SPSS数据分析—广义线性模型

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

我们前面介绍的一般线性模型、Logistic回归模型、对数线性模型、Poisson 回归模型等,实际上均属于广义线性模型的范畴,广义

线性模型包含的范围非常广泛,原因在于其对于因变量、因变量的概率分布等条件的限制放宽,使其应用范围加大。

广义线性模型由以下几个部分组成

1.因变量

广义线性模型的因变量还是要去独立性,但是分布不再局限于正态分布一种,而是可以是指数族概率分布的任意一种,其方差也可

以不稳定,但必须要能表达为依赖均值的函数

2.线性部分

广义线性模型因变量与自变量必须为线性关系,即因变量与自变量之间是一次方函数关系,这点和传统线性模型也一样

3.连接函数

用于描述因变量的期望值是如何和预测值相关联的

由上可知,和传统线性模型相比,广义线性模型主要从以下两个方面进行了扩展

1.因变量的分布范围扩大

2.连接函数的引入

通过选定不同的因变量概率分布、连接函数等,就可以拟合各种不同的广义线性模型,例如当因变量分布为正态分布、连接函数为

恒等函数时,就是拟合一般线性模型;当因变量分布为二项分布,连接函数为Logit函数时,就是拟合Logistic回归,当因变量分布

为Poisson分布,连接函数为对数时,就是拟合Poisson回归,下面我们通过一个例子来进行说明广义线性模型在SPSS中的使用情况

例,希望研究不同温度不同催化剂不同批次条件下,某化合物的转化率情况,数据如下

根据本例的实验目的,可以采用方差分析,但是本例为嵌套实验设计,共有三个因素,温度、催化剂、批次,其中温度是嵌套在催

化剂因素下面的,因此SPSS无法直接使用方差分析的对话框来进行分析,需要在程序中进行修改,比较麻烦,但是如果使用广义线

性模型,就可以直接使用对话框进行分析了

分析—广义线性模型—广义线性模型

相关文档
最新文档