镍基合金

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

镍基合金

镍基合金的代表材料有:

1,Incoloy合金,如Incoloy800,主要成分为;32Ni-21Cr-Ti,Al;属于耐热合金;

2,Inconel合金,如Inconel600,主要成分是;73Ni-15Cr-Ti,Al;属于耐热合金;

3,Hastelloy合金,即哈氏合金,如哈氏C-276,主要成分为;

56Ni-16Cr-16Mo-4W;属于耐蚀合金;

4,Monel合金,即蒙乃尔合金,比如说蒙乃尔400,主要成分是;65Ni-34Cu;属于耐蚀合金;

钨钴合金

WC-Co hard alloy

钨钴合金又称碳化钨-钴硬质合金。碳化钨和金属钴组成的硬质合金。按钴含量,可分为高钴(20%~30%)、中钴(10%~15%)和低钴(3%~8%)三类。这类金属陶瓷可按通常特种陶瓷配料、成型等工艺制造,惟有烧成应根据坯料性质及成品质量采用控制烧结气氛为真空或还原气氛,一般在碳管电炉、通氢钼丝电炉、高频真空炉内进行。中国生产的这类硬质合金的牌号有YG2,YG3,YG3X,YG4C……等。字母“YG”表示“WC-Co”,“G”后面的数字表示Co的含量,“X”表示细晶粒,“C”表示粗晶粒。这类金属陶瓷通常抗弯强度和断裂韧性随钴含量的增加而提高,而硬度下降。钨钴合金具有较高的抗弯强度、抗压强度、冲击韧性、弹性模量和较小的热膨胀系数,是硬质合金中使用最广泛的一类。用作刀具可加工铸铁、有色金属、非金属、耐热合金、钛合金和不锈钢等,还可作引伸模具、耐磨零件、冲压模具和钻头等。

钨和钴为主要成份的一种合金,多用于矿山开采的钎头制作。

硬质合金分类

WC刀具

①钨钴类硬质合金

主要成分是碳化钨(WC)和粘结剂钴(Co)。

其牌号是由“YG”(“硬、钴”两字汉语拼音字首)和平均含钴量的百分数组成。

例如,YG8,表示平均WCo=8%,其余为碳化钨的钨钴类硬质合金。

一般钨钴类合金主要实用于:硬质合金刀具,模具,以及地矿类产品.

硬质合金切削刀具

TIC刀具

②钨钛钴类硬质合金

主要成分是碳化钨、碳化钛(TiC)及钴。

其牌号由“YT”(“硬、钛”两字汉语拼音字首)和碳化钛平均含量组成。

例如,YT15,表示平均TiC=15%,其余为碳化钨和钴含量的钨钛钴类硬质合金。

钨钛钽刀具

③钨钛钽(铌)类硬质合金

主要成分是碳化钨、碳化钛、碳化钽(或碳化铌)及钴。这类硬质合金又称通用硬质合金或万能硬质合金。

其牌号由“YW”(“硬”、“万”两字汉语拼音字首)加顺序号组成,如YW1。

价格:180元/公斤

产地:泰州

品牌:旺龙

规格:轴套喷焊粉末

- 详细介绍 -

产品特性:Ni55是硬度比较高的一种合金粉末,粉末的自熔性、润湿性和喷焊性能好、耐磨、耐蚀、切削困难适用于湿式磨削。

用途:适用于注水泵柱塞、阀门、泵套、内燃机气门的小端面喷焊,轴类等零件的表面强化及修复。

粉末熔融温度:850~1070°C

喷焊沉积层硬度:HRC:54~60

粉末粒度范围:-150~+320目(二步法)-150-+400目(一步法)-200(真空熔烧)

司太立(Stellite)是一种能耐各种类型磨损和腐蚀以及高温氧化的硬质合金。即通常所说的钴基合金,司太立合金由美国人Elwood Hayness 于1907年发明。司太立合金是以钴作为主要成分,含有相当数量的镍、铬、钨和少量的钼、铌、钽、钛、镧等合金元素,偶尔也还含有铁的一类合金。根据合金中成分不同,它们可以制成焊丝,粉末用于硬面堆焊,热喷涂、喷焊等工艺,也可以制成铸锻件和粉末冶金件。

司太立

按使用用途分类,司太立合金可以分为司太立耐磨损合金,司太立耐高温合金及司太立耐磨损和水溶液腐蚀合金。一般使用工况下,其实都是兼有耐磨损耐高温或耐磨损耐腐蚀的情况,有的工况还可能要求同时耐高温耐磨损耐腐蚀,而越是在这种复杂的工况下,才越能体现司太立合金的优势。

司太立合金的典型牌号有:Stellite1,Stellite4,Stellite6,Stellite12,Stellite20,Stellite31,Stellite100等。在我国,主要对司太立高温合金研究比较深入和透彻(国内主要研究机构与推广单位有钢铁研究总院与北京融品科技有限公司等)。与其它高温合金不同,司太立高温合金不是由与基体牢固结合的有序沉淀相来强化,而是由已被固溶强化的奥氏体fcc基体和基体中分布少量碳化物组成。铸造司太立高温合金却是在很大程度上依靠碳化物强化。纯钴晶体在417℃以下是密排六方(hcp)晶体结构,在更高温度下转变为fcc。为了避免司太立高温合金在使用时发生这种转变,实际上所有司太立合金由镍合金化,以便在室温到熔点温度范围内使组织稳定化。

司太立合金具有平坦的断裂应力-温度关系,但在1000℃以上却显示出比其他高温下具有优异的抗热腐蚀性能,这可能是因为该合金含铬量较高,这是这类合金的一个特征。

20世纪30年代末期,由于活塞式航空发动机用涡轮增压器的需要,开始研制钴基高温合金。1942年﹐美国首先用牙科金属材料Vitallium

(Co-27Cr-5Mo-0.5Ti)制作涡轮增压器叶片取得成功。在使用过程中这种合金不断析出碳化物相而变脆。因此﹐把合金的含碳量降至0.3%,同时添加2.6%的镍,以提高碳化物形成元素在基体中的溶解度,这样就发展成为HA-21合金。40年代末,X-40和HA-21制作航空喷气发动机和涡轮增压器铸造涡轮叶片和导向叶片,其工作温度可达850-870℃。1953年出现的用作锻造涡轮叶片的S-816,是用多种难熔元素固溶强化的合金。从50年代后期到60年代末,美国曾广泛使用过4种铸造司太立合金:WI-52,X-45,Mar-M509和FSX-414。变形司太立合金多为板材,如L-605用于制作燃烧室和导管。1966年出现的HA-188,因其中含镧而改善了抗氧化性能。苏联用于制作导向叶片的司太立合金∏K4﹐相当于HA-21。司太立合金的发展应考虑钴的资源情况。钴是一种重要战略资源,世界上大多数国家缺钴,以致司太立合金的发展受到限制。

一般钴基高温合金缺少共格的强化相,虽然中温强度低(只有镍基合金的50-75%),但在高于980℃时具有较高的强度、良好的抗热疲劳、抗热腐蚀和耐磨蚀性能,且有较好的焊接性。适于制作航空喷气发动机、工业燃气轮机、舰船燃气轮机的导向叶片和喷嘴导叶以及柴油机喷嘴等。

碳化物强化相钴基高温合金中最主要的碳化物是 MC,M23C6和M6C在铸造司太立合金中,M23C6是缓慢冷却时在晶界和枝晶间析出的。在有些合金中,细小的M23C6能与基体γ形成共晶体。MC碳化物颗粒过大,不能对位错直接产生显着的影响,因而对合金的强化效果不明显,而细小弥散的碳化物则有良好的强化作用。位于晶界上的碳化物(主要是M23C6)能阻止晶界滑移,从而改善持久强度,钴基高温合金HA-31(X-40)的显微组织为弥散的强化相为 (CoCrW)6 C型碳化物。

在某些司太立合金中会出现的拓扑密排相如西格玛相和Laves等是有害的,会使合金变脆。司太立合金较少使用金属间化合物进行强化,因为Co3 (Ti ﹐Al)﹑Co3Ta等在高温下不够稳定,但近年来使用金属间化合物进行强化的司太立合金也有所发展。

司太立合金中碳化物的热稳定性较好。温度上升时﹐碳化物集聚长大速度比镍基合金中的γ相长大速度要慢,重新回溶于基体的温度也较高(最高可达1100℃),因此在温度上升时﹐司太立合金的强度下降一般比较缓慢。

司太立合金有很好的抗热腐蚀性能,一般认为,司太立合金在这方面优于镍基合金的原因,是钴的硫化物熔点(如Co-Co4S3共晶,877℃)比镍的硫化物熔点(如Ni-Ni3S2共晶645℃)高,并且硫在钴中的扩散率比在镍中低得多。而且由于大多数司太立合金含铬量比镍基合金高,所以在合金表面能形成抵抗碱金属硫酸盐(如Na2SO4腐蚀的Cr2O3保护层)。但司太立合金抗氧化能力通常比镍基合金低得多。

早期的司太立合金用非真空冶炼和铸造工艺生产。后来研制成的合金,如Mar-M509合金,因含有较多的活性元素锆、硼等,用真空冶炼和真空铸造生产。

相关文档
最新文档