菱形的判定教学设计新部编版

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教师学科教案[ 20 – 20 学年度第__学期]

任教学科:_____________

任教年级:_____________

任教老师:_____________

xx市实验学校

18.2.2 菱形的判定

石堰河初中 刘秀良

一、教学目标:

知识技能: 经历菱形的判定方法的探究过程,掌握菱形的三种判定方法.

数学思考: 1、经历利用菱形的定义探究菱形其他判定方法的过程,培养学生的

动手实验、观察、推理意识,发展学生的形象思维和逻辑推理能力.

2、根据菱形的判定定理进行简单的证明,培养学生的逻辑推理能力

和演绎能力.

解决问题: 1、尝试从不同角度寻求菱形的判定方法,并能有效的解决问题,尝

试评价不同判定方法之间的差异.

2、通过对菱形判定过程的反思,获得灵活判定四边形是菱形的经验.

情感态度: 在探究菱形的判定方法的活动中获得成功的体验,通过运用菱形的

判定和性质,锻炼克服困难的意志,建立自信心.

二、教学重点: 菱形判定方法的探究.

三、教学难点: 菱形判定方法的探究及灵活运用.

四、教学过程:

活动1、引入新课,激发兴趣

1、复习

(1)菱形的定义:一组邻边相等的平行四边形是菱形。

(2)菱形的性质1 菱形的两组对边分别平行,四条边都相等;

性质2 菱形的两组对角分别相等,邻角互补;

性质3 菱形的两条对角线互相平分;菱形的两条对角线互相垂直,且

每一条对角线平分一组对角。

2、导入: 要判定一个四边形是菱形,除根据定义判定外,还有其它的判定

方法吗?

活动2、探究与归纳菱形的第二个判定方法

【问题牵引】 用一长一短两根细木条,在它们的中点处固定一个小钉子,做成

一个可转动的十字架,四周围上一根橡皮筋,做成一个四边形。

师问: 任意转动木条,这个

四边形总有什么特征?你能证明

你发现的结论吗?(平行四边形

左图)继续转动木条,观察什么

时候橡皮筋周围的四边形变成菱形?你能证明你的猜想吗?

学生猜想:对角线互相垂直的平行四边形是菱形。

教师提问:这个命题的前提是什么?结论是什么? 学生用几何语言表示命题如下:

已知:在□ABCD 中,对角线AC ⊥BD ,

求证:□ABCD 是菱形。

分析:我们可根据菱形的定义来证明这个平行四边形是菱形,由平行四边形

的性质得到BO=DO ,由∠AOB=∠AOD=90º及AO=AO ,得ΔAOB ≌ΔAOD ,可得到AB=AD

(或根据线段垂直平分线性质定理,得到AB=AD) ,最后证得□ABCD 是菱形。

【归纳定理】

通过探究和进一步证明可以归纳得到菱形的第二个判定方法(判定定理1):

O D C B A

对角线互相垂直的平行四边形是菱形。

提示:此方法包括两个条件——(1)是一个平行四边形;(2)两条对角线互相垂直。对角线互相垂直且平分的四边形是菱形。

分析:(1)通过制作木条,让学生初步认识图形,并利用平行四边形的判定方法得出图形总是平行四边形。既为菱形的第二种判定方法的探究作好了知识上的铺垫,又巩固了平行四边形的判定方法,培养学生的合情推理能力。

(2)通过实验操作,让学生带着问题,经历探究物体与图形的形状、大小位置关系和变换的过程,感受动手实验的乐趣,培养猜想的意识,感受直观操作得出猜想的便捷性,培养学生观察、实验、猜想等合情推理能力。

(3)通过猜想和论证,进一步突出图形性质的探索过程,直观操作和逻辑推理有机结合,进一步让学生认识到逻辑推理的必要性,进一步让学生感受到逻辑推理是得出结论的重要手段,很好的突出了教学的重点。

活动3、菱形第二个判定方法的应用

例3 如图,如图,□ABCD的对角线AC、BD相交

于点O,且AB=5,AO=4,BO=3,求证:□ABCD是菱形。

思路点拨:由于平行四边形对角线互相平分,构

成了△ABO是一个三角形,•而AB=5,AO=4,BO=3,由勾

股定理的逆定理可知∠AOB=90°,证出对角线互相垂直,

这样可利用菱形第二个判定方法证得。

活动4、探究与归纳菱形的第三个判定方法

【操作探究】多媒体演示画图过程: 先画两条等长的线段AB、AD,然后分别以B、D为圆心,AB为半径画弧,得到两弧的交点C,连接BC、CD,就得到了一个四边形,提问:观察画图的过程,你能说明得到的四边形为什么是菱形吗?你能得到什么结论?

学生观察思考后,展开讨论,指出该四边形四条边相等,即有两组对边相等,它首先是一个平行四边形,又有一组邻边相等,根据菱形定义即可判定该四边形是菱形。得出从一般的四边形直接判定菱形的方法:四边相等的四边形是菱形。学生进行几何论证,教师规范学生的证明过程。

【归纳定理】

从一般的四边形直接判定菱形的方法(判定定理2):

四边相等的四边形是菱形。

分析:从简单的问题出发,运用菱形的判定方法判定四边形是菱形。让学生在证明过程中,掌握菱形的第二种判别方法的应用,达到“学数学,用数学”的目的,进一步培养学生解决问题的能力。通过独立思考、学生交流、完成证明等过程,进一步培养学生推理文章的能力。

活动5、随堂练习

练习1:

判断下列说法是否正确?为什么?

(1)对角线互相垂直的四边形是菱形;

(2)对角线互相垂直平分的四边形是菱形;

(3)对角线互相垂直,且有一组邻边相等的四边形是菱形;

(4)两条邻边相等,且一条对角线平分一组对角的四边形是菱形.

练习2:填空。

如图:□ABCD的对角线AC与BD相交于点O,

相关文档
最新文档