基于小波阈值的医学图像去噪研究
小波阈值去噪技术研究及其在信号处理中的应用
小波阈值去噪技术研究及其在信号处理中的应用
关山;王龙山
【期刊名称】《计算机工程与设计》
【年(卷),期】2008(29)22
【摘要】阈值函数的选取以及阈值的确定是小波收缩消噪的关键问题,阐述了小波变换及小波阈值去噪的基本原理.基于噪声和信号在小波变换下表现出截然不同的性质:噪声对应的小波变换系数将随着尺度的增大迅速衰减,建立了小波收缩消噪的统一框架.在该框架下总结了各种阈值函数的形式以及阈值确定的方式,研究了它们的性能及特点.仿真实验结果表明,该方法既能有效地去除信号噪声,又能较好地保留原信号中的突变信息.
【总页数】3页(P5857-5859)
【作者】关山;王龙山
【作者单位】吉林大学,机械科学与工程学院,吉林,长春,130025;吉林大学,机械科学与工程学院,吉林,长春,130025
【正文语种】中文
【中图分类】TN911.32;TH133
【相关文献】
1.小波阈值去噪在光纤持气率计信号处理中的应用 [J], 孔令富;孔维航;解娜;李英伟
2.小波阈值去噪在FMCW雷达信号处理中的应用 [J], 陈文会;刘芹;刘小民;李喆
3.小波阈值去噪法在非稳定信号处理中的应用 [J], 吕游;王崇倡
4.小波阈值去噪技术研究及其在生物医学信号处理中的应用 [J], 赵治栋;吴涛;潘敏;陈裕泉
5.小波阈值去噪在深小孔钻削声发射信号处理中的应用 [J], 李占国; 宗姝; 史尧臣因版权原因,仅展示原文概要,查看原文内容请购买。
一种小波阈值的图像去噪的新方法
科技信息2008年第24期SCIENCE &TECHNO LO GY INFORMATION ●噪声方差σ消噪前中值滤波维纳滤波本文方法消噪M SE PSN R MS E PS NR M SE PS NR MS E P SNR 0.0164120.06623926.700612727.093810427.93450.0212.217.189625224.116823524.420114426.43280.03180715.561236022.56784322.777918825.4737在图像的获取及传输中,往往会受到噪声的污染,而图像去噪的目的则是尽可能保持原始信号主要特征的同时,除去信号中的噪声。
在图像噪声中,人们根据实际图像的特点、噪声的统计特性和频谱分布的规律,发展了多样的去噪方法。
其中最为普遍的方法是根据噪声能量一般集中于高频,而图像频谱则分布于一个有限区间这一特征,采用低通滤波方法来进行去噪,如低通高斯滤波、维纳滤波等。
传统的去噪方法仅具有空间域或频域的局部的分析能力,在抑制图像噪声的同时,损失了图像的边缘等细节信息,使处理后的图像变得模糊。
近年来,小波理论得到了非常快速的发展。
由于小波变换同时具有时域和频域上的局部性特性以及多分辨分析特性,所以特别适合于图像处理中的应用。
1.小波去噪1.1图像的二维小波变换二维离散小波变换往往可以由一维信号的离散小波变换推导得之。
假设!(x)是一个一维的尺度函数,φ(x)是相应的小波函数,则可以得到二维小波变换的基础函数:φ1(x,y)=%(x)φ(y)φ2(x,y)=%(x )φ(y )φ3(x,y)=φ(x)φ(y)%(x,y)=%(x )%(y )对于图像而言,我们往往可以把它看作是二维矩阵,一般假设图像矩阵的大小为N ×N,且有N=2n (n 为非负的整数)。
在经过每次小波变换后,图像便分解为4个大小为原来尺寸1/4的子块频带区域。
毕业设计(论文)-基于小波图像去噪的方法研究[管理资料]
毕业论文基于小波变换的图像去噪方法的研究学生姓名: 学号:学系 专 指导教师:2011年 5 月基于小波变换的图像去噪方法的研究摘要图像是人类传递信息的主要媒介。
然而,图像在生成和传输的过程中会受到各种噪声的干扰,对信息的处理、传输和存储造成极大的影响。
寻求一种既能有效地减小噪声,又能很好地保留图像边缘信息的方法,是人们一直追求的目标。
小波分析是局部化时频分析,它用时域和频域联合表示信号的特征,是分析非平稳信号的有力工具。
它通过伸缩、平移等运算功能对信号进行多尺度细化分析,能有效地从信号中提取信息。
随着小波变换理论的完善,小波在图像去噪中得到了广泛的应用,与传统的去噪方法相比小波分析有着很大的优势,它能在去噪的同时保留图像细节,得到原图像的最佳恢复。
本文对基于小波变换的图像去噪方法进行了深入的研究分析,首先详细介绍了几种经典的小波变换去噪方法。
对于小波变换模极大值去噪法,详细介绍了其去噪原理和算法,分析了去噪过程中参数的选取问题,并给出了一些选取依据;详细介绍了小波系数相关性去噪方法的原理和算法;对小波变换阈值去噪方法的原理和几个关键问题进行了详细讨论。
最后对这些方法进行了分析比较,讨论了它们各自的优缺点和适用条件,并给出了仿真实验结果。
在众多基于小波变换的图像去噪方法中,运用最多的是小波阈值萎缩去噪法。
传统的硬阈值函数和软阈值函数去噪方法在实际中得到了广泛的应用,而且取得了较好的效果。
但是硬阈值函数的不连续性导致重构信号容易出现伪吉布斯现象;而软阈值函数虽然整体连续性好,但估计值与实际值之间总存在恒定的偏差,具有一定的局限性。
鉴于此,本文提出了一种基于小波多分辨率分析和最小均方误差准则的自适应阈值去噪算法。
该方法利用小波阈值去噪基本原理,在基于最小均方误差算法LMS和Stein无偏估计的前提下,引出了一个具有多阶连续导数的阈值函数,利用其对阈值进行迭代运算,得到最优阈值,从而得到更好的图像去噪效果。
基于小波阈值的图像去噪-毕业论文
---文档均为word文档,下载后可直接编辑使用亦可打印---摘要随着多媒体技术的飞速发展,图像信息越来越重要,但是图像在获取、传输、和存储的各个细节中会受到影响,导致最终的图像不可避免的存在各种质量下降问题,我们需要的是高分辨率的图像,对有噪声的图像进行去噪处理有很重要的意义。
本文主要阐述的是基于小波变换的图像阈值去噪方法。
小波变换是一种信号处理技术,可以在时域和频域上显示信号。
小波变换可以将一个信号分解为代表不同频带的多个尺度,通过小波变换,可以确定信号在每个尺度上的时频特征,这样的属性可以用来消除噪声。
基于阈值的图像去噪方法被科学家Donoho和Johnstone提出了,基于阈值的去噪方法可以采用硬阈值或软阈值函数,它易实现且具有良好的效果。
在本文中,采用了不同的噪声,不同的阈值,不同的阈值函数进行分析与相比较。
关键词:小波变换;阈值;阈值函数;图像去噪;A b s t r a c tWith the rapid development of multimedia technology and network technology, image information becomes more and more important in people's work, study and life. But the image in the acquisition, transmission, and storage process sections will be affected seriously, which leads to the final image effected by all kinds of inevitable quality problems. but, which we need is the image with clearity and high resolution. Therefore, to deal with the noise of noisy images has very important meaning in practical application and life.There are a lot of methods for image de-noising. This paper mainly describes the image de-noising method based on wavelet transform. It is well known that wavelet transform is a signal processing technique which can display the signals on in both time and frequency domain. In this paper, we use several threshold based on wavelet transform to provide an enhanced approach for eliminating noise.Wavelet transforms can decompose a signal into several scales that represent different frequency band. The position of signal's instantaneous at each scale can be determined approximately by wavelet transform.Such a property can be used to denoise. Threshold-based de-noising method was proposed by Donoho. Threshold-based de-noising method is used hard-threshold or soft-threshold. It is very simple and has good performance. This paper uses the threshold techniques which applied threshold according to each band characteristic of image.In this paper, the results will be analyzed and compared for different noises, different thresholds, different threshold functions. It has a superior performance than traditional image de-noising method.Keyword:Wavelet Transform; Threshold; Threshold Function; Image De-noising第一章绪论1.1研究目的和意义当今各种信息充斥于我们的日常生活中,图像信息成为人类获取信息的重要信息,因为图像具有传输速度快,信息量大等一系列的强势[1]。
基于改进阈值法的小波去噪研究
式中: e为 自然 对 数 , 为分 解 尺 度 , 为 第 尺 度 K
改 进 方 法 2 本 文 改 进 方 法 ( ) ()
2 0 0 . 0 1 5 3 . 2 I 2 9 . 8 11 7 . 4 10 0 . 5 0 9 9 . 7 0 9 4 . 2 0 8 0 . 8 0 8 3 . 4 O 8 3 . l 20 0 .0 1 2 9 . 8 1 0 0 . 5 0 9 4 . 2 0 8 3 . 4 0 7 6 . 8 0 7 4 . 4
的 阈值计 算公 式 口 : ]
Kj一 ,2・ g i ( 1 . / lN/n + ) () 4
作 面地 表岩 移 监测 点 的 GP S监 测 数 据见 文献 E ] 8,
为 了 弥 补 公 式 中 当 尺 度 J一 1 时 , K 一 /n 2 > K=a l( ) 的缺点 , 鸿雁 文
0 。然 后 , 再将 阈值 处 理 后 的 分 解信 号 进 行 重 构 , 得 到原 始信 号 的估计 面 。 从 以上 阈值 K 的计 算 公式 可 以看 出 , 于不 同 对 的尺 度 , 阈值 K 是 不变 的 。然 而小 波 变换 系数 会 随
着尺 度 的增 大而逐 渐减 小 , 为此 , 赵瑞 珍提 出了改 进
3 算例 分析
由于 已有 的 2 改进 方法 消噪 所得 重构 信号 的 种 信 噪 比增益 以及 视觉 效果 都 比传统 的 消噪方 法有 了 提高, 因此 , 文 只对 比 3种 改 进 方 法 的 去 噪效 果 。 本
为 了验 证本 文改 进 方法 去 噪 的优 越 性 , 某 煤 矿工 对
一
个 非平 稳 的 、 噪声 的 、 含 一维 信号 模型 _可 以 5 ]
一种改进小波阈值图像去噪方法
一种改进小波阈值图像去噪方法【摘要】:采用MATLAB进行仿真实验,首先分别对含噪图像使用改进的阈值,改进的阈值函数进行降噪处理,然后将两者结合起来应用于含噪图像。
实验结果表明,使用改进后的阈值和阈值函数进行图像降噪,较之现有的经典方法,通常可获得更好的效果。
【关键词】:小波;阈值;阈值函数;去噪近年来,出现了一种新的数学工具——小波变换,它较之只能提取出函数在整个频率轴上的频率信息,却不能反映信号在局部时间范围内的特征傅立叶变换,在时域和频域同时具有良好的局部化性质,且对于高频成分采用逐渐精细的时频取样步长,从而可以充分突出研究对象的任何细节。
小波变换的这种特点非常符合图像去噪中保留图像细节方面的要求,并且以其低熵性、多分辨率、去相关性、选基灵活性等优点,在图像降噪处理中得到越来越广泛的应用,本文重点讨论利用小波变换进行图像去噪的方法。
1.小波图像去噪小波图像去噪方法属于图像变换域去噪方法,从信号学的角度看,小波去噪是一个信号滤波的问题,而且尽管在很大程度上小波去噪可以看成是低通滤波,但是由于在去噪后,还能成功地保留图像特征,所以在这一点上又优于传统的低通滤波器。
小波去噪实际上是特征提取和低通滤波功能的综合,其流程如图所示:图1小波去噪框图小波去噪方法中最早被提出的是小波阈值去噪方法,它是一种实现简单而效果较好的去噪方法。
1.1小波阈值去噪1.1.1选取阈值函数在阈值去噪中,阈值函数体现了对超过和低于阈值的小波系数模的不同处理策略以及不同估计方法。
常用的阈值函数有硬阈值函数和软阈值函数两种,硬阈值策略保留大于阈值的小波系数,而把小于阈值的小波系数都设定为零。
软阈值策略把小于阈值的小波系数置零,把大于阈值的小波系数的绝对值减去阈值以去除噪声的影响。
硬阈值方法可以很好的保留图像边缘等局部特征,但图像会出现振铃、伪Gibbs效应等视觉失真,而软阈值处理虽相对平滑,但可能会造成边缘模糊等失真现象,这都是我们在工程降噪中所不希望看到的。
图像采集中基于小波变换阈值去噪算法研究
( ) 式4
( 5 式 )
分 尽可 能 的小 .需要 在 频 域就 可 以通 过 时不 变滤 波方
法 将信 号 同噪声 区分开 。 当它们 的频 域重 叠时 。 而 这种 方 法就 无 能为 力 了。 如果 采 用线 形小 波 的分析 方法 。 但 是 可 以通过 选择 不 同 的基 的方 法 .使 得在 相应 坐标 系 统 内 的信号 同 噪声 的重 叠 尽可 能 小 。这样 就 可 以通过 抑 制不 需频 带 的信号 。 而达 到去 噪 的 目的。 图像 采集 在
。
( 6 式 )
中利用 基于 小波 变换 阈值 去噪 算法 .可 以有效 克 服小 He e b r 不 准原 理 。将 不 同 a b值 下 的 时频 窗 口 i n eg测 s . 波 阈值 去噪 算法 的一 些 缺 陷 . 高 图像 质 量 。 提 绘 在 同一 个 图上 , 得到 小波 基 函数 的相平 面 ( 图 1 就 如
另 外 , 小波 变换 过程 中必须 保持 能量 成 比例 , 在 即:
3基 于小 波 阈值 的图像去 噪方法
31基 本算法 . . 设 是 大小 为 x 原始 无 噪声 图像 . 一 个 在 Ⅳ s是
』 (6 d=J: )x ( ) 1 口)b+d ( = o ) a
其 中 =
(6・( 口 ) 譬) ,
0 为 。
( ) 式8
波逆 变换 为 :
厂 = ( 专 )
数上。
e n, ( 学 . ( 孚, ( 1 , 式1 )
的 容许 性条 件 。
同样 的方 法 可 以推广 到 两个 或两 个 以上 的 变 量 函
21 0 2年 第 3期
福 建 电
一种阈值化的小波图像去噪算法
0 引 言
图像处 理过 程涉 及数 字 图像 的采集 、 传输 等环 节 , 每一个 环 节都 可 能 出现 图 像 的噪 声. 而 这 噪声会 对 图
n o i s i n g a l g o r i t h m o f t h r e s h o l d f u nc t i o n i s g i v e n i n t h i s p a p e r .Th e e x pe r i me n t r e s u l t s ho ws t ha t t h e n e w lg a o r i t h m i s o b v i o u s l y e x c e l l e d t o c o n v e n t i o na l s o t a f nd h a r d t h r e s h o l d d e—n o i s i ng me t h o ds . F u r t h e r mo r e, t h e p r o p o s e d
第2 9卷第 3期 2 0 1 3 年 3 月
商 丘 师 范 学 院 学 报 J O U R N A L O F S HA N G Q I U N O R MA L U N I V E R S I3 Ma r c h,2 01 3
法、 最 大似 然估计 法 、 半软 阈值 法和修 正软 阈值 法等 j . 鉴 于 上述 分 析 , 本 文 给 出新 的 阈值 化 函数 , 以 达到 提 高信 噪 比 、 改 善去 噪 效果 .最后 进 行 了仿 真试 验 ,实验 表 明 , 我们 构 造 的 函数 可 以改善 硬 、 软 阈值化 方 法 中存在 的边 界模糊 和 振荡 , 也显 示 出在 阈值 化处 理 过程 中具有 自适 应性 .
小波阈值的图像去噪
小波阈值的图像去噪Lakhwinder Kaur Deptt.of CSE SLIET,Longowal Punjab(148106),IndiaSavita Gupta Deptt.of CSE SLIET,Longowal Punjab(148106),IndiaR.C.Chauhan Deppt.of CSE SLIET,Longowal Punjab(148106),India摘要这篇论文提出了一种图像去噪的自适应阈值估计方法,该方法是基于小波域中子带系数的推广高斯分布(GGD)模型。
这种方法称为:NormalShrink,它的计算更加有效并且具有自适应性。
这是因为用来阈值估计的参数要求依赖于子带数据。
阈值通过下式获得,2/yβσσ,这里σ和yσ分别是噪声的标准差和相应的噪声图像的子带标准差数据。
β是参数规模,这个参数依赖于子带大小和分解的数量。
几幅测试图像的实验结果与各种去噪方法比如维纳滤波,BayesShrink和SureShrink做比较。
为了与可能最好的阈值估计性能基准做比较,我们的对比也加入了Oracleshrink方法。
实验结果表明提出的阈值能有效的去除噪声,运行时间上性能超过SureShrink ,BayesShrink以及维纳滤波。
关键字:小波阈值,图像去噪,离散小波变换1.介绍在图像的获取与传输中,经常受到噪声的污染。
图像去噪用于去除加性噪声,同时尽大可能的保留重要的信号特征。
在最近这几年,关于小波阈值,已经有了相当数量的研究,为信号去噪而选择阈值[1],[3]-[10],[12],因为将噪声信号从图像信号中分离,小波提供了合适的基。
小波变换有很好的能量紧支,小系数表示噪声,大系数表示重要的信号特征[8]。
这些小系数可能阈值化处理而不影响图像重要的特征。
阈值化是简单的非线性技术,它是在单个小波系数上执行。
在它的许多基形式上,通过与阈值比较,每个系数阈值化处理,如果系数小于阈值,将该系数设置为零;否则该系数保留或进行修改。
基于小波分析的医学图像去噪方法
• 166•针对小波阈值去噪容易引起边缘模糊的特点,提出了一种小波阈值与全变差相结合的去噪方法。
首先分别用两种去噪方法对医学图像进行去噪,然后通过小波变换对去噪后的图像进行分解,将全变分去噪分解后图像和阈值去噪分解图像重新组合,经小波变换融合成最终图像。
通过实验结果表明,本文所提方法充分利用了全变分和阈值去噪的优点,有效的保护了图像边缘特征的同时抑制了噪声,不论是视觉上还是客观评价都有不错的成果。
图像去除噪声的这一步骤是在医学图像预处理中极其重要的过一步,并且对图像进行后续的其他操作,比如图像分割提供了的首要的保障,是我们对图像中的有效信息进行提取的必要条件。
为了能够加强图像的视觉感受过滤掉图像中的噪声,二维断层图像必须经过我们所实施滤波处理,使图像进行接下来更近一步的操作更加方便快捷,因此对医学图像进行除躁的操作是必不可少的。
传统的去噪方法一般采用的窗口平滑处理的方法,例如中值滤波等可以良好的滤除脉冲噪声对图像带来的影响,但边缘信息结构容易丢失。
最近几年来,随着具有时频局部化良好优势的小波变换发展,使用小波阈值法对图像进行去噪引发了大范围的研究。
小波去噪对于高斯噪声处理方面表现良好,尤其在平滑区域效果更为突出。
但是仍然在选取阈值是容易存在问题,导致过多的去除小波系数,从而使图像失真,边缘模糊。
全变分(TotalVariation ,TV )法是一种基于偏微分的去噪方法,能够在去噪时很好地保留图像的边缘,但是对图像的去噪并不彻底。
鉴于以上方法存在的问题,本文利用小波阈值去噪的充分性以及全变分去噪的保边性,再用小波变换与逆变换进行图像重构,提出一种结合了小波和全变分的去噪方法。
该方法能够兼备两种优势,获得去噪效果更佳的图像。
1 图像去噪1.1 小波阈值去噪小波阈值去噪的大概流程是首先将λ作为临界阈值,对小于λ的小波系数,我们则认为这部分为噪声引起,然后对这一部分进行处理;对大于λ的小波系数,此部分系数一本认为由信号引起,然后保留这部分系数,处理后对系数进行小波逆变换和重建得到去噪后的信号。
小波阈值去噪法的选择和改进
“数字图像处理与目标跟踪技术”[摘要]图像是一种重要的信息源,通过图像处理可以帮助人们了解信息的内涵。
数字图像噪声去除涉及光学系统、微电子技术、计算机科学、数学分析等领域,是一门综合性很强的边缘科学,如今其理论体系已十分完善,且其实践应用很广泛,在医学、军事、艺术、农业等都有广泛且成熟的应用。
本文概述了小波阈值去噪的基本原理。
对常用的几种阈值去噪方法进行了分析比较和仿真实现。
最后结合理论分析和实验结果,讨论了一个完整去噪算法中影响去噪性能的各种因素。
为实际的图像处理中,小波阈值去噪法的选择和改进提供了数据参考和依据。
[关键字]:小波变换图像去噪阈值[引言]图像在生成和传输过程中常常因受到各种噪声的干扰和影响而使图像降质,这对后续图像的处理(如分割、压缩和图像理解等)将产生不利影响。
噪声种类很多,如:电噪声、机械噪声、信道噪声和其他噪声。
在图像处理中,图像去噪是一个永恒的主题,为了抑制噪声,改善图像质量,便于更高层次的处理,必须对图像进行去噪预处理。
计算机图像处理主要采取两大类方法:一是在空间域中的处理,即在图像空间中对图像进行各种处理;另一类是把空间域中的图像经过正交变换到频域,在频域里进行各种处理然后反变换到空间域,形成处理后的图像。
人们也根据实际图像的特点、噪声的统计特征和频谱分布的规律,发展了各式各样的去噪方法。
其中最为直观的方法,是根据噪声能量一般集中于高频而图像频谱则分布于一个有限区间的这一特点,采用低通滤波方式来进行去噪,或对图像进行平滑处理等,这属于第一类图像处理方法。
还有就是在频域进行处理,如:傅立叶变换、小波基变换。
近年来,小波理论得到了非常迅速的发展,而且由于其具备良好的时频特性,实际应用也非常广泛。
其中图像的小波阈值去噪方法可以说是众多图像去噪方法的佼佼者。
基本思想就是利用图像小波分解后,各个子带图像的不同特性选取不同的阈值,从而达到较好的去噪目的。
而且,小波变换本身是一种线形变换,而国内外的研究大多集中在如何选取一个合适的全局阈值,通过处理低于该阈值的小波系数同时保持其余小波系数值不变的方法来降噪,因而大多数方法对于类似于高斯噪声的效果较好,但对于混有脉冲噪声的混合噪声的情形处理效果并不理想。
基于小波自适应阈值图像去噪方法的研究
的阈值 函数对各层高频系数进行处理来达到去噪效果。实验结果表明, 与传统方法相 比, 该方法运算量较小 , 能有效去除
高斯 白噪声 , 进 一步 提高 峰值性 噪 比 , 同时 能够很 好地保 留图像 细节信息 。 关键 词 : 图像 去噪 ; 小 波变 换 ; 多尺度 ; 自适 应 阈值 ; 峰值 信噪 比
中图分 类号 : T P 7 5 1 . 1 文献 标识 码 : A 文章 编号 : 1 6 7 3 - 6 2 9 X{ 2 0 1 3 ) 0 8 - 0 2 5 0 - 0 4
d o i : l 0 . 3 9 6 9 / j . i s s n . 1 6 7 3 — 6 2 9 X. 2 0 1 3 . 0 8 . 0 6 4
第2 3卷
第 8期
计 算 机 技 术 与 发 展
COMPUT ER T ECHNOL OGY AND DEVEL 0PME NT
Vo 1 . 23 No. 8 Au g . 2 01 3
2 0 1 3年 8月
基于小波 自适应 阈值 图像去噪方法的研究
于笃发 , 邵建华 , 张 晶如
Ai mmi n g a t he t p h e n o me n o n, a n i mp r o v e d mu l i- t s c a l e a d a p t i v e t h r e s h o l d me ho t d o f i ma g e d e n o i s i n g b a s e d o n wa v e l e t t r a n s f o r ma ti o n h a s b e e n p r o p o s e d . Ac c o r d i n g t O he t c h a r a c t e r i s ic t s o f he t i ma g e wa v e l e t d e c o mp o s i t i o n, t h i s me t h o d C n a d e t e r mi n e he t b e t t e r t h r e s h o l d o f d i f - f e r e n t l a y  ̄s’c o e f f i c i e n t f o r d e n o i s i n g a f t e r wa v d ̄ d co e mp o s i t i o n, he t n p r o c e s s t h e h i g h f r e q u e n c y c o e f ic f i e nt o f e a c h l a y e r wi h t a p p r o ・ p na t e t h r e s h o l d f u n c t i o n o t a c h i e v e d e n o i s i n g e f f e c t . he T e x p e r i me n t l a r e s u l t s s h o w ha t t, c o mp a r e d wi t h ̄ d it io n l a me ho t d s , hi t s me ho t d C n a e f f ct e iv e l y en r l o v e Ga u s s i n a wh i t e n o i s e a n d f u r t h r e i mp r o v e he t p e a k s i g n l— a o —n t o i s e r a io, t wh i l e we l l p r e er s v i n g i ma g e d e t a i l s .
基于小波变换的混合阈值去噪的方法研究
od e t t n,b ti i otn u s t fco y i o p cfcp oet .Ths p p rp e e t v ltta so m- a e x d l si i ma o u t s fe n ai a tr n s me s e i rjcs s i i a e r sn s awa ee rn 抑 制 一 直 是 人 们 比较 关 注 的 问题 。 由于检测 到 的信 号都 会受 到 不 同程度 的 噪声干 扰 , 对信 号测 量和 分 析 的准 确 性 有较 大 的 它
小波 变换 系数 上 的话 , 么 相 对 来说 这 些 系数 的取 那
值 必 然大 于噪 声 的 小波 系 数值 , 这些 噪声 在 小 波 变 换 域 内能 量分 散 于 大 量 小 波 系 数 上 。 因此 , 提 出 他 了通 过对 小波 分解 系数 进 行 阈值处 理来 去 除噪声 的
维普资讯
20 0 8年 第 3期 ( 总第 1 7 ) 4期
光 通 信 研 究
S U D Y N PTI T O O CA I CO M M U N I A TI N S C O
2 0 0 8
( m. Su No 1 7 . 4 )
去 噪 效 果 常 常 不 能令 人 满 意 。文 章 提 出一 种 基 于 小 波 变换 的混 合 阈 值 去 噪 方 法 , 不 同 阈值 加 入 权 重 , 过 目标 函 数 优 化 权 对 通 重 , 算 出较 理 想 的 阈值 。仿 真 结 果 表 明 , 传 统 方 法 相 比 , 方 法 有 较 好 的去 噪 效 果 并 能 够 保 留 细 节 特征 。 计 与 该
小波变换的阈值选取与去噪效果评估方法
小波变换的阈值选取与去噪效果评估方法小波变换是一种常用的信号分析方法,可以将信号分解成不同频率的子信号,从而实现信号的去噪和特征提取。
在小波变换中,阈值选取是一个重要的步骤,它决定了去噪效果的好坏。
本文将介绍小波变换的阈值选取方法,并探讨如何评估去噪效果。
一、小波变换的阈值选取方法小波变换的阈值选取方法有很多种,常用的有固定阈值法、基于统计特性的阈值法和基于小波系数分布的阈值法。
1. 固定阈值法固定阈值法是最简单的阈值选取方法,它将小波系数的绝对值与一个固定阈值进行比较,大于阈值的系数保留,小于阈值的系数置零。
这种方法简单直观,但对于不同信号的去噪效果不一致,需要根据实际情况进行调整。
2. 基于统计特性的阈值法基于统计特性的阈值法是根据信号的统计特性来选择阈值。
常用的方法有均值绝对偏差(MAD)和中值绝对偏差(MAD)。
MAD方法是通过计算小波系数的平均值和标准差来确定阈值。
具体步骤是先计算小波系数的平均值和标准差,然后将平均值加减一个倍数的标准差作为阈值。
一般情况下,取倍数为2或3可以得到较好的去噪效果。
3. 基于小波系数分布的阈值法基于小波系数分布的阈值法是根据小波系数的分布特点来选择阈值。
常用的方法有软阈值和硬阈值。
软阈值将小于阈值的系数置零,并对大于阈值的系数进行缩放。
这种方法可以保留信号的主要特征,同时抑制噪声。
硬阈值将小于阈值的系数置零,而大于阈值的系数保留。
这种方法对于信号的边缘特征保留较好,但可能会导致一些细节信息的丢失。
二、去噪效果评估方法选择合适的阈值选取方法可以实现较好的去噪效果,但如何评估去噪效果也是一个关键问题。
下面介绍两种常用的评估方法。
1. 信噪比(SNR)信噪比是一种常用的评估指标,它可以衡量信号与噪声的相对强度。
计算公式为SNR = 10 * log10(信号能量 / 噪声能量)。
当SNR值越大,说明去噪效果越好。
2. 均方根误差(RMSE)均方根误差是评估去噪效果的另一种指标。
基于数学形态学和小波阈值的红外温度图像去噪方法
L o Zh n h n Sh n Chz e g u es a e ih n Yi n o n Ya gu Yo o u Ta Yu Ja we in i
运算符 。
在数学形态学边缘检测 中,小尺寸结构元素检测 的边缘细节较好 。另外 ,数学形态学边缘检测算子 比 传统 的边缘检测算子检测 出 的边 缘平 滑 ,特征 清晰 ,
且计算量较小 。 3 基于形态 学边缘 检测与小 波阈值 的红外 图像 去 噪
方 法
对具有边缘模糊和噪声高 的摩擦副红外图像 ,单 纯地采用小波变换 阈值去 噪 ,由于噪声和边缘在频域 上都表现 为高 频信 息 ,进 而在 小波 变换 的高 频子 带
2 1
( )利用硬 阈值 函数 或软 阈值 函数 对 高频 2 小 波系数 ( Y , )进行 阈值 处理 ,以滤 除噪声 ,得 到处理 过 的小波 系数 ( Y ; 处 用到 的 阈值是 , ) 此 D nh 和 ]n nt e 于小波 阈值萎缩方法 提 出的 ooo oh s n 基 o 全局 阈值 A = l 其 中,0为图像噪声 的标 准 n Ⅳ, 1
) = ( ) + ( ) ”
法进行 了深 入研 究 ,并 成功 应 用 于 图像 去 噪方 面。但是红外 图像采用小波 阈值去噪处理时 ,由于噪 声和边 缘在频 域 中一般表现为高频信息 ,在小波变换
的高频子带中只利用估计 的阈值难 以对噪声 和边缘信
基金 项 目 :国家 自然 科学 基金项 目 ( 17 14 0 702 . 505 1 ;5957 )
基于小波阈值收缩的图像降噪
S — HL 1+ H H 1+ LH 1+ LL2+ H L2+ H H 2+ LH 2,
其 中 : L2为 s的近 似部分 ; L HH LHi HLi , ) s的细 节高频 部分 . , 和 ( 一1 2 为 而信 号 的噪声通 常包含 在
HH L 和 HL 中 , , Hi i 选择 合适 的 阈值 对小 波系数 进行 门限处理 , 可 以达到 去除 噪声 和保 留有用信 号 的 就 目的. 用小 波 阈值 收缩 法对 图像 降噪 的具 体步 骤为 :1 对含 噪 图像做小 波分 解 , 到一 组小 波系数 ;2 利 () 得 () 对 高频 系数 进 行 阈值 量 化 , 得 估 计 的小 波 系数 ; 3 获 ( )利 用 估 计 的小 波 系 数 进 行 小 波 重 构 , 得 降 噪 获
I a e De No s s d o a e e r s o d S r nk g m g - ie Ba e n W v l tTh e h l h i a e
SONG — o, Zhigu ZH ANG n — n DENG a — e Yi g ha g, Xio f i
图像 在生 成或 传输过 程 中常 因受 到 噪声干 扰 而使 图像质 量 下 降 , 图像 降 噪就 成 了 图像 处理 的一 个经 典 话题 . 去噪领 域 中 , 在 小波 变换 由于具 有低熵 性 、 多分辨 率和去 相关性 等 特点 , 得小 波 去 噪的方 法 获得 使 『 _广应 用Ⅲ . 受噪声 污染 的 图像在小 波 变换后 , 图像 的能 量 主要 集 中 在少 数 幅值 较 大 的小 波 系数 上 , 噪 而 声对 应 的小 波 系数是 均匀分 布且 幅值 小 , 因此 设 定一 个 合适 的 阈值 , 阈值作 用 于 每个 小 波 系数 上 , 可 将 就
yangyang翻译
yangyang翻译基于⼩波阈值技术的图像去噪摘要:⼩波变换让我们在表述信号⽅⾯表现出⾼度的不⾜和弊端。
⼩波阈值是⼀种信号估值技术,它探索了基于⼩波变换的图像去噪的能⼒。
这篇⽂章的⽬的是研究多种阈值技术,例如SureShrink,V isuShrink和BayeShrink等等,同时找出最适合于图像去噪的阈值技术。
⼀:引⾔在许多应⽤中,图像去噪都被⽤来从含噪信号中得到原始的信号的最佳评估图像。
去噪信号应该⽐我们转换过的图像含有更少的噪声。
⼩波变换,由于其出⾊的定位性能, 已迅速成为⼀个不可或缺的信号和图像处理⼯具,他可以为各种应⽤程序进⾏信号和图像处理,其中包括压缩和去噪[1,2,3)。
⼩波消噪试图去除出现在信号的噪声,同时保留信号特征,⽽不管它的频率成分。
它涉及到三个步骤:⼀个是直线⼩波变换,它是⾮线性的阈值的⼀步,⼀个是线性逆⼩波变换。
⼩波阈值(⾸先由Donoho [1, 2, 3]中提出)是⼀种信号的评估⽅法和功能,它探索了基于⼩波变换的图像去噪的能⼒。
它通过去除噪声系数来进⾏图像去噪,着相对于⼀些阈值来说是微不⾜道的,同时结果是简洁的⽽且有效地,极⼤的依赖于阈值参数的选择,以及阈值确定的选择,这在很⼤程度上去除了噪声。
研究⼈员已经开发出各种技巧,选择去噪参数等⽬前没有“最好”的通⽤阈值的确定⽅法。
这个项⽬的⽬的是为了研究各种阈值技术,包括SureShrink[1],VisuShrink[3]和[5]BayesShrink并决定最好的处理图像噪声的阈值⽅法。
2.1引⾔在图1中的⼩波系数的的绘图显⽰⼩系数被噪声能量所左右, 同时有⼀个很⼤的系数绝对值携带更多的信号信息噪⾳。
利⽤0来代替噪声系数和⼩波逆变换可能会得到含有更少的噪声图像。
Fig.1在实践领域和⼩波领域的噪声信号,注意这些系数的不⾜。
2.2软硬阈值软硬阈值是按照如下形式定义的,硬阈值函数定义为:Fig2硬阈值函数软阈值函数定义为:Fig3软阈值函数硬阈值是⼀种“要么保持要么去除”的⼀种函数,这种函数更能直观的反映出来。
自适应小波阈值去噪算法及在图像处理中的应用
并 通 过 最 小 化 贝 叶 斯 估 计 风 险 来 获 得 小 波 系 数 的最
o tma h e h l a a t rb sng mi p i tm eh d I h s t e sr n efa a tto p i lt r s od p r mee y u i d o n t o . t a h to g s l— d p a in,smp e c lul— i l 部 分都不 可避 免地 含有
于贝 叶斯 理 论降 噪 的方 法 , 据 大 量 统 计 的结 果 为 根
各种 噪声 , 了提 高 图像 的有 效 性 , 进 一 步 研 究 为 为
做 好准 备 , 需要采 用 一 定 的方 法 去 除 图像 中存 在 的
g rt m sp o o e o ih wa r p s d. I a e ie t e t r s od o v l ta l ssa tm ai al c o d n o t e n ie tc n d cd h h e h l fwa ee nay i u o tc ly a c r i g t h o s
c a a t r si s i v l t ta so m , t e a e NR a u c i n o it r p r me e nd a q i e h h r c e itc n wa e e r n f r h n t k s PS s a f n to f f e a a l tr a c u r s t e
to g o e n ii g r s l a O o in, o d d - osn e u t nd S n. Ex e i n e u t h w h tt i e me h d i u h b te h n p rme tr s lss o t a h s n w t o sm c e trt a
基于小波变换的图像去噪方法研究报告附MATLAB程序
2.小波变换概述
2.1 小波变化去噪技术研究现状
上个世纪八十年代 Mallet 提出了 MRA(Multi_Resolution Analysis),并首先把 小波理论运用于信号和图像的分解与重构,利用小波变换模极大值原理进行信号 的奇异性检测,提出了交替投影算法用于信号重构,为小波变换用于图像处理奠 定了基础[1]。后来,人们根据信号与噪声在小波变换下模极大值在各尺度上的不 同传播特性,提出了基于模极大值去噪的基本思想。1992 年,Donoho 和 Johnstone 提出了“小波收缩”,它较传统的去噪方法效率更高。“小波收缩”被 Donoho 和 Johnstone 证明是在极小化极大风险中最优的去噪方法,但在这种方法中最重要 的就是确定阈值。1995 年,Stanford 大学的学者 D.L.Donoho 和 I.M.Johnstone 提 出了通过对小波系数进行非线性阈值处理来降低信号中的噪声[2]。从这之后的小 波去噪方法也就转移到从阈值函数的选择或最优小波基的选择出发来提高去噪 的 效 果 。 影 响 比 较 大 的 方 法 有 以 下 这 么 几 种 : Eero P.Semoncelli 和 Edward H.Adelson 提出的基于最大后验概率的贝叶斯估计准则确定小波阈值的方法[3]; Elwood T.Olsen 等在处理断层图像时提出了三种基于小波相位的去噪方法:边缘 跟踪法、局部相位方差阈值法以及尺度相位变动阈值法;学者 Kozaitis 结合小波 变换 和高阶 统计量 的特点 提出了 基于高 阶统计 量的小 波阈值 去噪方 法[4]; G.P.Nason 等 利 用 原 图 像 和 小 波 变 换 域 中 图 像 的 相 关 性 用 GCV(general crossvalidation)法对图像进行去噪;Hang.X 和 Woolsey 等人提出结合维纳滤波器和小 波阈值的方法对信号进行去噪处理[5],Vasily Strela 等人将一类新的特性良好的小 波(约束对)应用于图像去噪的方法[6];同时,在 19 世纪 60 年代发展的隐马尔科 夫模型(Hidden Markov Model),是通过对小波系数建立模型以得到不同的系数处 理方法;后又有人提出了双变量模型方法[7],它是利用观察相邻尺度间父系数与 子系数的统计联合分布来选择一种与之匹配的二维概率密度函数。这些方法均取 得了较好的效果,对小波去噪的理论和应用奠定了一定的基础。