温湿度独立控制系统
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
班级:建环0801 学号:081304129 姓名:陶天吟
温湿度独立控制空调系统
摘要:本文在分析了目前热湿联合处理空调系统所面临的主要问题的基础上,提出了热湿独立控制空调策略:采用新风去除室内的余湿、承担室内空气质量的任务,采用高温冷源去除室内的余热。
并提出了温湿度独立控制空调方式对室内末端装置、新风处理、制备高温冷源的要求与影响,介绍了温湿度独立控制系统的应用实践工程。
关键字:温湿度独立控制新风高温冷源
1 引言
从热舒适与健康出发,要求对室内温湿度进行全面控制。
夏季人体舒适区为25ºC,相对湿度60%,此时露点温度为16.6ºC。
空调排热排湿的任务可以看成是从25ºC 环境中向外界抽取热量,在16.6ºC的露点温度的环境下向外界抽取水分。
目前空调方式的排热排湿都是通过空气冷却器对空气进行冷却和冷凝除湿,再将冷却干燥的空气送入室内,实现排热排湿的目的。
现有的热湿联合处理的空调方式存在如下问题。
(1)热湿联合处理的能源浪费。
由于采用冷凝除湿方法排除室内余湿,冷源的温度需要低于室内空气的露点温度,考虑传热温差与介质输送温差,实现16.6ºC的露点温度需要约7ºC的冷源温度,这是现有空调系统采用5~7ºC的冷冻水、房间空调器中直接蒸发器的冷媒蒸发温度也多在5ºC的原因。
在空调系统中,占总负荷一半以上的显热负荷部分,本可以采用高温冷源排走的热量却与除湿一起共用5~7ºC的低温冷源进行处理,造成能量利用品位上的浪费。
而且,经过冷凝除湿后的空气虽然湿度(含湿量)满足要求,但温度过低,有时还需要再热,造成了能源的进一步浪费与损失。
(2)难以适应热湿比的变化。
通过冷凝方式对空气进行冷却和除湿,其吸收的显热与潜热比只能在一定的范围内变化,而建筑物实际需要的热湿比却在较大的范围内变化。
一般是牺牲对湿度的控制,通过仅满足室内温度的要求来妥协,造成室内相对湿度过高或过低的现象。
过高的结果是不舒适,进而降低室温设定值,通过降低室温来改善热舒适,造成能耗不必要的增加;相对湿度过低也将导致由于与室外的焓差增加使处理室外新风的能耗增加。
(3)室内空气品质问题。
大多数空调依靠空气通过冷表面对空气进行降温除湿,这就导致冷表面成为潮湿表面甚至产生积水,空调停机后这样的潮湿表面就成为霉菌繁殖的最好场所。
空调系统繁殖和传播霉菌成为空调可能引起健康问题的主要原因。
另外,目前我国大多数城市的主要污染物仍是可吸入颗粒物,因此有效过滤空调系统引入的室外空气是维持室内健康环境的重要问题。
然而过滤器内必然是粉尘聚集处,如果再漂溅过一些冷凝水,则也成为各种微生物繁殖的最好场所。
频繁清洗过滤器既不现实,也不是根本的解决方案。
(4)室内末端装置的问题。
为排除足够的余热余湿同时又不使送风温度过低,就要求有较大的循环通风量。
例如每平方米建筑面积如果有80 W/m2显热需要排除,房间设定温度为25ºC,当送风温度为15ºC时,所要求循环风量为24 m3/hr/m2,这就往往造成室内很大的空气流动,使居住者产生不适的吹风感。
为减少这种吹风感,就要通过改进送风口的位置和形式来改善室内气流组织。
这往往要在室内布置风道,从而降低室内净高或加大楼层间距。
很大的通风量还极容易引起空气噪声,并且很难有效消除。
在冬季,为了避免吹风感,即使安装了空调系统,也往往不使用热风,而通过另外的暖气系统通过采暖散热器供热。
这样就导致室内重复安装两套环境控制系统,分别供冬夏使用。
(5)输配能耗的问题。
为了完成室内环境控制的任务就需要有输配系统,
、气味等。
在中央空调系统中,风机、水泵消耗了40~70%带走余热、余湿、CO
2
的整个空调系统的电耗。
在常规中央空调系统中,多采用全空气系统的形式。
所有的冷量全部用空气来传送,导致输配效率很低。
此外,随着能源问题的日益严重,以低品位热能作为夏季空调动力成为迫切需要。
目前北方地区大量的热电联产集中供热系统在夏季由于无热负荷而无法运行,使得电力负荷出现高峰的夏季热电联产发电设施反而停机,或者按纯发电模式低效运行。
如果可以利用这部分热量驱动空调,既省下空调电耗,又可使热电联产电厂正常运行,增加发电能力。
这样即可减缓夏季供电压力,又提高能源利用率,是热电联产系统继续发展的关键。
由于空调负荷在一天内变化显著,与热电联产电厂提供热能并不是很好匹配,如何实现有效的蓄能,以协调二者的矛盾也是热能使用当中存在的问题。
综上所述,空调的广泛需求、人居环境健康的需要和能源系统平衡的要求,对目前空调方式提出了挑战。
新的空调应该具备的特点为:
加大室外新风量,能够通过有效的热回收方式,有效的降低由于新风量增加带来的能耗增大问题;
减少室内送风量,部分采用与采暖系统公用的末端方式;
取消潮湿表面,采用新的除湿途径;
不用空气过滤式过滤器,采用新的空气净化方式;
少用电能,以低品位热能为动力;
能够实现高体积利用率的高效蓄能;
从如上要求出发,目前普遍认为温湿度独立控制系统可能是一个有效的解决途径。
2 温湿度独立控制空调系统
与异味的任务。
研究表明:排除空调系统承担着排除室内余热、余湿、CO
2
、异味所需要的新风量与变化趋势一致,即可以通过新风同室内余热与排除CO
2
时满足排余湿、CO
与异味的要求,而排除室内余热的任务则通过其他的系统(独
2
立的温度控制方式)实现。
由于无需承担除湿的任务,因而可用较高温度的冷源即可实现排除余热的控制任务。
对照前言中现有空调系统存在的问题,温湿度独立控制空调系统可能是一个有效的解决途径。
温湿度独立控制空调系统中,采用温度与湿度两套独立的空调控制系统,分别控制、调节室内的温度与湿度,从而避免了常规空调系统中热湿联合处理所带来的损失。
由于温度、湿度采用独立的控制系统,可以满足不同房间热湿比不断变化的要求,克服了常规空调系统中难以同时满足温、湿度参数的要求,避免了室内湿度过高(或过低)的现象。
温湿度独立控制空调系统的基本组成为:处理显热的系统与处理潜热的系统,两个系统独立调节分别控制室内的温度与湿度,参见图1。
处理显热的系统包括:高温冷源、余热消除末端装置,采用水作为输送媒介。
由于除湿的任务由处理潜热的系统承担,因而显热系统的冷水供水温度不再是常规冷凝除湿空调系统中的7ºC,而是提高到18ºC左右,从而为天然冷源的使用提供了条件,即使采用机械制冷方式,制冷机的性能系数也有大幅度的提高。
余热消除末端装置可以采用辐射板、干式风机盘管等多种形式,由于供水的温度高于室内空气的露点
温度,因而不存在结露的危险。
处理潜热的系统,同时承担去除室内CO 2、异味,
以保证室内空气质量的任务。
此系统由新风处理机组、送风末端装置组成,采用新风作为能量输送的媒介。
在处理潜热的系统中,由于不需要处理温度,因而湿度的处理可能有新的节能高效方法。
在温湿度独立控制空调系统中,采用新风承担排除室内余湿、CO 2、室内异
味,保证室内空气质量的任务。
一般来说,这些排湿,排有害气体的负荷仅随室内人员数量而变化,因此可采用变风量方式,根据室内空气的湿度或CO 2浓度调节风量。
由于仅是为了满足新风和湿度的要求,如果人均风量40
m 3/hr ,每人5平方米面积,则换气次数只在2~3次/hr ,远小于变风量系统的风量。
这部分空气可通过置换送风的方式从下侧或地面送出,也可采用个性化送风方式直接将新风送入人体活动区,参见图2。
而室内的显热则通过另外的系统来排除(或补充)。
由于这时只需要排除显热,就可以用较高温度的冷源通过辐射、对流等多种方式实现。
当室内设定温度为25℃时,采用屋顶或垂直表面辐射方式,即使平均冷水温度为20℃,每平米辐射表面仍可排除显热40 W/m 2,已基本可满足多数类型建筑排除围护结构和室内设备发热量的要求。
由于水温一直高于室内露点温度,因此不存在结露的危险和排凝水的要求。
此外,还可以采用干式风机盘管通入高温冷水排除显热。
由于不存在凝水问题,干式风机盘管可采用完全不同的结构和安装方式,参见图3。
这可使风机盘管成本和安装费大幅度降低,并且不再占用吊顶空间。
这种末端方式在冬季可完全不改变新风送风参数,仍由其承担室内湿度和CO 2的控制。
辐射
板或干式风机盘管则通入热水,变供冷为供热,继续维持室温。
与变风量系统相比,这种系统实现了室内温度和湿度的分别控制。
尤其实现了新风量随人员数量同步增减。
从而避免了变风量系统冬季人员增加,热负荷降低,新风量也随之降低的问题。
与目前的风机盘管加新风方式比较,免去了凝水盘和凝水排除系统。
彻底消除了实际工程中经常出现问题的这一隐患。
同时由于不再存在潮湿表面,根除了滋生霉菌的温床,可有效改善室内空气品质。
由于室内相对湿度可一直维持在60%以下,较高的室温(26℃)就可以达到热舒适要求。
这就避免了由于相对湿度太高,只得把室温降低(甚至到20℃),以维持舒适要求的问题。
既降低了运行能耗,还减少了由于室内外温差过大造成的热冲击对健康的危害。