小波去噪文献综述1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小波图像去噪文献综述
Overview of Wavelet Image Denoising
0.简要说明
本课题主要研究方向是通过小波变换的方法对图像进行去噪处理,以期得到能反应实际特征的容易分析的图像。本综述介绍了小波图像去噪的原理,主要方法,并对小波图像去噪的未来进行了分析与展望。根据本课题的特点,需要检索的文献在小波变换的研究方面主要检索1992年以来的国内外的期刊和学位论文,而在小波去噪及小波变换发展方面主要检索2000年以来的国内外的期刊以期得到最新的信息。
1.前言
在信号数据采集及传输时,不仅能采集或接收到与所研究的问题相关的有效信号,同时也会观测到各种类型的噪声。在实际应用中,为降低噪声的影响,不仅应研究信号采集的方式方法及仪器的选择,更重要的是对已采集或接收的信号寻找最佳的降噪处理方法。对于信号去噪方法的研究可谓是信号处理中一个永恒的话题。传统的去噪方法是将被噪声污染的信号通过一个滤波器,滤除掉噪声频率成分。但对于瞬间信号、宽带噪声信号、非平稳信号等,采用传统方法具有一定的局限性。其次还有傅里叶(Fourier)变换也是信号处理中的重要手段。这是因为信号处理中牵涉到的绝大部分都是语音或其它一维信号,这些信号可以近似的认为是一个高斯过程,同时由于信号的平稳性假设,傅立叶交换是一个很好的信号分析工具。但也有其不足之处,给实际应用带来了困难。
小波变换是继Fourier 变换后的一重大突破,它是一种窗口面积恒定、窗口形状可变(时间域窗口和频率域窗口均可改变)的时频局域化分析方法,它具有这样的特性;在低频段具有较高的频率分辨率及较低的时间分辨率,在高频段具有较高的时间分辨率及较低的频率分辨率,实现了时频窗口的自适应变化,具有时频分析局域性。小波变换的一个重要应用就是图像信号去噪。将小波变换用于信号去噪,它能在去噪的同时而不损坏信号的突变部分。在过去的十多年,小波方法在信号和图像去噪方面的应用引起学者广泛的关注。本文阐述小波图像去噪方法的原理,概括目前的小波图像去噪的主要方法,最后对小波图像去噪方法的发展和应用进行展望。
2小波图像去噪的原理
所谓小波变化, 即: ()()12,,()ab t b Wf a b f a f t dt a ψψ--==⎰
小波分析的基本思想是用一族被称为子波的特定函数去表示或者逼近一个信号。其中的子波函数族是由一个基本的子波函数经过平移和不同尺度的伸缩构成。小波去噪方法也就是寻找从实际信号空间到小波函数空间的最佳映射以便得到原信号的最佳恢复。 3小波图像去噪方法
3.1基于模极大值的图像去噪法
早在1992年,Mallat 提出奇异性检测的理论,从而可以利用小波变换模极大值的方法结合边缘检测来去除噪声。
3.2小波图像萎缩法
1992年,Donoho 和John stone 提出了小波阈值萎缩方法(Wave Shrink),还给出了阈值,并从渐进意义上证明了Wave Shrink 的最优性,与此同时,Krim 等人运用Rissanen 的MDL(Minimum Description Length)
准则,也得到了相同的阈值公式;此后小波阈值萎缩方法被用到各种去噪应用中,并取得了很大的成功,对高斯噪声尤其如此。但是Donoho 和Johns tone 给出的通用阈值,由于有很严重的“过扼杀”小波系数的倾向,因此,人们纷纷对阈值的选择进行了研究,并提出了多种不同的阈值确定方法;后来,人们针对阈值函数的选取也进行了一些研究,并给出了不同的阈值函数,但是当这些方法用到非高斯、有色噪声场合中,效果却不甚理想,其最主要的原因是这些方法都基于独立同分布噪声的假设,并且这些方法大多是从Donoho 和John stone 给出的方法发展而来的,从而它们最后的去噪性能也依赖于用Wave Shrink 确定阈值时对噪声服从独立正态分布的假设。对此,人们提出了具有尺度适应性的阈值选取法,用来解决正态分布有色噪声的小波去噪问题,而另外一些学者则研究了在比白噪声更复杂的噪声情况下的小波去噪问题,并给出了显式的阈值公式。
3.3多小波去噪法
1994年Geronimo 、Hardint 和Massopus 构造了著名的GHM 多小波,它既保持了单小波所具有的良好的时域与频域的局部化特性,又克服了单小波的缺陷。多小波去噪算法为:
步骤1:运用一个预滤波器将含噪图像转变成多流数据。
步骤2:对预处理后多流数据执行多小波变换,得到多小波系数。
步骤3:对多小波系数阈值化。
步骤4:对阈值化后的多流数据IDMWT 。
步骤5:对IDMWT 后的数据进行后滤波处理,得到去噪图像。
3.4基于小波系数模型的去噪法
小波去噪中,小波系数模型非常重要,只有在成功的小波系数模型上,才可能提出成功的去噪方案。S .Giace Chang 提出基于上下文模型的空间自适应小波去噪法,结果表明图像质量好。Grouse 等提出一种基于小波域隐式马尔可夫模型的统计信号处理结构,Hua Xie 和Aleksandra Pizurica 运用有关小波系数空间族的先验知识,采用马尔可夫随机场模型进行图像去噪。利用多尺度随机过程对小波图像系数进行建模,通过阈值判断和邻域判断相结合的方法区分对应边缘处的系数,然后对边缘区和非边缘区的小波系数进行不同的估计,达到图像去噪的目的。将层内和层外统计模型联合起来去噪,效果相当好。
3.5脊波、曲波去噪法
Candes 和Donoho 应用现代调和分析的概念和方法,并使用在小波分析和群展开理论中发展的技术,针对具有较多突变边缘的问题,构造特殊结构的小波基,如ridgelets 和curvelets ,以修正小波变换减少在不连续的边缘附近高频系数产生的数量。为了将脊波变换应用到数字图像中,Donoho 提出一种可逆变换的、正交的、重构性相当好的有限脊波变换,其实现机制是Radon 变换。脊波分析等效于目标函数的Radon 变换域的小波分析,即若令函数的脊波变换为: ()γϕ,f f R =
单尺度脊波是在一个基准尺度s 进行脊波变换,对应于单尺度脊波,Candes 和Donoho 构造了曲线波或者称为多尺度脊波,它是在所有司能的尺度s ≥0进行脊波变换,曲波变换是可逆变换的二维各向同性的小波变换、分割、Radon 变换、小波变换的结合。在二维情况,当图像具有奇异曲线,并且曲线是二次可微的,则曲线波可以自适应地“跟踪”这条奇异曲线,并且他们构造曲线波的紧的框架,对于具有光滑奇异性曲线的目标函数,曲线波提供稳定的、高效的和近于最优的表示。
3.6综合法
小波图像去噪效果比经典的方法要好,实际应用中将小波和经典的方法结合起来,去噪效果往往会更好,优于单独的小波去噪或经典方法。小波图像去噪与经典方法的结合主要有以下几种:
(1)小波变换与维纳滤波器或中值滤波等结合起来。
(2)将小波变换、小波收缩、小波压缩与广义验证法结合起来去噪。