高三物理三、牛顿运动定律总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
届高考物理二轮复习典型例题及练习
三、牛顿运动定律总结
(一)牛顿第一定律(即惯性定律)
一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。
(1)理解要点:
①运动是物体的一种属性,物体的运动不需要力来维持。
②它定性地揭示了运动与力的关系:力是改变物体运动状态的原因,是使物体产生加速度的原因。
③第一定律是牛顿以伽俐略的理想斜面实验为基础,总结前人的研究成果加以丰富的想象而提出来的;定律成立的条件是物体不受外力,不能用实验直接验证。
④牛顿第一定律是牛顿第二定律的基础,不能认为它是牛顿第二定律合外力为零时的特例,第一定律定性地给出了力与运动的关系,第二定律定量地给出力与运动的关系。
(2)惯性:物体保持原来的匀速直线运动状态或静止状态的性质叫做惯性。
①惯性是物体的固有属性,与物体的受力情况及运动状态无关。
②质量是物体惯性大小的量度。
③由牛顿第二定律定义的惯性质量m=F/a和由万有引力定律定义的引力质量
=2/严格相等。
m Fr GM
④惯性不是力,惯性是物体具有的保持匀速直线运动或静止状态的性质、力是物体对物体的作用,惯性和力是两个不同的概念。
(二)牛顿第二定律
1. 定律内容
物体的加速度a跟物体所受的合外力F合成正比,跟物体的质量m成反比。
=
2. 公式:F ma
合
理解要点:
①因果性:F合是产生加速度a的原因,它们同时产生,同时变化,同时存在,同时消失;
②方向性:a与F合都是矢量,方向严格相同;
③瞬时性和对应性:a为某时刻某物体的加速度,F合是该时刻作用在该物体上的合外力。
(三)力的平衡
1. 平衡状态
指的是静止或匀速直线运动状态。特点:a=0。
2. 平衡条件
F0。
共点力作用下物体的平衡条件是所受合外力为零,即∑=
3. 平衡条件的推论
(1)物体在多个共点力作用下处于平衡状态,则其中的一个力与余下的力的合力等大反向;
(2)物体在同一平面内的三个不平行的力作用下,处于平衡状态,这三个力必为共点力;
(3)物体在三个共点力作用下处于平衡状态时,图示这三个力的有向线段必构成闭合三角形。
(四)牛顿第三定律
两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上,公式=-'。
可写为F F
、、(在国际制单位中)
(五)力学基本单位制:kg m s
2. 应用牛顿第二定律解题的一般步骤
①确定研究对象;
②分析研究对象的受力情况画出受力分析图并找出加速度方向;
③建立直角坐标系,使尽可能多的力或加速度落在坐标轴上,并将其余分解到两坐标轴上;
④分别沿x轴方向和y轴方向应用牛顿第二定律列出方程;
⑤统一单位,计算数值。
3. 解决共点力作用下物体的平衡问题思路
(1)确定研究对象:若是相连接的几个物体处于平衡状态,要注意“整体法”和“隔离法”的综合运用;
(2)对研究对象受力分析,画好受力图;
(3)恰当建立正交坐标系,把不在坐标轴上的力分解到坐标轴上。建立正交坐标系的原则是让尽可能多的力落在坐标轴上。
(4)列平衡方程,求解未知量。
4. 求解共点力作用下物体的平衡问题常用的方法
(1)有不少三力平衡问题,既可从平衡的观点(根据平衡条件建立方程求解)——平衡法,也可从力的分解的观点求解——分解法。两种方法可视具体问题灵活运用。
(2)相似三角形法:通过力三角形与几何三角形相似求未知力。对解斜三角形的情况更显优势。
(3)力三角形图解法,当物体所受的力变化时,通过对几个特殊状态画出力图(在同一图上)对比分析,使动态问题静态化,抽象问题形象化,问题将变得易于分析处理。
5. 处理临界问题和极值问题的常用方法
涉及临界状态的问题叫临界问题。临界状态常指某种物理现象由量变到质变过渡到另一种物理现象的连接状态,常伴有极值问题出现。如:相互挤压的物体脱离的临界条件是压力减为零;存在摩擦的物体产生相对滑动的临界条件是静摩擦力取最大静摩擦力,弹簧上的弹力由斥力变为拉力的临界条件为弹力为零等。
临界问题常伴有特征字眼出现,如“恰好”、“刚刚”等,找准临界条件与极值条件,是解决临界问题与极值问题的关键。
例1. 如图1所示,一细线的一端固定于倾角为45°的光滑楔形滑块A 的顶端P 处,细线另一端拴一质量为m 的小球。当滑块以2g 加速度向左运动时,线中拉力T 等于多少?
解析:当小球和斜面接触,但两者之间无压力时,设滑块的加速度为a'
此时小球受力如图2,由水平和竖直方向状态可列方程分别为:
T ma T mg cos 'sin 45450︒=︒-=⎧⎨
⎩
解得:a g '=
由滑块A 的加速度a g a =>2',所以小球将飘离滑块A ,其受力如图3所示,设线和
竖直方向成β角,由小球水平竖直方向状态可列方程
T ma T mg sin ''cos ββ=-=⎧⎨⎩0
解得:()()T ma mg mg '=+=225
例2. 如图4甲、乙所示,图中细线均不可伸长,物体均处于平衡状态。如果突然把两水平细线剪断,求剪断瞬间小球A 、B 的加速度各是多少?(θ角已知)
解析:水平细线剪断瞬间拉力突变为零,图甲中OA 绳拉力由T 突变为T',但是图乙中OB 弹簧要发生形变需要一定时间,弹力不能突变。
(1)对A 球受力分析,如图5(a ),剪断水平细线后,球A 将做圆周运动,剪断瞬间,小球的加速度a 1方向沿圆周的切线方向。
F mg ma a g 111==∴=sin sin θθ,
(2)水平细线剪断瞬间,B 球受重力G 和弹簧弹力T 2不变,如图5(b )所示,则 F m g a g B 22=∴=tan tan θθ,
小结:(1)牛顿第二定律是力的瞬时作用规律,加速度和力同时产生、同时变化、同时消失。分析物体在某一时刻的瞬时加速度,关键是分析该瞬时前后的受力情况及其变化。
(2)明确两种基本模型的特点:
A. 轻绳的形变可瞬时产生或恢复,故绳的弹力可以瞬时突变。
B. 轻弹簧(或橡皮绳)在两端均联有物体时,形变恢复需较长时间,其弹力的大小与方向均不能突变。
例3. 传送带与水平面夹角37°,皮带以10m/s 的速率运动,皮带轮沿顺时针方向转动,如图6所示。今在传送带上端A 处无初速地放上一个质量为m kg =05.的小物块,
它与传送带间的动摩擦因数为0.5,若传送带A 到B 的长度为16m ,g 取102
m s /,则物体从A 运动到B 的时间为多少? 解析:由于μθ=<=05075.tan .,物体一定沿传送带对地下移,且不会与传送带相对
静止。
设从物块刚放上到皮带速度达10m/s ,物体位移为s 1,加速度a 1,时间t 1,因物速小于皮带速率,根据牛顿第二定律,a mg mg m
m s 1210=+=sin cos /θμθ,方向沿斜面向下。t v a s s a t m 111112112
5====<,皮带长度。 设从物块速率为102m s /到B 端所用时间为t 2,加速度a 2,位移s 2,物块速度大于皮
带速度,物块受滑动摩擦力沿斜面向上,有: