成都七中万达学校数学几何图形初步检测题(Word版 含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学几何模型部分解答题压轴题精选(难)

1.如图 1,CE 平分∠ACD,AE 平分∠BAC,且∠EAC+∠ACE=90°.

(1)请判断 AB 与 CD 的位置关系,并说明理由;

(2)如图2,若∠E=90°且AB 与CD 的位置关系保持不变,当直角顶点E 移动时,写出∠BAE 与∠ECD 的数量关系,并说明理由;

(3)如图 3,P 为线段 AC 上一定点,点 Q 为直线 CD 上一动点,且 AB 与 CD 的位置关系保持不变,当点 Q 在射线 CD 上运动时(不与点 C 重合),∠PQD,∠APQ 与∠ BAC 有何数量关系?写出结论,并说明理由.

【答案】(1),理由如下:

CE 平分,AE 平分,

(2),理由如下:

如图,延长AE交CD于点F,则

由三角形的外角性质得:

(3),理由如下:

,即

由三角形的外角性质得:

又,即

即.

【解析】【分析】(1)根据角平分线的定义、平行线的判定即可得;(2)根据平行线的性质(两直线平行,内错角相等)、三角形的外角性质即可得;(3)根据平行线的性质(两直线平行,同旁内角互补)、三角形的外角性质、邻补角的定义即可得.

2.如图,已知:点不在同一条直线, .

(1)求证: .

(2)如图②,分别为的平分线所在直线,试探究与的数量关系;

(3)如图③,在(2)的前提下,且有,直线交于点,,请直接写出 ________.

【答案】(1)证明:过点C作,则,

(2)解:过点Q作,则,

∵,

∵分别为的平分线所在直线∴

(3):1:2:2

【解析】【解答】解:(3)∵

∴ .

故答案为: .

【分析】(1)过点C作,则,再利用平行线的性质求解即可;(2)过点Q作,则,再利用平行线的性质以及角平分线的性质得出

,再结合(1)的结论即可得出答案;(3)由(2)的结论可得出,又因为,因此,联立即可求出两角的度数,再结合(1)的结论可得出的度数,再求答案即可.

3.在数轴上、两点分别表示有理数和,我们用表示到之间的距离;例如表示7到3之间的距离.

(1)当时,的值为________.

(2)如何理解表示的含义?

(3)若点、在0到3(含0和3)之间运动,求的最小值和最大值.

【答案】(1)5或-3

(2)解:∵ = ,

∴表示到-2的距离

(3)解:∵点、在0到3(含0和3)之间运动,

∴0≤a≤3, 0≤b≤3,

当时, =0+2=2,此时值最小,

故最小值为2;

当时, =2+5=7,此时值最大,

故最大值为7

【解析】【解答】(1)∵,

∴a=5或-3;

故答案为:5或-3;

【分析】(1)此题就是求表示数a的点与表示数1的点之间的距离是4,根据表示数a的点在表示数1的点的右边与左边两种情况考虑即可得出答案;

(2)此题就是求表示数b的点与表示数-2的点之间的距离;

(3)此题就是求表示数a的点与表示数2的点之间的距离及表示数b的点与表示数-2的点之间的距离和,而0≤a≤3, 0≤b≤3, 借助数轴当时,的值最小;当时,的值最大.

4.已知如图,∠COD=90°,直线AB与OC交于点B,与OD交于点A,射线OE与射线AF交于点G.

(1)若OE平分∠BOA,AF平分∠BAD,∠OBA=42°,则∠OGA=________;

(2)若∠GOA= ∠BOA,∠GAD= ∠BAD,∠OBA=42°,则∠OGA=________;

(3)将(2)中的“∠OBA=42°”改为“∠OBA= ”,其它条件不变,求∠OGA的度数.(用含的代数式表示)

(4)若OE将∠BOA分成1︰2两部分,AF平分∠BAD,∠ABO= (30°< α <90°),求∠OGA的度数.(用含的代数式表示)

【答案】(1)21°

(2)14°

(3)解:∵∠BOA=90°,∠OBA=α,

∴∠BAD=∠BOA+∠ABO=90°+α,

∵∠BOA=90°,∠GOA= ∠BOA,∠GAD= ∠BAD

∴∠GAD=30°+ α,∠EOA=30°,

∴∠OGA=∠GAD−∠EOA= α.

(4)解:当∠EOD:∠COE=1:2时,

∴∠EOD=30°,

∵∠BAD=∠ABO+∠BOA=α+90°,

∵AF平分∠BAD,

∴∠FAD= ∠BAD,

∵∠FAD=∠EOD+∠OGA,

∴2×30°+2∠OGA=α+90°,

∴∠OGA= α+15°;

当∠EOD:∠COE=2:1时,则∠EOD=60°,

同理得到∠OGA= α−15°,

即∠OGA的度数为α+15°或α−15°.

【解析】解:(1)∵∠BOA=90°,∠OBA=42°,

∴∠BAD=∠BOA+∠ABO=132°,

∵AF平分∠BAD,OE平分∠BOA,∠BOA=90°,

∴∠GAD= ∠BAD=66°,∠EOA= ∠BOA=45°,

∴∠OGA=∠GAD−∠EOA=66°−45°=21°;

故答案为21°;

⑵∵∠BOA=90°,∠OBA=42°,

∴∠BAD=∠BOA+∠ABO=132°,

∵∠BOA=90°,∠GOA= ∠BOA,∠GAD= ∠BAD,

∴∠GAD=44°,∠EOA=30°,

∴∠OGA=∠GAD−∠EOA=44°−30°=14°;

故答案为14°;

【分析】(1)根据三角形外角的性质求出∠BAD,求出∠GOA和∠GAD,根据三角形外角性质求出即可;

(2)根据三角形外角的性质求出∠BAD,求出∠GOA和∠GAD,根据三角形外角性质求出即可;

(3)根据三角形外角的性质求出∠BAD,求出∠GOA和∠GAD,根据三角形外角性质求出

相关文档
最新文档