中考数学知识点过关培优 易错 难题训练∶相似附答案

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、相似真题与模拟题分类汇编(难题易错题)

1.如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题:

(1)求证:△BEF∽△DCB;

(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值;

(3)如图2过点Q作QG⊥AB,垂足为G,当t为何值时,四边形EPQG为矩形,请说明理由;

(4)当t为何值时,△PQF为等腰三角形?试说明理由.

【答案】(1)解:证明:∵四边形是矩形,

在中,

分别是的中点,

(2)解:如图1,过点作于,

(舍)或秒

(3)解:四边形为矩形时,如图所示:

解得:

(4)解:当点在上时,如图2,

当点在上时,如图3,

时,如图4,

时,如图5,

综上所述,或或或秒时,是等腰三角形.

【解析】【分析】(1)根据矩形的性质可证得AD∥BC,∠A=∠C,根据中位线定理可证得EF∥AD,就可得出EF∥BC,可证得∠BEF=∠C,∠BFE=∠DBC,从而可证得结论。(2)过点Q作QM⊥EF,易证QM∥BE,可证得△QMF∽△BEF,得出对应边成比例,可求出QM的值,再根据△PQF的面积为0.6cm2,建立关于t的方程,求解即可。

(3)分情况讨论:当点 Q 在 DF 上时,如图2, PF=QF;当点 Q 在 BF 上时, PF=QF,如图3;PQ=FQ 时,如图4;PQ=PF 时,如图5,分别列方程即可解决问题。

2.如图,抛物线与x轴交于两点A(﹣4,0)和B(1,0),与y轴交于点C(0,2),动点D沿△ABC的边AB以每秒2个单位长度的速度由起点A向终点B 运动,过点D作x轴的垂线,交△ABC的另一边于点E,将△ADE沿DE折叠,使点A落在点F处,设点D的运动时间为t秒.

(1)求抛物线的解析式和对称轴;

(2)是否存在某一时刻t,使得△EFC为直角三角形?若存在,求出t的值;若不存在,请说明理由;

(3)设四边形DECO的面积为s,求s关于t的函数表达式.

【答案】(1)解:把A(﹣4,0),B(1,0),点C(0,2)代入

得:,解得:,

∴抛物线的解析式为:,

对称轴为:直线x=﹣;

(2)解:存在,∵AD=2t,

∴DF=AD=2t,

∴OF=4﹣4t,

∴D(2t﹣4,0),

∵直线AC的解析式为:,∴E(2t﹣4,t),

∵△EFC为直角三角形,分三种情况讨论:

①当∠EFC=90°,则△DEF∽△OFC,

∴,即,解得:t= ;

②当∠FEC=90°,

∴∠AEF=90°,

∴△AEF是等腰直角三角形,

∴DE= AF,即t=2t,

∴t=0,(舍去),

③当∠ACF=90°,则AC2+CF2=AF2,即(42+22)+[22+(4t﹣4)2]=(4t)2,解得:t= ,∴存在某一时刻t,使得△EFC为直角三角形,此时,t= 或;

(3)解:∵B(1,0),C(0,2),

∴直线BC的解析式为:y=﹣2x+2,

当D在y轴的左侧时,S= (DE+OC)•OD= (t+2)•(4﹣2t)=﹣t2+4 (0<t<2);

当D在y轴的右侧时,如图2,

∵OD=4t﹣4,DE=﹣8t+10,S= (DE+OC)•OD= (﹣8t+10+2)•(4t﹣4),即

(2<t<).

综上所述:

【解析】【分析】(1)(1)利用待定系数法,将点A、B、C的坐标代入函数解析式,建立方程组求解即可。

(2)根据题意分别求出AD、DF、OF的长,表示出点D的坐标,利用待定系数法求出直线BC的函数解析式,表示出点E的坐标,再分三种情况讨论△EFC为直角三角形:①当∠EFC=90°,则△DEF∽△OFC,根据相似三角形的性质,列出关于t的方程求解即可;

②∠FEC=90°,∠AEF=90°,△AEF是等腰直角三角形求出t的值即可;③当∠ACF=90°,则AC2+CF2=AF2,建立关于t的方程求解即可,从而可得出答案。

(3)求得直线BC的解析式为:y=-2x+2,当D在y轴的左侧时,当D在y轴的右侧时,如图2,根据梯形的面积公式即可得到结论。

3.如图,抛物线过点,.为线段OA上一个动点(点M与点A不重合),过点M作垂直于x轴的直线与直线AB和抛物线

分别交于点P、N.

(1)求直线AB的解析式和抛物线的解析式;

(2)如果点P是MN的中点,那么求此时点N的坐标;

(3)如果以B,P,N为顶点的三角形与相似,求点M的坐标.【答案】(1)解:设直线的解析式为()∵,

∴解得

∴直线的解析式为

∵抛物线经过点,

∴解得

(2)解:∵轴,则,

∴,

∵点是的中点

解得,(不合题意,舍去)

(3)解:∵,,

∴,

∴当与相似时,存在以下两种情况:

∴解得

∴ ,解得

【解析】【分析】(1)运用待定系数法解答即可。

(2)由(1)可得直线AB的解析式和抛物线的解析式,由点M(m,0)可得点N,P用m 表示的坐标,则可求得NP与PM,由NP=PM构造方程,解出m的值即可。

(3)在△BPN与△APM中,∠BPN=∠APM,则有和这两种情况,分别用含m的代数式表示出BP,PN,PM,PA,代入建立方程解答即可。

4.已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.

相关文档
最新文档