高中数学思想方法专题

合集下载

高中数学四大思想方法

高中数学四大思想方法

高中数学四大思想方法高中数学是数学学科的一部分,其主要涉及代数、几何、函数、概率和统计等内容。

在学习过程中,数学家们发展了许多思想方法,以解决和理解数学问题。

以下是高中数学中常见的四大思想方法。

1.抽象思维方法抽象思维方法是数学的核心思想之一、它通过剥离具体的数学问题中的不必要部分,从而将问题抽象化为更为一般的形式,并建立相应的模型。

例如,在代数中,我们可以将具体的算式和方程抽象为符号表示,以简化问题的描述和解决过程。

抽象思维方法能够提高学生的思维能力和数学抽象能力,培养学生的逻辑思维和推理能力。

2.归纳与演绎思维方法归纳与演绎思维方法是数学推理的重要方法。

归纳是通过观察事实和案例,找出普遍规律和规则。

例如,通过观察一系列数列,我们可以归纳出它们的通项公式。

演绎是通过已知条件和推理规则,从而推导出结论。

例如,通过已知两条平行线被一条横截线相交,我们可以演绎出对应角相等的结论。

归纳和演绎相辅相成,使学生能够更好地理解和应用数学定理和思想。

3.综合思维方法4.探究思维方法探究思维方法是数学学科中重要的思想方法之一、它强调学生通过实践探索和发现数学规律和定理。

例如,通过动手操作、观察和实验,学生可以发现一些几何定理或数学规律,并且对其原理和应用有更深入的理解。

探究思维方法能激发学生的学习兴趣,培养学生的发现问题和解决问题的能力。

同时,它也强调学生的自主学习和合作学习能力。

综上所述,高中数学中的四大思想方法包括抽象思维方法、归纳与演绎思维方法、综合思维方法和探究思维方法。

这些方法能够培养学生的数学思维和解决问题的能力,提高学生的数学水平和学习效果。

学生在学习和应用这些方法时,应结合实际问题进行思考和讨论,不断深化对数学的理解和应用。

高中四大数学思想方法

高中四大数学思想方法

高中四大数学思想方法高中四大数学思想方法一、数形结合思想应用数形结合的思想,应注意以下数与形的转化:(1)集合的运算及韦恩图;(2)函数及其图象;(3)数列通项及求和公式的`函数特征及函数图象;(4)方程(多指二元方程)及方程的曲线.以形助数常用的有:借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方法.以数助形常用的有:借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合.二、分类讨论思想分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决.分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论”.应用分类讨论思想方法解决数学问题的关键是如何正确分类,即正确选择一个分类标准,确保分类的科学,既不重复,又不遗漏.如何实施正确分类,解题时需要我们首先明确讨论对象和需要分类的全体,然后确定分类标准与分类方法,再逐项进行讨论,最后进行归纳小结.常见的分类情形有:按数分类;按字母的取值范围分类;按事件的可能情况分类;按图形的位置特征分类等.分类讨论思想方法可以渗透到高中数学的各个章节,它依据一定的标准,对问题分类、求解,要特别注意分类必须满足互斥、无漏、最简的原则.三、函数与方程思想函数与方程思想是最重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应用技巧多.函数思想简单,即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决。

运用函数与方程的思想时,要注意函数,方程与不等式之间的相互联系和转化,应做到:(1)深刻理解函数f(x)的性质(单调性、奇偶性、周期性、最值和图象变换),熟练掌握基本初等函数的性质,这是应用函数思想解题的基础.(2)密切注意三个“二次”的相关问题,三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系.掌握二次函数基本性质,二次方程实根分布条件,二次不等式的转化策略.四、转化与化归思想化归与转化的思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图象、公式或已知条件将,问题通过变换加以转化,进而达到解决问题的思想.转化是将数学命题由一种形式向另一种形式的变换过程,化归是把待解决的问题通过某种转化过程归结为一类已经解决或比较容易解决的问题.转化与化归思想是中学数学最基本的思想方法,堪称数学思想的精髓,它渗透到了数学教学内容的各个领域和解题过程的各个环节中.转化有等价转化与不等价转化.等价转化后的新问题与原问题实质是一样的.不等价转化则部分地改变了原对象的实质,需对所得结论进行必要的修正.应用转化与化归思想解题的原则应是化难为易、化生为熟、化繁为简,尽量是等价转化.常见的转化有:正与反的转化、数与形的转化、相等与不等的转化、整体与局部的转化、空间与平面相互转化、复数与实数相互转化、常量与变量的转化、数学语言的转化。

高中数学七大基本思想方法讲解

高中数学七大基本思想方法讲解
(2)在一维空间,实数与数轴上的点建立一一对应关系
在二维空间,实数对与坐标平面上的点建立一一对应关系
数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化
第三:分类与整合思想
(1)分类是自然科学乃至社会科学研究中的基本逻辑方法
(2)从具体出发,选取适当的分类标准
(5) 高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向
第六:有限与无限的思想:
(1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路
(2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向
(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用
(4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查
第七:或然与必然的思想:
(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性
(2)偶然中找必然,再用必然规律解决偶然
(3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点
(3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化
第五: 特殊与一般思想
(1)通过对个例认识与研究,形成对事物的认识
(2)由浅入深,由现象到本质、由局部到整体、由实践到理论
(3)由特殊到一般,再由一般到特殊的反复认识过程
(4) 构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程
(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法

高中七种数学思想方法总结

高中七种数学思想方法总结

高中七种数学思想方法总结高中数学可以说是数学思想发展的关键时期,学生需要抽象思维能力和逻辑推理能力的提高。

在高中数学学习中,这七种数学思想方法对于学生的数学思维的培养具有重要意义。

下面对这七种数学思想方法进行总结。

首先是归纳与演绎的思想方法。

归纳与演绎是思维的两个基本方面。

归纳是从具体的实例出发,逐步得到普遍规律的一种思维方式。

而演绎是从普遍规律出发,推演出具体实例的一种思维方式。

在高中数学学习中,学生首先需要通过归纳总结知识点中的一般性规律,然后通过演绎推导解决具体问题。

其次是抽象与具体的思想方法。

抽象是从具体的实例中提取出普遍规律的一种思维方式。

在高中数学学习中,学生需要通过抽象将具体问题归纳到一般性问题,从而更好地解决问题。

而具体则是为了更清晰地理解抽象的概念和规律,将抽象的概念具体化。

第三是直观与形式的思想方法。

直观是通过感觉和观察获得的一种思维方式。

在高中数学学习中,学生需要通过直观去理解和感受数学概念和现象。

而形式则是通过符号、符号语言去表达和推演的一种思维方式。

在高中数学学习中,学生需要通过形式化去描述和推演问题,从而更好地解决问题。

第四是逻辑与启发的思想方法。

逻辑是一种通过推理和论证得出结论的思维方式。

在高中数学学习中,学生需要通过逻辑推理去解决问题,并通过逻辑展示问题的解决过程。

而启发则是一种通过直觉和灵感得到的思维方式。

在高中数学学习中,学生需要通过启发去发现和理解问题,并通过启发性解题方法解决问题。

第五是分析与综合的思想方法。

分析是将整体问题分解成各个部分,然后逐个进行研究的一种思维方式。

在高中数学学习中,学生需要通过分析将复杂的问题分解成简单的问题,然后逐个解决。

而综合则是将各个部分的研究结果重新组合成一个整体的思维方式。

在高中数学学习中,学生需要通过综合将各个问题的解决方法组合成一个整体的解决方法。

第六是推理与证明的思想方法。

推理是通过逻辑推理和推断得出结论的一种思维方式。

高中数学七大数学基本思想方法

高中数学七大数学基本思想方法

高中数学七大数学基本思想方法数学是一门以逻辑推理为基础的学科,它不仅是一种学科,更是一种思维方式。

在高中数学学习中,我们需要掌握七大数学基本思想方法,它们分别是归纳法、演绎法、逆向思维、递归思维、几何思维、数形结合思维和抽象思维。

本文将详细介绍这七大数学基本思想方法,并分析其在数学学习中的应用。

一、归纳法归纳法是一种从特殊到一般的思维方法,通过观察和总结特殊情况的共性来得到一般规律。

在数学学习中,我们经常使用归纳法来猜测数列、函数等的规律,并通过举例子来验证猜测的正确性,从而得到一般规律。

二、演绎法演绎法是一种从一般到特殊的思维方法,通过已知的一般规律得出特殊情况的结论。

在数学证明中,我们通常使用演绎法来推导定理和公式的正确性,从而得到具体问题的解答。

三、逆向思维逆向思维是一种从结果到原因的思维方法,通过倒推问题的解答过程来寻找问题的关键步骤。

在解决复杂数学问题时,我们可以运用逆向思维逐步分析问题,从已知的结论反推出问题的解答过程,找到问题的关键。

四、递归思维递归思维是一种通过推导和分解问题的方法来解决问题的思维方式。

在数列、函数、图形等问题中,我们常常使用递归思维来将复杂的问题分解为简单的子问题,通过子问题的解答来得到原问题的解答。

五、几何思维几何思维是一种通过观察和想象空间形象来解决问题的思维方法。

在几何学中,我们常常使用几何思维来推导定理、证明等,通过观察图形的性质和特点来解决问题。

六、数形结合思维数形结合思维是一种将数学概念与图形结合起来进行推导和证明的思维方式。

在数学学习中,我们可以通过数形结合思维来解决几何图形的性质、推导函数的变化规律等问题。

七、抽象思维抽象思维是一种将具体问题抽象为一般规律的思维方法。

在解决复杂数学问题时,我们可以通过抽象思维将具体的问题进行简化,找出问题的共性,并运用一般规律来解决问题。

总之,掌握高中数学七大数学基本思想方法对于提升数学学习能力至关重要。

通过运用归纳法、演绎法、逆向思维、递归思维、几何思维、数形结合思维和抽象思维,我们可以更加深入地理解数学的本质和规律,并能够灵活运用这些思维方法来解决各种数学问题。

高中数学常见解题思想方法——思想篇(高三适用)九、分类讨论思想 含解析

高中数学常见解题思想方法——思想篇(高三适用)九、分类讨论思想 含解析

分类讨论思想是高中重要数学思想之一,是历年高考数学的重点与难点.突出考察思维的逻辑性、全面严谨性,比如在不等式、数列、导数应用相关的习题中,分类讨论思想很常见。

一、什么是分类讨论思想:每个数学结论都有其成立的条件,每一种数学方法的使用也往往有其适用范围,在我们所遇到的数学问题中,有些问题的结果不能唯一确定,有些问题的结论不能以统一的形式进行研究,还有些含参数的问题,参数的取值不同也会影响问题的结果,那么就要根据题目的要求,将题目分成若干类型,转化成若干个小问题来解决,这种按不同情况分类,然后再对分好的每类逐一研究、解决问题的数学思想,就是分类讨论思想。

二、分类讨论的一般步骤:第一,明确讨论对象,确定对象的取值范围;第二,确定分类标准,进行合理分类,不重不漏;第三,对分好的每类进行讨论,获得阶段性结果;第四,归纳总结,得出结论。

三、分类讨论的常见情形:1.由数学概念引起的分类:有的概念本身就是分类给出的,在不同条件下有不同结论,则必须进行分类讨论求解,如绝对值、指数与对数函数、直线和平面所成的角等。

2.由性质、定理、公式的限制引起的分类:有的数学定理、公式、性质是分类给出的,在不同条件下结论不一致,如二次函数y=ax2+bx+c(a≠0),由a的正负而导致开口方向不确定;等比数列前n项和公式因公比q是否为1而导致公式的表达式不确定等.3。

由某些数学运算要求引起的分类讨论:如解不等式ax2+bx+c >0,a=0,a<0,a>0解法是不同的;除法运算中除数不为零,偶次方根为非负,对数真数与底数的要求,指数中底数的要求,不等式两边同乘以一个正数、负数时不等号的方向,三角函数的定义域等.4。

由图形引的不确定性起的分类:有的图形的类型、位置需要分类,比如角的终边所在象限;立体几何中点、线、面的位置关系等。

5.由实际意义引起的分类:此类问题在实际应用题中常见.特别是在解决排列、组合中的计数问题时常用.6。

由参数变化引起的分类:如含参数的方程、不等式,由于参数的取值不同会导致所得结果不同,所以必须对参数的不同取值进行分类讨论;或对于不同的参数值运用不同的求解或证明方法.四、下面我们通过几种具体问题来看看常见的分类讨论情形:1。

最全的高中数学思想方法

最全的高中数学思想方法

最全的高中数学思想方法1、函数与方程的思想著名数学家克莱因说“一般受教育者在数学课上应该学会的重要事情是用变量和函数来思考”。

一个学生仅仅学习了函数的知识,他在解决问题时往往是被动的,而建立了函数思想,才能主动地去思考一些问题。

函数是高中代数内容的主干,函数思想贯穿于高中代数的全部内容,函数思想是对函数内容在更高层次上的抽象、概括与提炼,是从函数各部分内容的内在联系和整体角度来考虑问题,研究问题和解决问题。

所谓方程的思想就是突出研究已知量与未知量之间的等量关系,通过设未知数、列方程或方程组,解方程或方程组等步骤,达到求值目的解题思路和策略,它是解决各类计算问题的基本思想,是运算能力的基础。

函数和方程、不等式是通过函数值等于零、大于零或小于零而相互关联的,它们之间既有区别又有联系。

函数与方程的思想,既是函数思想与方程思想的体现,也是两种思想综合运用的体现,是研究变量与函数、相等与不等过程中的基本数学思想。

高考把函数与方程的思想作为七种思想方法的重点来考查,使用选择题和填空题考查函数与方程的思想的基本运用,而在解答题中,则从更深的层次,在知识网络的交汇处,从思想方法与相关能力的关系角度进行综合考查。

在解题时,要学会思考这些问题:(1)是不是需要把字母看作变量?(2)是不是需要把代数式看作函数?如果是函数它具有哪些性质?(3)是不是需要构造一个函数把表面上不是函数的问题化归为函数问题?(4)能否把一个等式转化为一个方程?对这个方程的根有什么要求?……2、数形结合的思想数学研究的对象是数量关系和空间形式,即“数”与“形”两个方面。

“数”与“形”两者之间并不是孤立的,而是有着密切的联系。

数量关系的研究可以转化为图形性质的研究,反之,图形性质的研究可以转化为数量关系的研究,这种解决数学问题过程中“数”与“形”相互转化的研究策略,即是数形结合的思想。

数形结合的思想,在数学的几乎全部的知识中,处处以数学对象的直观表象及深刻精确的数量表达这两方面给人以启迪,为问题的解决提供简捷明快的途径。

高中数学思想方法8篇

高中数学思想方法8篇

高中数学思想方法8篇高中数学思想方法精选8篇高中数学思想方法1第一:函数与方程思想(1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用(2)方程思想是解决各类计算问题的基本思想,是运算能力的基础高考把函数与方程思想作为七种重要思想方法重点来考查第二:数形结合思想(1)数学研究的对象是数量关系和空间形式,即数与形两个方面(2)在一维空间,实数与数轴上的点建立一一对应关系在二维空间,实数对与坐标平面上的点建立一一对应关系数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化第三:分类与整合思想(1)分类是自然科学乃至社会科学研究中的基本逻辑方法(2)从具体出发,选取适当的分类标准(3)划分只是手段,分类研究才是目的(4)有分有合,先分后合,是分类整合思想的本质属性(5)含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性第四:化归与转化思想(1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法(3)高考重视常用变换方法:一般与特殊的转化、繁与简的`转化、构造转化、命题的等价转化第五:特殊与一般思想(1)通过对个例认识与研究,形成对事物的认识(2)由浅入深,由现象到本质、由局部到整体、由实践到理论(3)由特殊到一般,再由一般到特殊的反复认识过程(4)构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程(5)高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向第六:有限与无限的思想(1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路(2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用(4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查第七:或然与必然的思想(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性(2)偶然中找必然,再用必然规律解决偶然(3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点高中数学思想方法21、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。

高中数学四大思想方法及要求总结

高中数学四大思想方法及要求总结

高中数学四大思想方法及要求总结高中数学的四大思想方法主要包括抽象方法、推理方法、计算方法和模型方法。

这四种思想方法在数学学习中起到了至关重要的作用,它们的要求也是我们高中数学学习中需要重点培养和掌握的。

抽象方法是指将具体问题进行抽象化处理,从而找出问题的本质和规律。

这种方法要求我们学会抓住问题的关键,将问题转化为数学符号和表达式,通过数学语言的规范和抽象的思维方式来解决问题。

抽象方法要求我们具备分析问题的能力,善于发现问题中的共性和规律,培养逻辑思维和数学直觉。

推理方法是指从已知条件出发,通过逻辑推理和演绎推理过程,得出问题的结论。

推理方法要求我们掌握数学的基本概念和性质,运用逻辑推理和证明方法,按照问题的要求进行推理和演绎。

推理方法要求我们善于利用已知条件,建立正确的推理链条,合理运用各种定理和方法,解决问题。

计算方法是指通过运算和计算过程,得出问题的解答。

计算方法要求我们掌握基本的数学运算规则和计算技巧,准确地进行各种数值计算和代数计算,熟练地运用计算器和数学软件。

计算方法要求我们具备良好的计算能力和耐心,善于运用计算方法解决实际问题,培养反思和验证计算结果的能力。

模型方法是指通过建立数学模型,描述和分析实际问题,从而得出问题的解答和结论。

模型方法要求我们熟悉数学模型的建立和应用过程,掌握各种数学模型的基本原理和方法,具备从实际问题抽象出数学模型的能力。

模型方法要求我们善于运用数学模型解决实际问题,培养模型建立和分析问题的能力。

以上四大思想方法在高中数学学习中相辅相成,既有相同之处,又有不同之处。

它们的要求也有相似之处,也有不同之处。

总结起来,对于抽象方法、推理方法、计算方法和模型方法的要求主要包括以下几个方面:首先,要求我们掌握和运用数学的基本概念、原理和方法,熟练地运用数学语言和符号进行思考和表达。

其次,要求我们具备灵活的思维和创新的能力,善于分析问题、发现问题中的规律和共性,采用合适的方法和策略解决问题。

(完整版)高中数学思想方法专题

(完整版)高中数学思想方法专题

高中数学思想方法专题(一)——函数与方程的思想方法一、知识要点概述函数与方程的思想是中学数学的基本思想,高考数学题中函数与方程的思想占较大的比例,题型涉及选择题、填空题、解答题,难度有大有小,且试题中的大部分压轴题都与函数方程有关。

函数的思想,就是运用运动和变化的观点,集合与对应的思想,去分析和研究数学问题中的等量关系,建立或构造函数关系,再运用函数的图像和性质去分析问题,转化问题,从而使问题获得解决。

方程的思想,就是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型——方程或方程组,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使获得解决。

二、解题方法指导运用函数观点解决问题主要从以下四个方面着手:一是根据方程与函数的密切关系,可将二元方程转化为函数来解决;二是根据不等式与函数的密切关系,常将不等式问题转化为函数问题,利用函数的图象和性质进行处理;三是在解决实际问题中,常涉及到最值问题,通常是通过建立目标函数,利用求函数最值的方法加以解决;四是中学数学中的某些数学模型(如数列的通项或前n项和、含有一个未知量的二项式定理等)可转化为函数问题,利用函数相关知识或借助处理函数问题的方法进行解决。

运用方程观点解决问题主要从以下四个方面着手:一是把问题中对立的已知与未知通过建立相等关系统一在方程中,通过解方程解决;二是从分析问题的结构入手,找出主要矛盾,抓住某一个关键变量,将等式看成关于这个主变元(常称为主元)的方程,利用方程的特征解决;三是根据几个变量间的关系,判断符合哪些方程的性质和特征(如利用根与系数的关系构造方程等),通过研究方程所具有的性质和特征解决;四是在中学数学中常见数学模型(如函数、曲线等),经常转化为方程问题去解决。

三、范例剖析例1已知f(t)=log2t,t[ ,8],对于f(t)值域内的所有实数m,不等式2x2+mx+4>2m+4x恒成立,求x的取值范围。

高中数学思想方法专题

高中数学思想方法专题

高中数学思想方法专题复习高考数学是以能力立意,一是考察数学的基础知识,基本技能,二是考察基本数学思想方法,考查数学的思维深度、广度、宽度,数学思想方法是指从数学的角度来认识、处理和解决问题,是数学意识,是数学技能的升华和提高,中学数学思想方法主要有函数与方程思想、数形结合思想、分类与整合思想、化归与转化思想、特殊与一般思想、有限与无限思想、或然与必然思想。

1.函数与方程思想(1)函数思想的实质是抛开所研究对象的非数学特征,用联系和变化的观点提出数学对象,抽象其数学特征,建立各变量之间固有的函数关系,通过函数形式,利用函数的有关性质,使问题得到解决;(2)方程思想的实质就是将所求的量设成未知数,用它表示问题中的其他各量,根据题中隐含的等量关系,列方程(组),通过解方程(组)或对方程(组)进行研究,以求得问题的解决;(3)函数与方程思想在一定的条件下是可以相互转化的,是相辅相成的,函数思想重在对问题进行动态的研究,方程思想则是在动中求静,研究运动中的等量关系.例题选讲⑴ ()133+-=x ax x f 对于[]11,x -∈总有()0≥x f 成立,则______a =⑵ 设()()x g x f 、分别是定义在R 上的奇函数和偶函数,当0<x 时,()()()(),x 'g x f x g x f '0>+且(),g 03=-则不等式()()0<x g x f 的解集是________.变式训练1、 ⑴ 若方程0=+-a x sin x cos 2在⎥⎦⎤ ⎝⎛20π,上有解,则实数a 的取值范围是___________.⑵ 已知()[]822,t ,t log x f ∈=,对于()t f 值域内的所有的实数m ,不等式x m mx x 4242+>++恒成立,则x 的取值范围是__________2.数形结合思想(1)根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,包含“以形助数”和“以数辅形”两个方面;(2)数形结合是数学解题中常用的思想方法,运用数形结合思想,使某些抽象的数学问题直观化、形象化,能够变抽象思维为形象思维,有助于把握数学问题的本质,发现解题思路,而且能避免复杂的计算与推理,大大简化了解题过程;(3)数形结合的重点是研究“以形助数”,这在解选择题、填空题中更显其优越,要注意培养这种思想意识,做到心中有图,见数想图,以开拓自己的思维视野例题选讲⑴ 设()f x 是定义在R 上的偶函数, R x ∀∈,都有()()22f x f x -=+,且当[]0,2x ∈时, ()22x f x =-,若函数()()()log 1a g x f x x =-+(0,1a a >≠)在区间(]1,9-内恰有三个不同零点,则实数a 的取值范围是( )A. 11,95⎛⎫⋃ ⎪⎝⎭B. (1,19⎛⎫⋃ ⎪⎝⎭C. )10,9⎛⎫⋃+∞ ⎪⎝⎭ D. )11,73⎛⎫⋃ ⎪⎝⎭⑵ 已知函数()f x 满足:(1)定义域为R ;(2)对任意R x ∈,有)(2)2(x f x f =+;(3)当]1,1[-∈x 时,,1||)(+-=x x f 则方程||log )(4x x f =在区间]10,10[-内的解集个数是____________.变式训练2、⑴ 设函数()f x 的定义域为D ,如果存在正实数k ,使对任意x D ∈,都有x k D +∈,且()()f x k f x +>恒成立,则称函数()f x 为D 上的“k 型增函数”.已知()f x 是定义在R 上的奇函数,且当0x >时,()||2f x x a a =--,若()f x 为R 上的 “2018型增函数”,则实数a 的取值范围是 .⑵ 已知函数()()2log 02{ 424x x f x f x x <≤=-<<,设方程()()1x f x t t R e-=∈的四个不等实根从小到大依次为1234,,,x x x x ,则下列判断中一定成立的是( ) A.1212x x += B. 1214x x << C. 3449x x << D. ()()340444x x <--<⑶ 已知函数(),x sin x f =若存在,x ,x ,x m 21满足,x x x m π1008021≤<<<≤ 且()()()()()(),201613221=-++-+--m m x f x f x f x f x f x f ()*N m ,m ∈≥2,则m 的最小值为________.3.分类与整合思想在解某些数学问题时,我们常常会遇到这样一种情况:解到某一步之后,发现问题的发展是按照不同的方向进行的.当被研究的问题包含了多种情况时,就必须抓住主导问题发展方向的主要因素,在其变化范围内,根据问题的不同发展方向,划分为若干部分分别研究.这里集中体现的是由大化小,由整体化为部分,由一般化为特殊的解决问题的方法,其研究的基本方向是“分”,但分类解决问题之后,还必须把它们整合在一起,这种“合—分—合”的解决问题的思想,就是分类与整合思想. 例题选讲⑴ 设函数()⎩⎨⎧≥<-=12113x ,x ,x x f x ,则满足()()()a f a f f 2=的取值范围是_______________。

高中数学常见思想方法总结

高中数学常见思想方法总结

高中数学常见思想方法总结目录一、基本概念与思想 (2)1.1 数学思维方式 (3)1.1.1 几何直观 (4)1.1.2 逻辑推理 (6)1.1.3 形数结合 (7)1.2 高中数学常见解题思想 (8)1.2.1 分类讨论思想 (9)1.2.2 数形结合思想 (10)1.2.3 参数思想 (11)1.2.4 类比思想 (13)二、高级思想方法与应用 (14)2.1 模型思想 (15)2.1.1 实际问题模型化 (17)2.1.3 方程模型 (19)2.2 抽象思想 (20)2.2.1 数学抽象 (21)2.2.2 逻辑抽象 (22)2.2.3 方法抽象 (24)2.3 综合思想 (25)2.3.1 多种数学知识的综合运用 (27)2.3.2 不同数学方法的综合运用 (28)2.3.3 数学与其他学科的综合运用 (29)三、数学思想方法在解题中的具体应用 (31)3.1 题型分析 (33)3.1.1 函数题型 (33)3.1.2 不等式题型 (35)3.1.3 数列题型 (36)3.1.5 概率题型 (38)3.2 解题策略 (40)3.2.1 已知条件分析 (41)3.2.2 数形结合策略 (42)3.2.3 构造法策略 (44)3.2.4 特殊值法策略 (45)3.2.5 分类讨论策略 (46)一、基本概念与思想代数思想:代数是数学的一个重要分支,主要研究数与数的运算以及代数式、方程、函数等代数对象的性质。

代数思想强调符号表示等量关系和函数关系,是数学问题解决的重要工具。

几何思想:几何学是研究空间图形和性质的学科。

高中数学中的几何思想包括平面几何和立体几何,涉及图形的性质、图形的变换、空间想象等。

函数与变量思想:函数描述了一个量与另一个量的关系,是数学中重要的概念之一。

变量思想强调在变化中寻找规律,是解决数学问题的重要方法。

数形结合思想:将数学中的数与形相结合,通过图形的直观性来理解和解决数学问题,是高中数学中常见的思想方法。

高中数学常见的思想和方法

高中数学常见的思想和方法
4 1 2 sin x cos x sin x cos x 而 2


at (t 2 1) t 2 at a 2 于是,y=f(t) 2 2 2 1 1 2 1 2 (t a) a . 2 2 2 1 1 1 原问题化归为求二次函数 f (t ) (t a) 2 a 2 2 2 2
(3)直观化原则:将比较抽象的问题化为比较直
观的问题来解决.
(4)正难则反原则:当问题正面讨论遇到困难
时,可考虑问题的反面,设法从问题的反面去探
讨,使问题获解. 2.常见的转化与化归的方法 转化与化归思想方法用在研究、解决数学问题 时,思维受阻或寻求简单方法或从一种状况转化 到另一种情形,也就是转化到另一种情境使问题 得到解决,这种转化是解决问题的有效策略,同 时也是成功的思维方式.常见的转化方法有:
(1)直接转化法:把原问题直接转化为基本定理、
基本公式或基本图形问题. (2)换元法:运用“换元”把式子转化为有理式
或使整式降幂等,把较复杂的函数、方程、不等
式问题转化为易于解决的基本问题.
(3)数形结合法:研究原问题中数量关系(解析 式)与空间形式(图形)关系,通过互相变换获
得转化途径.
(4)等价转化法:把原问题转化为一个易于解决 的等价命题,达到化归的目的.
则f(t)是一次函数,当t∈[-2,2]时,f(t)>0恒
成立.
(log 2 x) 2 4 log 2 x 3 0 f ( 2) 0, 则由 , 即 , 2 (log 2 x) 1 0 f ( 2) 0
解得log2x<-1或log2x>3, 0 x 1 或x 8,
3 2
变式训练2 一个自动报警器由雷达和计算机两部 分组成,两部分有任何一个失灵,这个报警器就 失灵.若使用100小时后,雷达部分失灵的概率为 0.1,计算机失灵的概率为0.3,且两部分失灵与 否是独立的,求这个报警器使用100小时后失灵的 概率. 解 先考虑报警器不失灵的概率,即求雷达和计 算机均不失灵的概率.记“使用100小时后雷达失 灵”为A,记“使用100小时后计算机失灵”为B, 由于A与B相互独立,则报警器使用100小时后失灵 的概率为

高中数学数学七大基本思想方法汇总

高中数学数学七大基本思想方法汇总

高中数学数学七大基本思想方法汇总数学是一门精密的科学,它具有严谨的逻辑性和精确的推导能力。

而数学的思想方法也是数学发展的重要基础,它们指导着我们在数学学习和研究中的思考和解决问题的方式。

下面我将对数学七大基本思想方法进行汇总。

第一,抽象与具象思维。

抽象是从具体事物中提取出其特有的、普遍的性质和规律的思维活动,它是数学研究的基本方法。

通过抽象思维,我们能够抓住问题的核心,简化问题,提炼出问题的本质。

具象思维则是从一般规律中归纳特殊情况的思维方法,通过具象思维,我们能够将抽象的数学概念和方法具体化,进而更好地理解和应用。

第二,演绎与归纳思维。

演绎是根据已有的前提和规则,从已知的事实中推导出新的结论的思维方法。

通过演绎思维,我们能够通过逻辑推理,将已知的数学定理和命题应用到新的问题中,进而推出新的结论。

归纳则是通过观察特殊情况,总结规律,进而得出一般性结论的思维方法。

通过归纳思维,我们能够从具体的实例中总结出一般的规律,从而推广到更一般的情况。

第三,直观与符号思维。

直观思维是通过直接观察和感知,理解和表达数学问题的思维方式。

它以图形、图像和物理模型等形式进行思考,能够直观地理解和解决问题。

符号思维则是通过符号、公式、等式等数学符号进行思考和表达的方式。

它能够把问题转化为符号形式,进行精确地推导和计算。

第四,分析与综合思维。

分析思维是将一个复杂的问题分解成若干个较简单的部分,分别进行研究和分析的思维方法。

通过分析思维,我们能够深入理解问题的内部结构和关系,帮助我们理清问题的脉络和解决途径。

综合思维则是将各个部分的分析结果综合起来,得出整体性的结论或解决方案的思维方式。

通过综合思维,我们能够将分析的结果进行整合,得到更全面和完整的理解和解决方案。

第五,直觉与严谨思维。

直觉思维是通过内在的直觉和洞察力,快速而准确地找到问题的关键和解决办法的思维方式。

直觉的好坏往往与对问题的熟悉程度和专业知识的储备有关。

严谨思维则是以逻辑思维为基础,要求严谨的论证和推导过程的思维方法。

高中数学解题思想方法全部内容.

高中数学解题思想方法全部内容.

高中数学解题思想方法全部内容第一章高中数学解题基本方法一、配方法配方法是对数学式子进行一种定向变形(配成完全平方”的技巧,通过配方找到已知和未知的联系,从而化繁为简。

何时配方,需要我们适当预测,并且合理运用裂项”与添项”、配”与凑”的技巧,从而完成配方。

有时也将其称为凑配法”。

最常见的配方是进行恒等变形,使数学式子出现完全平方。

它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。

配方法使用的最基本的配方依据是二项完全平方公式(a+b =a + 2ab +b将这个公式灵活运用,可得到各种基本配方形式, 如:a +b =(a+b -2ab =(a-b +2ab ;a +ab +b =(a+b -ab =(a-b +3ab =(a+ +(b ; a +b +c +ab +bc +ca =[(a+b +(b+c +(c+a ]a +b +c =(a+b +c -2(ab+bc +ca =(a+b -c -2(ab-bc -ca =…结合其它数学知识和性质,相应有另外的一些配方形式,如:1+sin2 a =1+2sin a cos a =(sin a +cos a ;x +=(x+ -2=(x- +2; ....... 等等。

I、再现性题组:1. 在正项等比数列{a}中,a ?a +2a?a +a?a =25则a +a = ____ 。

2. ________________________________________ 方程x +y -4kx -2y +5k =0表示圆的充要条件是_____________________________________ 。

A. <k<1B. k<或k>1C. k € RD. k =或k =13. _______________________________________ 已知sin a +cos a^Sin a +coS勺值为____________________________________________ 。

高中数学七大基本思想方法讲解

高中数学七大基本思想方法讲解

高中数学七大基本思想方法讲解高中数学的七大基本思想方法是:分类讨论法、递推法、画图法、符号法、假设法、构造法和倒推法。

第一,分类讨论法。

分类讨论法是指将问题中的条件按照具有共同特征的情况分别讨论,从而对问题进行全面深入的解析。

通过逐个分类讨论,找出各个情况的共性和特点,以及不同情况下的不同解决方法。

这种方法可以将复杂的问题变得简单明了,易于理解与解答。

举个例子,假设有一道题目要求求解方程2x+3=5的解集。

我们可以将其分为两类:当x为正数时,方程有且仅有一个解;当x为负数时,方程无解。

通过将问题进行分类讨论,我们可以得到方程的解集为{x,x=1}。

第二,递推法。

递推法是指通过已知的初始值或者关系式来推导出未知项的计算方法。

这一方法常常用于求解数列中的其中一项或一些项,以及解决一些逻辑推理问题。

在递推的过程中,可以发现规律,从而推导出一般项、通项、边界条件等重要信息。

以求解斐波那契数列为例,斐波那契数列的前两项为1,从第三项开始,每一项都是前两项的和。

我们可以利用这个关系式进行递推:F(n)=F(n-1)+F(n-2)。

通过递推,我们可以得到斐波那契数列的通项公式。

第三,画图法。

画图法是通过绘制几何图形的方法,对问题进行可视化的处理。

它可以使抽象的数学问题变得具体明了,通过观察图形的性质和特点,可以得到问题的解。

举个例子,假设要求解一个三角形的内角和。

我们可以通过画一个三角形,并在其中一点做垂线,将三角形划分为若干个小三角形。

通过观察这些小三角形,我们可以发现它们的内角和等于一个直角。

然后,我们可以用这个结论推导出原始三角形的内角和。

第四,符号法。

符号法是指通过引入合适的符号和代数运算,将实际问题抽象成为可以用代数式描述的数学问题。

通过对符号及其运算规则的运用,可以更加简洁地表达数学问题,进而进行求解。

比如,假设有一道题目要求求两个数的和,可以用符号法表示为a+b=x。

通过引入符号a、b和运算符号+,我们将实际问题抽象成了一个代数问题。

高中数学思想方法总结

高中数学思想方法总结

高中数学思想方法总结引言高中数学作为一门重要的学科,对培养学生的逻辑思维能力和解决问题的能力起着至关重要的作用。

在学习高中数学的过程中,我们不仅需要掌握一定的数学知识,还需要培养合理的思想方法。

本文将总结高中数学学习过程中的一些思想方法,希望对广大学生在数学学习中起到一定的指导作用。

1. 理性思维理性思维是高中数学学习中最基本的思维方法之一。

在解决数学问题时,我们不能凭借主观意识或随意猜测,而是需要运用合理的逻辑推理和严密的证明方法。

学生应当学会用事实和逻辑进行思考,从而得出正确的结论。

具体来说,理性思维包括以下几个方面:•逻辑推理:在解决数学问题时,我们需要遵循一定的逻辑规律,根据已知条件进行推理,从而得到正确的结论。

•求证能力:在学习数学过程中,我们常常需要进行定理的证明,这就要求我们具备一定的求证能力,善于发现问题之间的联系,运用合适的方法进行证明。

•严谨性:在解决数学问题的过程中,任何一个推理步骤都需要非常严密,不能存在逻辑上的漏洞。

2. 创新思维高中数学的学习不仅仅是追求解答问题的标准答案,更需要学生具备创新思维,善于运用已有的知识和方法来解决新的问题。

创新思维要求我们打破常规思维的约束,用新的角度去思考问题,从而得到更加全面和深入的解析。

在创新思维中,我们可以尝试以下几个方面:•打破常规:在解决问题时,我们不应停留在常规的思维模式中,而是要敢于提出新的想法和观点,尝试用不同的方式解决问题。

•综合运用:高中数学知识丰富多样,我们可以尝试将不同的知识点进行综合运用,从而得到更加全面的解决方案。

•思维延伸:在解决数学问题的过程中,我们可以尝试将思维进行延伸,从而得到更深入的结论和推广。

3. 勇于思考数学学习需要学生勇于思考,敢于提出问题,并尝试解决问题。

在学习过程中,我们不能只局限于被动接受知识,而是要积极主动地思考,主动地提问,主动地探索。

只有通过思考,我们才能更好地理解和掌握所学的知识,并能够运用到实际问题中。

高中数学思想方法总结

高中数学思想方法总结

高中数学思想方法总结高中数学思想方法总结数学是一门重要的学科,它不仅仅是为了考试而存在,更是为了培养学生的思维能力、创造力和解决问题的能力。

在高中阶段,学习数学需要掌握一些思想方法,这些方法对于学习数学和解决实际问题都有很大的帮助。

下面我将总结一些高中数学的思想方法。

一、抽象思维方法抽象思维是数学思维的核心之一。

在数学中,抽象是指把具体的事物和现象的特征提取出来,形成数学概念和符号。

在解决问题时,可以把具体问题转化为抽象的数学模型,从而更好地理解和解决问题。

例如,利用符号来表示未知数,用函数来描述事物的变化规律等。

二、逻辑思维方法逻辑思维是数学思维的另一个重要方面。

在数学中,逻辑是指推理和论证的过程,要求合理地运用公理、定义、定理和推理等数学工具进行推导和证明。

逻辑思维方法包括归纳和演绎。

归纳是从已知事实或特例中总结出一般规律,而演绎则是从一般规律推导出特殊结论。

三、综合思维方法综合思维是数学思维的综合运用。

学习数学不能只停留在知识点的学习,更应该注重将不同的概念和方法进行整合,并用于实际问题的解决。

在综合思维方法中,需要主动寻找不同知识点之间的联系和相互作用,培养将不同知识进行整合和创新的能力。

四、建模思维方法建模思维是数学解决实际问题的关键方法之一。

建模是将实际问题转化为数学问题的过程,需要将实际问题中的特征和要素提取出来,利用数学语言进行描述和分析。

在建模思维中,学生需要培养观察问题、分析问题以及利用已学知识解决问题的能力。

五、推理思维方法推理思维是数学思维的重要组成部分。

数学推理是一种通过逻辑关系进行思考的过程,旨在推出一个结论。

推理思维方法包括直接推理、间接推理、归谬法等。

通过推理思维,能够更好地理解和应用已学的数学知识。

六、创新思维方法数学是一门富有创造性的学科,学习数学需要学会创新思维。

创新思维是指在理解和掌握已有知识的基础上,运用创造性思维进行问题的拓展和推广。

在创新思维方法中,学生需要培养提出问题、挖掘问题以及解决问题的能力,不拘泥于现有思维模式,勇于探索和尝试。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

相关文档
最新文档