进行能量存储;与R并联的C是储能滤波 电容,如此R两端的电压在Ton期间是稳定的直流电压 2、在K关断期间Toff,L将产生反电动势,流过电流IL由反电动势eL的正极流出, 通过负载R,再经过续流二极管D,最后回到反电动势eL的负极。由于C的储能稳 压,Toff阶段的输出电压Uo也是稳定的直流电压 K闭合时,L两端有压降,意味着Uo<Ui, BUCK电路一定是降压电路
❖ 当电路在DCM下,K打开一
定不是完全由电感供能,即
IISM.当IL小于Io时,L和C同 时向R供电,当IL断流为0时, 更是只由C向R供电
现在您正浏览在第24页,共43页。
CCM模式下的供能

开关电源的基本拓扑结构

开关电源的基本拓扑结构
感谢您的观看
总结词
半桥型拓扑结构通过两个开关管和电容器的组合,实现输出电压的调节。
详细描述
在半桥型拓扑结构中,两个开关管交替导通和关断,通过调节占空比来调节输出电压。 这种拓扑结构适用于需要较高电压、大电流输出的应用场景,如逆变器和电机驱动等。
全桥型(Full-Bridge)
总结词
全桥型拓扑结构通过四个开关管的组合 ,实现输出电压的调节。
降压-升压型开关电源工作原理
总结词
根据输入电压和输出电压的大小关系,自动切换降压 或升压模式。
详细描述
在降压-升压型开关电源中,根据输入电压和输出电压 的大小关系,自动切换降压或升压模式。当输入电压 高于输出电压时,自动进入降压模式;当输入电压低 于输出电压时,自动进入升压模式。
反相开关型开关电源工作原理
VS
详细描述
在全桥型拓扑结构中,四个开关管两两交 替导通和关断,通过调节占空比来调节输 出电压。这种拓扑结构适用于需要极高电 压、大电流输出的应用场景,如高压直流 输电等。
03 开关电源的工作原理
降压型开关电源工作原理
总结词
通过控制开关管开通和关断的时间,调节输 出电压的大小。
详细描述
在降压型开关电源中,输入电压首先经过开 关管,通过控制开关管的开通和关断时间来 调节输出电压的大小。当开关管开通时,输 入电压加在负载上,当开关管关断时,输入 电压与负载断开,输出电压因此得到调节。
升压型开关电源工作原理
要点一
总结词
通过控制开关管开通和关断的时间,实现输出电压高于输 入电压的功能。
要点二
详细描述
在升压型开关电源中,当开关管开通时,输入电压同时加 在负载和储能元件上,当开关管关断时,储能元件释放能 量,使输出电压高于输入电压。通过控制开关管的开通和 关断时间,实现输出电压的调节。

25种开关电源拓扑电路结构与连接原理与及特点选择与设计方法

25种开关电源拓扑电路结构与连接原理与及特点选择与设计方法

25种开关电源拓扑电路结构与连接原理与及特点选择与设计方法开关电源是一种将交流电转换为直流电的电源装置,其常见的拓扑电路结构包括单端(Buck)、反相(Boost)和反相-反相(Buck-Boost)等。

下面将详细介绍这些拓扑电路的连接、原理与特点,并给出选择与设计方法。

1.单端拓扑电路结构与连接:单端拓扑电路主要由功率开关器件、电感元件和输出滤波电容组成。

它的连接方式为输入电压接到开关电源的输入端,输出电压则输出到输出端。

单端拓扑电路常用于输出电压比输入电压更低的应用场景。

2.反相拓扑电路结构与连接:反相拓扑电路也是由功率开关器件、电感元件和输出滤波电容组成。

不同之处在于它的连接方式,输入电压通过开关电源的输入端接到电感上,输出电压则从电感上接出。

反相拓扑电路适用于输出电压比输入电压更高的应用场景。

3.反相-反相拓扑电路结构与连接:反相-反相拓扑电路结构是将单端拓扑与反相拓扑结合起来的一种结构,它可以实现输入电压和输出电压的翻转。

输入电压通过开关电源的输入端接到电感上,输出电压同样从电感上输出。

这种拓扑电路可以根据输入输出电压的差异实现升压或降压功能。

这些拓扑电路的原理与特点如下:1.单端拓扑电路原理与特点:单端拓扑电路使用开关器件以一定的频率开关电源输入,通过电感和输出滤波电容将开关输出的方波转换为稳定的直流电。

这种电路的特点是简单、成本较低,但效率较低,适用于输出电压较低的场景。

2.反相拓扑电路原理与特点:反相拓扑电路通过控制开关器件的导通和截止来改变电感中的电流,从而改变输出电压。

与单端拓扑电路相比,它的效率较高,但成本较高。

反相拓扑电路适用于输出电压较高的场景。

3.反相-反相拓扑电路原理与特点:反相-反相拓扑电路通过将输入电压先升压或降压至一个中间电压,再通过反向变换输出所需的电压。

这种电路可以实现较大范围的升压和降压功能,但需要多个开关器件和电感,因此成本和复杂度较高。

在选择与设计开关电源的方法上,应注意以下几点:1.根据实际需求确定输出电压和电流的要求,然后选择适合的拓扑电路结构。

新手必学开关电源11种拓扑结构

新手必学开关电源11种拓扑结构
新手必学
开关电源11种拓扑结构
BUCK降压
特点 ■把输入降至一个较低的电压。 ■可能是最简单的电路。 ■电感/电容滤波器滤平开关后的方波。 ■输出总是小于或等于输入。 ■输入电流不连续 (斩波)。 ■输出电流平滑。
BOOST升压
特点 ■把输入升至一个较高的电压。 ■与降压一样,但重新安排了电感、开关和 二极管。 ■输出总是比大于或等于输入(忽略二极管的 正向压降)。 ■输入电流平滑。 ■输出电流不连续 (斩波)。
FULL-BRIDGE全桥
特点 ■较高功率变换器最为常用的拓扑结构。 ■开关(FET)以对角对的形式驱动,进行脉冲宽度调制(PWM)以调节输出电压。 ■良好的变压器磁芯利用率---在两个半周期中都传输功率。 ■全波拓扑结构,所以输出纹波频率是变压器频率的两倍。 ■施加在 FETs上的电压与输入电压相等。 ■在给定的功率下,初级电流是半桥的一半。
TWO-TRANSI■开关断开时,存储在变压器中的能量使初 级的极性反向,使二极管导通。 ■主要优点: ■每个开关上的电压永远不会超过输入电压。 ■无需对绕组磁道复位。
PUSH-PULL推挽
特点 ■开关(FET)的驱动不同相,进行脉冲宽度调制(PWM) 以调节输出电压。 ■良好的变压器磁芯利用率---在两个半周期中都传输功率。 ■全波拓扑结构,所以输出纹波频率是变压器频率的两倍。 ■施加在FET上的电压是输入电压的两倍。
谢谢观看
HALF-BRIDGE半桥
特点 ■较高功率变换器极为常用的拓扑结构。 ■开关(FET)的驱动不同相,进行脉冲宽度调制(PWM)以调节输出电压。 ■良好的变压器磁芯利用率---在两个半周期中都传输功率。而且初级绕组的利用率优 于推挽电路。 ■全波拓扑结构,所以输出纹波频率是变压器频率的两倍。 ■施加在FET上的电压与输入电压相等。

开关电源各种拓扑集锦

开关电源各种拓扑集锦

开关电源拓扑六种基本DC/DC变换器拓扑:1、Buck2、Boost3、Buck-Boost4、CUK5、Zeta6、Sepic基本拓扑是Buck,Boost,其他是演变。

Buck为降压变换器,常用的拓扑基本上是Buck的:正激,半桥,全桥,推挽等等。

Boost变换器为Buck的对偶拓扑,是升压变换器,常用于小功率板载电源,大功率PFC电路上,对于隔离的Boost变换器也有推挽,双电感,全桥等电路。

Buck-Boost是反激变换器的原型,属于升降压变换器。

后面三种电路不是很常用,都是升降压变换器。

一、 反激1、单端反激2、双端反激二、 正激1、绕组复位正激2、R CD复位正激3、L CD复位正激4、有源钳位正激● Flyback钳位● Boost钳位5、双管正激6、无损吸收双正激7、有源钳位双正激8、原边钳位双正激9、软开关双正激三、 推挽1、推挽2、无损吸收推挽3、推挽正激推挽变换器是双端变换器。

其实是两个正激变换器通过变压器耦合而来,基本推挽变换器好处是驱动不需隔离,变压器双端磁化,只要两个开关管。

但是,变压器绕组利用率低,开关管电压应力为输入两倍,所以一般只适合低压输入的场合。

而且有个问题就是会出现偏磁,所以要采用电流型控制等方法来避免。

如果将两个双管正激同样耦合,可以构成四开关管的推挽变换器,也就是所谓的双双管正激。

其管子电压应力下降为输入电压。

其他等同。

推挽正激是通过一个电容来解决变换器漏感尖峰,偏磁等问题四、 半桥1、半桥2、不对称半桥3、谐振半桥4、移相半桥五、 全桥1、全桥2、全桥LLC3、移相全桥全桥变换器在大功率场合是最常用了,特别是移项ZVS和ZVZCS 六、 三电平变换器(three level converter)这些三电平是半桥演化而来,同样可以演化出多电平变换器,合适高压输入场合。

而且可以通过全桥的移相控制方式实现软开关。

七、 五种隔离三电平DC/DC变换器1、F orward三电平DC/DC变换器2、F lyback三电平DC/DC变换器3、P ush-Pull三电平DC/DC变换器4、半桥三电平DC/DC变换器5、全桥三电平DC/DC变换器八、 B oost隔离变换器1、双电感Boost2、全桥Boost。

常见正反激开关电源拓扑结构

常见正反激开关电源拓扑结构

常见反激式、正激式、桥式、推挽式DC/DC电源变换器的拓扑类型常见DC/DC电源变换器的拓扑类型见表1~表3所列。

表中给出不同的电路结构,同时也给出相应的电压及电流波形(设相关的电感电流为连续工作方式)。

PWM表示脉宽调制波形,U1为直流输入电压,UDS为功率丌关管S1(MOSFFT)的漏一源极电压。

ID1为S1的漏极电流。

IF1为D1的工作电流,U0为输出电压,IL为负载电流。

T为周期,t为UO呈高电平(或低电平)的时问及开关导通时间,D为占空比,有关系式:D=t/T。

C1、C2均为输入端滤波电容,CO为输出端滤波电容,L1、L2为电感。

1、常见单管DC/DC电源变换器
2、常见反激式或正激式DC\DC电源变换器
3、常见桥式或推挽式DC\DC电源变换器。

常用的开关电源拓扑结构-基础电子

常用的开关电源拓扑结构-基础电子

常用的开关电源拓扑结构-基础电子下面简单介绍一下常用的开关电源拓扑结构。

Buck电路首先我们要讲的就是Buck电路。

Buck电路也成为降压(step-down)变换器。

它的电路图是下面这样的:晶体管,二极管,电感,电容和负载构成了主回路,下方的控制回路一般采用PWM(脉冲宽度调制)芯片控制占空比决定晶体管的通断。

Buck电路的功能是把直流电压Ui转换成直流电压Uo,实现降压目的。

反激变换器反激式开关电源是指使用反激高频变压器隔离输入输出回路的开关电源,与之对应的有正激式开关电源。

反激(FLY BACK),具体是指当开关管接通时,输出变压器充当电感,电能转化为磁能,此时输出回路无电流;相反,当开关管关断时,输出变压器释放能量,磁能转化为电能,输出回来中有电流。

反激式开关电源中,输出变压器同时充当储能电感,整个电源体积小、结构简单,所以得到广泛应用。

应用多的是单端反激式开关电源。

优点:元器件少、电路简单、成本低、体积小,可同时输出多路互相隔离的电压;缺点:开关管承受电压高,输出变压器利用率低,不适合做大功率电源。

Boost电路Boost(升压)电路是基本的反激变换器。

Boost变换器又称为升压变换器、并联开关电路、三端开关型升压稳压器。

上面的图就是Boost电路图。

Boost电路是一个升压电路,它的输出电压高于输入电压。

Buck/Boost变换器Buck/Boost变换器:也叫做升降压式变换器,是一种输出电压既可低于也可高于输入电压的单管不隔离直流变换器,但它的输出电压的极性与输入电压相反。

Buck/Boost变换器可以看做是Buck变换器和Boost变换器串联而成,合并了开关管。

它的电路图如下:上面提到的Buck和Boost电路,都是输出与输入共地,在电路上没有隔离。

采用变压器后,输出与输入电气隔离,可以多路输出。

而反激变换器是隔离变换器中简单的一种。

它分为两种工作模式,断续模式反激变换器和连续模式反激变换器。

开关电源常见拓扑结构ppt课件

开关电源常见拓扑结构ppt课件
隔离室电路主要分为正激式和反激式两种
❖ 正激式:就是只有在开关管导通的时候,能量才通过变压 器或电感向负载释放,当开关关闭的时候,就停止向负载 释放能量。目前属于这种模式的开关电源有:串联式开关 电源,buck拓扑结构开关电源,激式变压器开关电源、推 免式、半桥式、全桥式都属于正激式模式。
❖ 反激式:就是在开关管导通的时候存储能量,只有在开关 管关断的时候释放才向负载释放能量。属于这种模式的开 关电源有:并联式开关电源、boots、极性反转型变换器、 反激式变压器开关电源。
在K关断期间,IL线性下降,若周期结束即K导通瞬间IL不等 BUCK-BOOST输出的是一个反极性的电压
反激式❖变压器开关电源,是指当变压器的初级线圈正好被直流电压激励时,变压器的次级线圈没有向负载提供功率输出,而仅在变压
器初级线圈于的激0励,电压则被关I断L后呈才向现负载左提侧供功图率输(出c,)这中种的变压波器开形关电,源称电为反流激式连开关续电源。。 若K导通之前 IL就已经降为0,IL就会呈现断流的情形,为右侧图(c)的 波形。
CCM模式下,电压增益M就是 占空比D1,
DCM模式下,电压增益M和占 空比D1则呈现非线性关系。
总体上来看,随着D1的增大M 值会增加。
BUCK电路的效率问题
❖ 一般而言,BUCK电路的损耗可以分为导通状态下的直流损 耗和导通过程中的交流损耗。
❖ 其中直流损耗主要是指晶体管T和二极管D在直流导通情况 下,自身压降同流过电流 的压降
❖ 下面就将按照以上三种模 式对电路做具体的分析。
❖ 注意:Uo,Io作为输出电压 电流,均认为是稳定的直 流量。
CCM,DCM模式下的各点电压
开关电源主要包括主回路和控制回路两大部分 上图是简化之后的BUCK电路主回路。 属于这种模式的开关电源有:并联式开关电源、boots、极性反转型变换器、反激式变压器开关电源。 在K由闭合到断开的瞬间,N2侧产生了一定大小的反激电压和电流,如果N2直接接在负载R上则会有一个非常大的脉冲。 另一方面,流过N3绕组中的电流产生的磁场可以使变压器的铁心退磁,使变压器铁心中的磁场强度恢复到初始状态。 1、可以吸收当控制开关K关断瞬间变压器次级线圈产生的高压反电动势能量,防止整流二极管D1击穿; 在整流二极管D1两端并联一个高频电容: 在K关断期间,IL线性下降,若周期结束即K导通瞬间IL不等于0,则IL呈现左侧图(c)中的波形,电流连续。 上图就是二次侧电流临界连续时,电压U2,电容C两端的电压Uc的变化过程 控制回路一般采用PWM控制方式,通过输出信号和基准的比较来控制主回路中的开关器件 2、在K关断期间Toff,L将产生反电动势,流过电流IL由反电动势eL的正极流出,通过负载R,再经过续流二极管D,最后回到反电动势 eL的负极。 开关电源主要包括主回路和控制回路两大部分 当K由接通转为关断的时候,为了保持励磁不变,L也会产生反电动势eL。 1、当K导通时→IL线性增加, D1截止此时C向负载供电 最终电压增益比就是两者增益比的乘积即 属于这种模式的开关电源有:并联式开关电源、boots、极性反转型变换器、反激式变压器开关电源。 开关电源主要包括主回路和控制回路两大部分 下面分析输出电压的产生 N3两端是反接到输入Ui上,电压为-Ui,其过程相当于向Ui充电,即磁能转化为电能 K断开,由于N3绕组的磁复位和二次侧的二极管D1断流作用,二次侧输出相当于开路,相当于BUCK电路的开关器件关断,如上方右 图所示

开关电源基本拓扑结构

开关电源基本拓扑结构

I LfG
V in D y 2L f fs
I oG
(1 D y ) D y 2L f fs
V in
Fig 1.4 Vin=const
开关电源基本拓扑
25
Vout = constant (输出电压恒定) From eq. (2.14), then the eq.(2.16) and eq.(2.15) can be reformed as:
i Lf I Lf
max

V in Lf
T on
V in Lf
Ts D y
(3.9)
i Lf I Lf
max

Vo Lf T off
'
Ts D (1 D y )
(3.10)
where
Vo V in
D
Dy D
Ts

(3.11)
I in I Lf
I o D

2
(1 D y )V o 8L f C f fs
2
Vo
Q C
f
(1.8)
开关电源基本拓扑
8
电流断续时的工作模式 (DCM)
电流断续时的工作模式的典型情况:
Mode 1
输入电压Vin不变,输出电压Vo变化;譬如用作电机速度控制、充电
器对蓄电池恒流充电。 输入电压Vin变化,输出电压Vo不变,如普通开关电源。
I oG (1 D y ) 2L f fs V out
Fig 1.5 Vout=const
开关电源基本拓扑
13
湘潭电机股份有限公司150t工矿电机车IGBT直流斩波 1500V电压等级主要由IGBT功率组件、微机控制盒及 PLC控制单元构成。IGBT功率组件采用3 300V、 800A 斩波型IGBT模块作为主功率元件,主元件散 热器采用新型风冷热管散热器,一个IGBT功率组 件单独驱动一台牵引电机。 微机控制盒是装置的核心,配备16位单片机 80C196KC

种经典开关电源拓扑结构课件

种经典开关电源拓扑结构课件

升压型开关电源工作原理
总结词
通过控制开关管开通和关断的时间,将输入 电压转换成高于输入电压的输出电压。
详细描述
在升压型开关电源中,当开关管开通时,输 入电压同时加在负载和储能元件上,产生较 大的电流,储能元件充电;当开关管关断时, 电流减小,储能元件释放之前存储的能量。 由于储能元件的充放电作用,输出电压高于 输入电压。通过控制开关管的占空比,可以 调节输出电压的大小。
转换效率
01 02
转换效率
指开关电源将输入的电能转换为输出电能的能力,通常以百分比表示。 转换效率越高,说明开关电源的能源利用率越高,能够减少能源浪费和 发热量。
最大功率转换效率
指在一定的输入电压和输出电压条件下,开关电源能够达到的最大转换 效率。它是衡量开关电源性能的重要指标之一,要求尽可能高。
详细描述
极性反转型开关电源通过控制开关管开通和关断的时间比率,将输入电压的极性 反转并输出。在开关管开通时,输入电压与电感器共同对电容充电,当开关管关 断时,电感器通过输出二极管和负载释放能量。
升降压型(Buck-Boost)开关电源
总结词
升降压型开关电源是一种能够根据需要调整输出电压极性和大小的电源转换器。
详细描述
升压型开关电源通过控制开关管开通和关断的时间比率,将输入电压提升到所 需的输出电压。在开关管开通时,输入电压与电感器共同对电容充电,当开关 管关断时,电感器通过输出二极管和负载释放能量。
极性反转型(Inverting)开关电源
总结词
极性反转型开关电源是一种能够将输入电压极性反转的电源转换器。
03
开关电源的工作原理
降压型开关电源工作原理
总结词
通过控制开关管开通和关断的时间,调 节输出电压的大小。

各类基本电源拓扑结构介绍

各类基本电源拓扑结构介绍

各类电源拓扑结构分析一.非隔离型开关变换器1. 降压变换器(Buck ):输入输出极性相同。

由于稳态时,电感充放电伏、秒积相等,因此,输入输出电压关系为: (Ui-Uo)*ton=Uo*toff => Uo/Ui=ton/(ton+toff)=Δ => Uo/Ui=Δ(占空比)。

Chart 1: buck circuit topology在S 导通时,输入电源通过L 和C 滤波后向负载端提供电流;当S 断开后,L 通过二极管续流,保持负载电流连续。

输出电压因为占空比的作用,不会超过输入电源电压。

2. 升压变换器(Boost ):输入输出极性相同。

利用同样的方法,根据稳态时电感L 的充放电伏、秒积相等的原理,推导出输入输出电压关系为:Uo/Ui=1/(1-Δ)。

Chart 2: boost circuit topology开关管S 和负载构成并联,在S 导通时,电流通过L 滤波,电源对L 充电。

当S 断开时,L 向负载及电源放电,输出电压将是Ui+U L ,达到升压的目的。

3. 逆向变换器(Boost-Buck ):升、降压斩波器,输入输出极性相反,电感传输能量。

Uo I S I VD I I C I UiUo I D S I D D L C I D电压关系:Uo/Ui= -Δ/(1-Δ)Chart 3: boost-buck circuit topology在S 导通时,输入电源仅对电感L 充电;当S 断开时,再通过电感对负载放电来实现电源传输。

所以,这里的L 用于传输能量。

4. 丘克变换器(Cuk ):升、降压斩波器,输入输出极性相反,电容传输能量。

电压关系:Uo/Ui= -Δ/(1-Δ)。

Chart 4: cuk circuit topology在S 导通时,Ui 对L1充电。

当S 断开时,Ui+L1通过D 对C1进行充电。

再当S 导通时,D 关断,L1继续充电,C1通过L2、C2滤波对负载放电。

开关电源中常见变换器主电路拓扑

开关电源中常见变换器主电路拓扑

开关电源中常见变换器主电路拓扑1.1 Buck变换器Buck变换器又称降压变换器,Buck型电路拓扑由有源开关(功率MOSFET)、续流二极管D(或由同步整流开关代替)、储能电感L、滤波电容C组成。

其电路如图1-1所示。

电感和输出电容组成一个低通滤波器,滤波后电压以很小的纹波呈现在输出端。

图1-1 Buck变换器拓扑结构1.2 Boost变换器Boost变器又称升压变换器,其电路如图1-2所示。

改变降压变换器中元件的位置就可把它变成升压变换器。

在升压变换器中,开关管导通时在电感中有斜波电流流过。

当开关管断开时,电感中的电流必须保持流动,电感上的电压改变极性,使二极管正向偏置,并释放能量到输出端和输出电容器。

图1-2 Boost变换器拓扑结构1.3 反激变换器反激变换器又称Flyback式变换器,其电路如图1-3所示。

由于反激变换器的电路拓扑结构简单,能提供多组直流输出和升降范围宽,因此广泛应用于中小功率变换场合。

其结构相当于在Boost变换器中,用一个变压器代替升压电感,即构成了反激式变换器。

图1-3 反激电路原理图V1213T111423131211109867451516R12C1R14VZ112R11C5C6VZ212R9R1C10R18R13C8VD312R15VD112R7C3N1MC33262VFB1Comp2Multi3CS 4Z c d5G N D6Dri 7Vcc 8R10R19VD212C7R6VCC Vpfc,inVpfc,out 当开关晶体管VS 被驱动脉冲激励而导通时,Vin 加在开关变压器T 的初级绕组L1上,此时次级绕组L2的极性使VD 处于反偏而截止,因此L2上没有电流流过,此时电感能量储存在L1中,当VS 截止时,L2上电压极性颠倒使VD 处于正偏,L2上有电流流过,在VS 导通期间储存在L1中的能量此时通过VD 向负载释放。

反激式变换器工作波形见图 1-4。

图1-4 反激式变换器工作波形2.PFC 电路PFC 的英文全称为Power Factor Correction ,意思是功率因数校正。

开关电源DC-DC变换器拓扑结构全集

开关电源DC-DC变换器拓扑结构全集

开关电源DC/DC变换器拓扑结构全集
给出六种基本DC/DC变换器拓扑
依次为buck,boost,buck-boost,cuk,zeta,sepic变换器
半桥变换器也是双端变换器,以上是两种拓扑。

半桥开关管电压应力为输入电压.而且由于另外一个桥臂上的电容,具有抗偏磁能力,但是对于上面一种拓扑,通常还会加隔直电容来提高抗偏磁能力.但是如果采用峰值电流控制,要注意一个问题,就是有可能会导致电容安秒不平衡的问题.要需要其他方法来解决。

半桥变换器可以通过不对称控制来实现ZVS,也就是两个管子交替导通,一个占空比为D,另外一个就为1-D.就是所谓的不对称半桥,通常采用下面一种拓扑.对于不对称半桥可以采用峰值电流控制。

正激变换器
绕组复位正激变换器
LCD复位正激变换器
RCD复位正激变换器
有源钳位正激变换器
双管正激
吸收双正激
有源钳位双正激
原边钳位双正激
软开关双正激
推挽变换器
无损吸收推挽变换器
推挽变换器:推挽变换器是双端变换器.其实是两个正激变换器通过变压器耦。

各种开关电源拓扑结构总结

各种开关电源拓扑结构总结

各种开关电源拓扑结构总结第一篇:各种开关电源拓扑结构总结各种结构拓扑结构的总结一.BUCK基本型降压电路,电路简洁,所需元件少,效率可以做到很高电路未实现隔离,大功率是对电路各种器件要求较高,稳定性不够高,灵活性不够。

二.BOOST基本升压电路,电路简洁,所需元件少,效率可以做到很高电路未实现隔离,大功率是对电路各种器件要求较高,如输出比较大的功率时开关管需要承受很大的脉冲电流,稳定性不够高,灵活性不够。

三.单端式a.单端正激,优点:该型是在BUCK型的基础上,加上一级隔离变压器,不仅做到了电路前后级之间的隔离,只要改变变压器的匝数,则可实现降压升压,外围元件较少。

缺点:开关关断时,变压器容易饱和,需要加磁复位绕组,对变压器绕制要求较高。

b.单端反击优点:电路结构相比于单端正激更加简单,变压器次级充当电感,元件更少。

缺点:当变压器存在漏感时会在原边形成很大的电流,对开关器件的损耗比较大,额外设计保护电路增加了设计负担,而且此种拓扑对变压器的设计上难度较大四.双端式a.半桥优点:可以减少原边开关元件的电压应力,半桥变换器是离线式开关电源的首选结构。

工作的两个半周期内充分利用了变压器原边绕组的PI和磁芯磁感应强度摆幅值,原边不需要能量回复绕组。

缺点:变压器磁芯容易出现阶梯形饱和问题,(可通过变压器中加入小气隙缓解,主要形成原因,正负脉冲时间不严格相等,整流二极管电压不严格相等。

稳态工作条件下,问题不大,但在瞬间负载变化的情况下,可能会导致严重问题如开关器件的损坏。

)b.推挽电路特点:对称结构,高频变压器原边是两个对称线圈,两只开关管接成对称关系,轮流通断优点:高频变压器磁利用率高,输出功率大,电源电压利用率高缺点:电流不平衡,容易出现变压器饱和的问题,对开关管的耐压值要求比较高。

五.四管隔离式全桥该结构使用的变压器绕组相对较少,对开关管耐压值要求相对于推挽较低。

但由于使用较多的开关管,损耗较大,驱动电路较复杂,该电路通常使用在1kw以上的超大功率电源上。

电源12种拓扑结构“开关管”与“整流管”应力计算

电源12种拓扑结构“开关管”与“整流管”应力计算

电源12种拓扑结构“开关管”与“整流管”应力计算电源是电子设备中的一个重要部件,为其他电子元件提供稳定的电能。

电源拓扑结构包括多种形式,其中常见的包括开关电源和整流电源。

开关电源利用开关管进行控制,整流电源则使用整流管进行能量转换。

首先,我们来了解一下开关电源的工作原理。

开关电源通过开关管的开关动作,将直流电转换为高频脉冲信号,再通过滤波电路和变压器进行能量转换和稳压控制,最终得到所需的电功率。

开关电源的拓扑结构包括多种形式,例如反激式、开关电容式、开关电感式等。

在开关状态切换时,开关管要承受较大的电流冲击,这会导致电流应力的产生。

电流应力可以通过计算开关管的电流波形来估算。

在计算电流波形时,需要考虑开关管的导通和关断过程中的电流变化情况,以及开关管的导通和关断时间。

通过计算电流波形,可以估算出开关管的最大电流应力,进而选择合适的开关管进行设计。

除了电流应力,开关管还要承受电压应力的影响。

开关管在开关状态切换时,由于电感和电容的存在,会产生一定的电压尖峰,导致开关管承受较大的电压应力。

电压应力可以通过计算开关管的电压波形来估算。

在计算电压波形时,需要考虑开关管的导通和关断过程中的电压变化情况,以及开关管的导通和关断时间。

通过计算电压波形,可以估算出开关管的最大电压应力,进而选择合适的开关管进行设计。

接下来,我们来了解一下整流电源的工作原理。

整流电源通过整流管将交流电转换为直流电,供给其他电子设备使用。

整流电源的拓扑结构包括多种形式,例如单相半波整流、单相全波整流、三相半波整流、三相全波整流等。

在整流电源中,整流管要承受较大的电流和电压应力。

电流应力的计算方法与开关电源中的类似,需要考虑整流管的导通和关断时间,以及电流波形的变化情况。

而电压应力的计算方法也与开关电源中的类似,需要考虑整流管的导通和关断时间,以及电压波形的变化情况。

通过对开关电源和整流电源中开关管和整流管的应力计算,可以了解到它们在工作过程中承受的电流和电压应力情况,从而选择合适的管件进行设计和选型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

开关电源各种拓扑集锦
给出六种基本DC/DC 变换器拓扑
依次为buck,boost,buck-boost,cuk,zeta,sepic 变换器
半桥变换器也是双端变换器,以上是两种拓扑。

半桥开关管电压应力为输入电压.而且由于另外一个桥臂上的电容,具有抗偏磁能力,但是对于上面一种拓扑,通常还会加隔直电容来提高抗偏磁能力.但是如果采用峰值电流控制,要注意一个问题,就是有可能会导致电容安秒不平衡的问题.要需要其他方法来解决。

半桥变换器可以通过不对称控制来实现ZVS,也就是两个管子交替导通,一个占空比为D,另外一个就为1-D.就是所谓的不对称半桥,通常采用下面一种拓扑. 对于不对称半桥可以采用峰值电流控制。

正激变换器绕组复位正激变换器LCD 复位正激变换器RCD 复位正激变换器有源钳位正激变换器双管正激
损吸收双正激有源钳位双正激原边钳位双正激软开关双正激
推挽变换器无损吸收推挽变换器推挽正激
推挽变换器:推挽变换器是双端变换器.其实是两个正激变换器通过变压器耦合而来,基本推挽变换器好处是驱动不需隔离,变压器双端磁化,只要两个开关管. 但是,变压器绕组利用率低,开关管电压应力为输入两倍,所以一般只适合低压输入的场合.而且有个问题就是会出现偏磁,所以要采用电流型控制等方法来避免. 如果将两个双管正激同样耦合,可以构成四开关管的推挽变换器,也就是所谓的双双管正激.其管子电压应力下降为输入电压.其他等同.
推挽正激是最近出现的一种新拓扑,通过一个电容来解决变换器漏感尖峰,偏磁等问题.在VRM 中有应用.。

相关文档
最新文档