工程数学(线性代数与概率统计)复旦大学,第一章典型例题分析

工程数学(线性代数与概率统计)复旦大学,第一章典型例题分析
工程数学(线性代数与概率统计)复旦大学,第一章典型例题分析

典 型 例 题 分 析

第 一 章

例1

计算行列式

11111

111

1111

1

1

1

1

x x x x ---+-

--+--

解:注意到此行列式的行和相等

原式1234()c c c c +++

1111111111

1

1

x

x x x x x x

---+-----=1

111111111

111

1

1

1

x x x

x ---+-----121314

10010

1001000

x

c c x c c x x c c +-++634

(1)x x x

=-=

例2

计算行列式0000000

0000

0n D αβαβαβαβαβ

αβα

βαβ

+++=

+

+

解: 注意到此行列式的第一行(列)与最后一行(列)都只有两个非零元素 将行列式按第一列展开,可得

12

10000

()(1)000

n n D D αβαβ

αββαβαβαβ

+-+=++-+

+

注意到此时第一行只有一个非零元素,可按第一行展开得

12()n n n D D D αβαβ--=+-

即112()n

n n n D D D D αβα----=-或112()n n n n D D D D βαβ----=-

由此递推下去

21122321()*()()n n n n n n n D D D D D D D D αβαββαβα-------=-=-==-

由题目可算得2

2

()D αβααβαββαβ

+==+-+,1D αβ=+, 代入上述递推式,可得

1n n n D D αβ--= (1)

同理可得

1n

n n D D βα--= (2)

(1)若αβ≠

,由上述(1)、(2)式可解得

11

n n n D αβαβ

++-=-

(2)若α

β=,由(1)式递推下去,可得

12112211()2(1)(1)2(1)n n n n n n n n n n n n n n n

D D D D D n D n n ααααααααααααααα

------=+=+=++=+=

=-+=-+=+

例3

计算n 阶行列式

1231211

21

n n x n D x x n x x x

-=-

1

111110

111100111(1)0

0011(1)

n i i x x x D r r

x x

x

x

x

x x ----?-+-+-111111111001111011100011

10011000011000101x x x x x x x x x

x

x

x

x

x

x

x

x

x

------+

---

将第一个行列式的最后一列乘以-1加到其他列,而第二个行列式由于最后一列只有一个非零元素,因此可以按最后一列展开,则可得

000110

1(1)

1111

000n

n x x

D x x x

---=

+-----

注意到第一个行列式的最后一行只有一个非零元素,可按最后一行展开得到

1

(1)

(1)

n n n

n D x x -=-+-

例4

计算行列式

122

22122221212111n n n n n n n

n

n

n x x x x x x D x x x x x x ---

=

解:注意到该行列式与范德蒙行列式比较相似,只需要在最后两行之间添上一行,再添加一列便可以构成一个范德蒙行列式 考虑n+1阶范德蒙行列式

f(x)=

122

22212222212111112121

111n n n n n n n n n n n n n

n

n

n

n x x x x x x x x x x x x x x x x x x x x -------

-

121()()

()

()n i j j i n

x x x x x x x x ≤<≤=----∏

所求的行列式就是

f(x)中元素

1

n x

-的余子式,1n n M +,即

,1,n n n n n

D M A ++==-,而由f(x)的上述表达式知,1

n x -的系数为 ,1121()

()

n n n i

j

j i n

A x x x x x +≤<≤=-+++-∏ 于是

121()

()n n i j j i n

D x x x x x ≤<≤=++

+-∏

例5

设n 阶行列式

123120

010

3

100n n D n

=求第一行各元素的代数余子式之和

11121n A A A ++

解:由行列式按行(列)展开定理,可知此题所求的第一行各元素的的代数余子

式之和可以表示成以下形式

11121111

11

20010

3

100

n A A A n

++

=

经计算可得

2111211

2111110200

1

1

()!(1)00300

00

n

j n

n j j j

A A A C C n j

j n

==-++

?-+=-∑∑

线性代数典型例题

线性代数 第一章 行列式 典型例题 一、利用行列式性质计算行列式 二、按行(列)展开公式求代数余子式 已知行列式412343 344 615671 12 2 D = =-,试求4142A A +与4344A A +. 三、利用多项式分解因式计算行列式 1.计算221 1231223131 5 1319x D x -= -. 2.设()x b c d b x c d f x b c x d b c d x = ,则方程()0f x =有根_______.x = 四、抽象行列式的计算或证明 1.设四阶矩阵234234[2,3,4,],[,2,3,4]A B αγγγβγγγ==,其中234,,,,αβγγγ均为四维列向量,且已知行列式||2,||3A B ==-,试计算行列式||.A B + 2.设A 为三阶方阵,*A 为A 的伴随矩阵,且1 ||2 A = ,试计算行列式1*(3)22.A A O O A -??-??? ?

3.设A 是n 阶(2)n ≥非零实矩阵,元素ij a 与其代数余子式ij A 相等,求行列式||.A 4.设矩阵210120001A ?? ??=?? ????,矩阵B 满足**2ABA BA E =+,则||_____.B = 5.设123,,ααα均为3维列向量,记矩阵 123123123123(,,),(,24,39)A B αααααααααααα==+++++ 如果||1A =,那么||_____.B = 五、n 阶行列式的计算 六、利用特征值计算行列式 1.若四阶矩阵A 与B 相似,矩阵A 的特征值为 1111 ,,,2345 ,则行列式1||________.B E --= 2.设A 为四阶矩阵,且满足|2|0E A +=,又已知A 的三个特征值分别为1,1,2-,试计算行列式*|23|.A E + 第二章 矩阵 典型例题 一、求逆矩阵 1.设,,A B A B +都是可逆矩阵,求:111().A B ---+

欧阳光中数学分析答案

欧阳光中数学分析答案 【篇一:数学分析目录】 合1.1集合1.2数集及其确界第二章数列极限2.1数列极限 2.2数列极限(续)2.3单调数列的极限2.4子列第三章映射和实函数 3.1映射3.2一元实函数3.3函数的几何特性第四章函数极限和连续性4.1函数极限4.2函数极限的性质4.3无穷小量、无穷大量和有界量第五章连续函数和单调函数5.1区间上的连续函数5.2区间上连续函数的基本性质5.3单调函数的性质第六章导数和微分6.1导数概念6.2求导法则6.3高阶导数和其他求导法则6.4微分第七章微分学基本定理及使用7.1微分中值定理7.2taylor展开式及使用7.3lhospital法则及使用第八章导数的使用8.1判别函数的单调性8.2寻求极值和最值8.3函数的凸性8.4函数作图8.5向量值函数第九章积分9.1不定积分9.2不定积分的换元法和分部积分法9.3定积分9.4可积函数类r[a,b] 9.5定积分性质9.6广义积分9.7定积分和广义积分的计算9.8若干初等可积函数类第十章定积分的使用10.1平面图形的面积10.2曲线的弧长10.3旋转体的体积和侧面积10.4物理使用10.5近似求积第十一章极限论及实数理论的补充11.1cauchy收敛准则及迭代法11.2上极限和下极限11.3实数系基本定理第十二章级数的一般理论12.1级数的敛散性12.2绝对收敛的判别法12.3收敛级数的性质12.4abel-dirichlet判别法12.5无穷乘积第十三章广义积分的敛散性13.1广又积分的绝对收敛性判别法13.2广义积分的abel-dirichlet判别法第十四章函数项级数及幂级数14.1一致收敛性14.2一致收敛性的判别14.3一致收敛级数的性质14.4幂级数14.5函数的幂级数展开第十五章fourier级数15.1fourier级数15.2fourier级数的收敛性15.3fourier级数的

行列式经典例题

大学-----行列式经典例题 例1计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =,1,1,n a n =- ,故 01110212 n n n D n n --= -- 1,1,,2 i i r r i n n --=-= 01 1111 111 n ---- 1,,1 j n c c j n +=-= 121 1 021 (1)2(1)020 1 n n n n n n ------=---- 其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列. 方法2 01110 212 0n n n D n n --= -- 1 1,2,,111 1111 120 i i r r i n n n +-=----=-- 1 2,,100120 1231 j c c j n n n n +=---= --- =12(1)2(1) n n n ---- 例2. 设a , b , c 是互异的实数, 证明: 的充要条件是a + b + c =0. 证明: 考察范德蒙行列式:

= 行列式 即为y 2前的系数. 于是 = 所以 的充要条件是a + b + c = 0. 例3计算D n = 121 100010n n n x x a a a x a ----+ 解: 方法1 递推法 按第1列展开,有 D n = x D 1-n +(-1) 1 +n a n 1 1111n x x x ----- = x D 1-n + a n 由于D 1= x + a 1,221 1x D a x a -=+,于是D n = x D 1-n + a n =x (x D 2-n +a 1-n )+ a n =x 2 D 2-n + a 1-n x + a n = = x 1 -n D 1+ a 2x 2 -n + + a 1-n x + a n =111n n n n x a x a x a --++++ 方法2 第2列的x 倍,第3列的x 2 倍, ,第n 列的x 1 -n 倍分别加到第1列上 12 c xc n D += 21121 10010000n n n n x x x a xa a a x a -----++

线性代数典型例题

线性代数 第一章 行列式 典型例题 一、利用行列式性质计算行列式 二、按行(列)展开公式求代数余子式 已知行列式41 234334461 5671122 D ==-,试求4142A A +与4344A A +、 三、利用多项式分解因式计算行列式 1.计算2211 23122313 1513 19x D x -=-、 2.设()x b c d b x c d f x b c x d b c d x =,则方程()0f x =有根_______.x = 四、抽象行列式的计算或证明 1、设四阶矩阵234234[2,3,4,],[,2,3,4]A B αγγγβγγγ==,其中234,,,,αβγγγ均为四维列向量,且已知行列式||2,||3A B ==-,试计算行列式||.A B + 2、设A 为三阶方阵,*A 为A 的伴随矩阵,且1||2 A =,试计算行列式1*(3)22.A A O O A -??-???? 3、设A 就是n 阶(2)n ≥非零实矩阵,元素ij a 与其代数余子式ij A 相等,求行列式

||.A 4、设矩阵210120001A ????=?????? ,矩阵B 满足**2ABA BA E =+,则||_____.B = 5、设123,,ααα均为3维列向量,记矩阵 123123123123(,,),(,24,39)A B αααααααααααα==+++++ 如果||1A =,那么||_____.B = 五、n 阶行列式的计算 六、利用特征值计算行列式 1、若四阶矩阵A 与B 相似,矩阵A 的特征值为1111,,,2345 ,则行列式1||________.B E --= 2、设A 为四阶矩阵,且满足|2|0E A +=,又已知A 的三个特征值分别为1,1,2-,试计算行列式*|23|.A E + 第二章 矩阵 典型例题 一、求逆矩阵 1、设,,A B A B +都就是可逆矩阵,求:111().A B ---+ 2、设0002100053123004 580034600A ????????=???????? ,求1.A -

(完整版)线性代数重要知识点及典型例题答案

线性代数知识点总结 第一章 行列式 二三阶行列式 N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n n n nj j j j j j j j j n ij a a a a ...)1(21212121) ..(∑-= τ (奇偶)排列、逆序数、对换 行列式的性质:①行列式行列互换,其值不变。(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。 推论:若行列式中某两行(列)对应元素相等,则行列式等于零。 ③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。 ④行列式具有分行(列)可加性 ⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。 克莱姆法则: 非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j D D x j j ??==、 齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式: ①转置行列式:33 23133222123121 11333231232221 131211 a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a = ③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零 ④三线性行列式:33 31 2221 13 1211 0a a a a a a a 方法:用221a k 把21a 化为零,。。化为三角形行列式 ⑤上(下)三角形行列式:

《经济数学》线性代数学习辅导与典型例题解析

《经济数学》线性代数学习辅导及典型例题解析 第1-2章行列式和矩阵 ⒈了解矩阵的概念,熟练掌握矩阵的运算。 矩阵的运算满足以下性质 ⒉了解矩阵行列式的递归定义,掌握计算行列式(三、四阶)的方法;掌握方阵乘积行列式定理。 是同阶方阵,则有: 若是阶行列式,为常数,则有: ⒊了解零矩阵,单位矩阵,数量矩阵,对角矩阵,上(下)三角矩阵,对称矩阵,初等矩阵的定义及性质。

⒋理解可逆矩阵和逆矩阵的概念及性质,掌握矩阵可逆的充分必要条件。 若为阶方阵,则下列结论等价 可逆满秩存在阶方阵使得 ⒌熟练掌握求逆矩阵的初等行变换法,会用伴随矩阵法求逆矩阵,会解简单的矩阵方程。 用初等行变换法求逆矩阵: 用伴随矩阵法求逆矩阵:(其中是的伴随矩阵) 可逆矩阵具有以下性质: ⒍了解矩阵秩的概念,会求矩阵的秩。 将矩阵用初等行变换化为阶梯形后,所含有的非零行的个数称为矩阵的秩。 典型例题解析 例1 设均为3阶矩阵,且,则。 解:答案:72 因为,且

所以 例2设为矩阵,为矩阵,则矩阵运算()有意义。 解:答案:A 因为,所以A可进行。 关于B,因为矩阵的列数不等于矩阵的行数,所以错误。 关于C,因为矩阵与矩阵不是同形矩阵,所以错误。 关于D,因为矩阵与矩阵不是同形矩阵,所以错误。 例3 已知 求。 分析:利用矩阵相乘和矩阵相等求解。 解:因为 得。

例4 设矩阵 求。 解:方法一:伴随矩阵法 可逆。 且由 得伴随矩阵 则=

方法二:初等行变换法 注意:矩阵的逆矩阵是唯一的,若两种结果不相同,则必有一个结果是错误的或两个都是错误的。 例4 设矩阵 求的秩。 分析:利用矩阵初等行变换求矩阵的秩。 解: 。

线性代数行列式经典例题

线性代数行列式经典例题 例1计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =,1,1,n a n =- ,故 01110212 n n n D n n --= -- 1,1,,2 i i r r i n n --=-= 01 1111 111 n ---- 1,,1 j n c c j n +=-= 121 1 021 (1)2(1)020 1 n n n n n n ------=---- 其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列. 方法2 01110 212 0n n n D n n --= -- 1 1,2,,111 1111 120 i i r r i n n n +-=----=-- 1 2,,100120 1231 j c c j n n n n +=---= --- =12(1)2(1) n n n ---- 例2. 设a , b , c 是互异的实数, 证明: 的充要条件是a + b + c =0. 证明: 考察范德蒙行列式:

= 行列式 即为y 2前的系数. 于是 = 所以 的充要条件是a + b + c = 0. 例3计算D n = 121 100010n n n x x a a a x a ----+ 解: 方法1 递推法 按第1列展开,有 D n = x D 1-n +(-1) 1 +n a n 1 1111n x x x ----- = x D 1-n + a n 由于D 1= x + a 1,221 1x D a x a -=+,于是D n = x D 1-n + a n =x (x D 2-n +a 1-n )+ a n =x 2 D 2-n + a 1-n x + a n = = x 1 -n D 1+ a 2x 2 -n + + a 1-n x + a n =111n n n n x a x a x a --++++ 方法2 第2列的x 倍,第3列的x 2 倍, ,第n 列的x 1 -n 倍分别加到第1列上 12 c xc n D += 21121 10010000n n n n x x x a xa a a x a -----++

线性代数总结材料汇总情况+经典例题

线性代数知识点总结 1 行列式 (一)行列式概念和性质 1、逆序数:所有的逆序的总数 2、行列式定义:不同行不同列元素乘积代数和 3、行列式性质:(用于化简行列式) (1)行列互换(转置),行列式的值不变 (2)两行(列)互换,行列式变号 (3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k 乘此行列式 (4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。 (5)一行(列)乘k加到另一行(列),行列式的值不变。 (6)两行成比例,行列式的值为0。 (二)重要行列式 4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积 5、副对角线行列式的值等于副对角线元素的乘积乘 6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则

7、n阶(n≥2)德蒙德行列式 数学归纳法证明 ★8、对角线的元素为a,其余元素为b的行列式的值: (三)按行(列)展开 9、按行展开定理: (1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0 (四)行列式公式 10、行列式七大公式:

(1)|kA|=k n|A| (2)|AB|=|A|·|B| (3)|A T|=|A| (4)|A-1|=|A|-1 (5)|A*|=|A|n-1 (6)若A的特征值λ1、λ2、……λn,则 (7)若A与B相似,则|A|=|B| (五)克莱姆法则 11、克莱姆法则: (1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解 (2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0 (3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。 2 矩阵 (一)矩阵的运算 1、矩阵乘法注意事项: (1)矩阵乘法要求前列后行一致; (2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律)

考研线性代数重点内容和典型题型

考研线性代数重点内容和典型题型 线性代数在考研数学中占有重要地位,必须予以高度重视.线性代数试题的特点比较突出,以计算题为主,证明题为辅,因此,专家们提醒广大的xx年的考生们必须注重计算能力.线性代数在数学一、二、三中均占22%,所以考生要想取得高分,学好线代也是必要的。下面,就将线代中重点内容和典型题型做了总结,希望对xx年考研的同学们学习有帮助。 行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式.如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以体现.行列式的重点内容是掌握计算行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶.但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开.另外,一些特殊的行列式(行和或列和相等的行列式、三对角行列式、爪型行列式等等)的计算方法也应掌握.常见题型有:数字型行列式的计算、抽象行列式的计算、含参数的行列式的计算.关于每个重要题型的具体方法以及例题见《xx 年全国硕士研究生入学统一考试数学120种常考题型精解》。 矩阵是线性代数的核心,是后续各章的基础.矩阵的概念、运算及理论贯穿线性代数的始终.这部分考点较多,重点考点有逆矩阵、

伴随矩阵及矩阵方程.涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题.这几年还经常出现有关初等变换与初等矩阵的命题.常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的计算与证明、解矩阵方程。 向量组的线性相关性是线性代数的重点,也是考研的重点。xx 年的考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解.常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。 往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容.本章的重点内容有:齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论).主要题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题。 特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、

20XX考研数学线代典型题型分析.doc

试题中得以体现。行列式的重点内容是掌握计算行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶。但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开。另外,一些特殊的行列式(行和或列和相等的行列式、三对角行列式、爪型行列式等等)的计算方法也应掌握。常见题型有:数字型行列式的计算、抽象行列式的计算、含参数 的行列式的计算。 矩阵是线性代数的核心,是后续各章的基础。矩阵的概念、运算及理论贯穿线性代数的始终。这部分考点较多,重点考点有逆矩阵、伴随矩阵及矩阵方程。涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题。这几年还经常出现有关初等变换与初等矩阵的命题。常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的计算与证明、解矩阵方程。 向量组的线性相关性是线性代数的重点,也是考研的重点。考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程

组等相联系,从各个侧面加强对线性相关性的理解。常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容。本章的重点内容有:齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论)。主要题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题。特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化。重点题型有:数值矩阵的特征值和特征向量的求法、抽象矩阵特征值和特征向量的求法、判定矩阵的相似对角化、由特征值或特征向量反求A、有关实对称矩阵的问题。由于二次型与它的实对称矩阵式一一对应的,所以二次型的很多问题都可以转化为它的实对称矩阵的问题,可见正确写出二次型的矩阵式处理二次型问题的一个基础。重点内容包括:掌握二次型及其矩阵表示,了解二次型的秩和标准形等概念;了解二次型的规范形和惯性定理;掌握用正交变换并会用配方法化二次型为标准形;理解正定二次型和正定矩阵的概念及其判别方法。重点题型有:二次型表成矩阵形式、化二次型为标准形、二次型正定性的判别。

复旦版数学分析答案全解ex14-4

习 题 14.4 微分形式的外微分 1. 计算下列微分形式的外微分: (1)1-形式; dy x xydx 22+=ω(2)1-形式xdy ydx sin cos ?=ω; (3)2-形式dz xydx dy zdx ∧?∧=6ω。 解(1)0222=∧+∧+∧=dy xdx dx xdy dx ydx d ω。 (2)dy dx x y dy xdx dx ydy d ∧?=∧?∧?=)cos (sin cos sin ω。 (3)=∧∧?∧∧=dz dx xdy dy dx dz d 6ωdz dy dx x ∧∧+)6(。 2.设ω=+++a x dx a x dx a x dx n n n 111222()()()"是n R 上的1-形式,求d ω。 解 d ω0)(1=∧′=∑=n i i i i i dx dx x a 3.设ω=∧+∧+∧a x x dx dx a x x dx dx a x x dx dx 12323213313121(,)(,)(,)2是3R 上的 2-形式,求d ω。 解 设 323211),(dx dx x x a ∧=ω,由于 0,0323322=∧∧=∧∧dx dx dx dx dx dx , 则有 =1ωd 03233 132221=∧∧??+∧∧??dx dx dx x a dx dx dx x a 。 类似地,设 133122),(dx dx x x a ∧=ω,212133),(dx dx x x a ∧=ω,则 032==ωωd d , 从而 0321=++=ωωωωd d d d 。 4. 在3R 上在一个开区域?=××(,)(,)(,)a b c d e f 上定义了具有连续导数 的函数,,,试求形如 )(1z a )(2x a )(3y a dz x b dy z b dx y b )()()(321++=ω 的1-形式ω,使得 dy dx y a dx dz x a dz dy z a d ∧+∧+∧=)()()(321ω 。 解 由题意,可得 )()(),()(),()(2312 31x a x b z a z b y a y b ?=′?=′?=′, 所以 dx dy y a ))((3∫?=ωdy dz z a ))((1∫?dz dx x a ))((2∫?。 5. 设(∑=∧=n j i j i ij dx dx a 1,ωji ij a a ?=,n j i ,,2,1,"=)是n R 上的2-形式,证 明

线性代数典型例题

A = C 1,: 2,: 3), B =(:1 : 2 : 3, j 2 24 3√ 1 3: 2 9 3) 线性代数 第一章行列式 典型例题 、利用行列式性质计算行列式 、按行(列)展开公式求代数余子式 四、抽象行列式的计算或证明 1. 设四阶矩阵 A=[2>,3 2,4 3, 4],B=「,2 2,3 3,4 4],其中2, 3, 4 均为四 维列向量,且已知行列式|A| = 2,|B|=-3,试计算行列式|A - B|. A 1 2. 设A 为三阶方阵,A 为A 的伴随矩阵,且IAI=',试计算行列式 2 "(3A ) j -2A * 0〕 2 L :O AT 3. 设A 是n 阶(n 工2)非零实矩阵,元素a ij 与其代数余子式A j 相等,求行列式|A|. 2 1 0 4. 设矩阵 A= 1 2 0 ,矩阵 B 满足 ABA * = 2BA*+E ,则 |B|= ________ . '0 0 1 J 5. 设>1√?2, : 3均为3维列向量,记矩阵 已知行列式D 4 = 1 3 1 1 2 3 5 1 3 4 6 2 4 4 7 2 =-6 ,试求 A 41 A 42 与 A 43 ' A 44. 三、利用多项式分解因式计算行列式 1 1 、t W 1 2 — X 1 ?计算D = 1 5 1 9-x 2 2 ?设 f(x)= X b b b b X C C C C X d d d ,则方程f (X) =O 有根X = d

如果I A ∣=1,那么| B |= __ . 五、n阶行列式的计算 六、利用特征值计算行列式 1. 若四阶矩阵A与B相似,矩阵A的特征值为丄丄,则行列式 2 3 4 5 1 IB -E∣= _________ . 2. 设A为四阶矩阵,且满足|2E ? A∣=0,又已知A的三个特征值分别为-1,1,2,试计算行列式|2A 3E |. 第二章矩阵 典型例题 一、求逆矩阵 1. 设代B, A ■ B都是可逆矩阵,求:(A J■ B」)」. -00021〕 00053 2.设 A =12300,求A JL 45800 34600 一 二、讨论抽象矩阵的可逆性 1. 设n阶矩阵A满足关系式A3? A2- A- E =0,证明A可逆,并求A^l. 2. 已知A3 =2E,B = A2 -2A ? 2E ,证明B可逆,并求出逆矩阵。 3. 设A = E Xy T ,其中X, y均为n维列向量,且X T y = 2 ,求A的逆矩阵。 4. 设代B为n阶矩阵,且E-AB可逆,证明E - BA也可逆。 三、解矩阵方程 1 1 -1 1. 设矩阵A= -1 1 1 ,矩阵X满足A*X=A*+2X,求矩阵X . J -1 1 J 1 0 0 0 1 1

线性代数总结汇总+经典例题

(一)行列式概念和性质线性代数知识点总结 1 行列式 1、逆序数:所有的逆序的总数 2、行列式定义:不同行不同列元素乘积代数和 3、行列式性质:(用于化简行列式) (1))行列互换(转置),行列式的值不变 (2))两行(列)互换,行列式变号 (3))提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k 乘此行列式 (4))拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这 个行列式就等于两个行列式之和。 (5))一行(列)乘k加到另一行(列),行列式的值不变。 (6))两行成比例,行列式的值为0。 (二)重要行列式 4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积 5、副对角线行列式的值等于副对角线元素的乘积乘 6、Laplace展开式:(A 是m 阶矩阵,B 是n 阶矩阵),则 7、n 阶(n≥2)范德蒙德行列式

数学归纳法证明 ★8、对角线的元素为a,其余元素为 b 的行列式的值: (三)按行(列)展开 9、按行展开定理: (1))任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2))行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式 乘积之和等于0 (四)行列式公式 10、行列式七大公式: (1)|kA|=k n|A| (2)|AB|=|A| ·|B| (3)|A T|=|A| (4)|A -1|=|A| -1 (5)|A*|=|A| n-1 (6))若A 的特征值λ1、λ2、,, λn ,则 (7))若 A 与B 相似,则|A|=|B| (五)克莱姆法则 11、克莱姆法则: (1 )非齐次线性方程组的系数行列式不为0 ,那么方程为唯一解

复旦大学第三版数学分析答案

一﹑细心填一填,你一定能行(每空2分,共20分) 1.当 = 时,分式的值为零. 2.某种感冒病毒的直径为0.0000000031米,用科学记数法表示为. 3.请你写出一个图象在第一、三象限的反比例函数. 4.随机从甲、乙两块试验田中各抽取100株麦苗测量高度,计算平均数和方差 的结果为:,,,,则小麦长势比较整齐的试验 田是(填“甲”或“乙”). 5.如图,□ABCD中,AE,CF分别是∠BAD,∠BCD的角平分线,请添加一个条件使四边形AECF为菱形. 6.计算. 7.若点()、、都在反比例函数的图象上,则的大小关系是. 8.已知梯形ABCD中,AD∥BC,∠ABC=60°,BD=2 ,AE为梯形的高,且BE=1, ?则AD=______. 9.如图,中,,,,分别以为直径作三个半圆,那么阴影部分的面积为(平方单位).10.如图,矩形ABCD的对角线BD过O点,BC∥x轴, 且A(2,-1),则经过C点的反比例函数的解析式为. 二﹑精心选一选,你一定很棒(每题3分,共30分) 11.下列运算中,正确的是 A. B. C. D. 12.下列说法中,不正确的是 A.为了解一种灯泡的使用寿命,宜采用普查的方法 B.众数在一组数据中若存在,可以不唯一 C.方差反映了一组数据与其平均数的偏离程度 D.对于简单随机样本,可以用样本的方差去估计总体的方差 13.能判定四边形是平行四边形的条件是 A.一组对边平行,另一组对边相等 B.一组对边相等,一组邻角相等 C.一组对边平行,一组邻角相等 D.一组对边平行,一组对角相等 14.反比例函数在第一象限的图象如图所示,则k的值可能是 A.1 B.2 C.3 D.4

数学分析习题集1复旦大学

习 题 1.1 ⒈ 证明由n 个元素组成的集合T a a a n ={}12,,, 有2个子集。 n ⒉ 证明: (1) 任意无限集必包含一个可列子集; (2) 设与A B 都是可列集,证明也是可列集。 A B ∪⒊ 指出下列表述中的错误: (1) {}; 0=? (2); a ?{,,}a b c (3) {,; }a b ∈{,,}a b c (4) {,。 ,{,}}a b a b ={,}a b ⒋ 用集合符号表示下列数集: (1) 满足x x ?+≤32 0的实数全体; (2) 平面上第一象限的点的全体; (3) 大于0并且小于1的有理数全体; (4) 方程的实数解全体。 0cot sin =x x ⒌ 证明下列集合等式: (1) A B D A B A D ∩∪∩∪∩()()()=; (2) ()。 A B A B C C ∪∩=C ⒍ 举例说明集合运算不满足消去律: (1) ≠> A B A C ∪∪=B C = ; (2) ≠> A B A C ∩∩=B C =。 其中符号“ ≠> ”表示左边的命题不能推出右边的命题。 ⒎ 下述命题是否正确?不正确的话,请改正。 (1) B A x ∩∈ ? A x ∈ 并且 B x ∈; (2) B A x ∪∈ ? A x ∈ 或者 B x ∈。 习 题 1.2 1. 设},,{γβα=S ,,问有多少种可能的映射?其中哪些是双射? T a b c ={,,}f :S T →2. (1) 建立区间[,与[,之间的一一对应; ]a b ]01

(2) 建立区间(,与之间的一一对应。 )01(,?∞+∞)3. 将下列函数和构成复合函数,并指出定义域与值域: f g (1) , y f u ==()log a u u g x ==()x 2 3?; (2) , y f u ==()arcsin u u g x ==()x 3; (3) y f u ==()u 21?,u g x ==()sec x ; (4) y f u ==()u ,u g x ==()x x ?+1 1。 4. 指出下列函数是由哪些基本初等函数复合而成的: (1) y x =+arcsin 112; (2) 32 1 log (1)3a y x =?。 5. 求下列函数的自然定义域与值域: (1) (); x y a sin log =1>a (2) y x =cos ; (3) y x =??432x ; (4) y x x =+241 。 6. 问下列函数和是否等同? f g (1) f x ()=2log ()a x ,g x ()=2log a x ; (2) f x ()=22sec tan x x ?, g x ()=1; (3) f x ()=sin cos 22x x +,g x ()=1。 7. (1) 设,求; f x x x x ()+=?+?3235321f x () (2) 设131 31+?=???????x x x x f ,求。 f x ()8. 设f x ()=+1 1x ,求,,的函数表达式。 f f f f f f f f f 9. 证明:定义于(,上的任何函数都可以表示成一个偶函数与一个奇函数之和。 )?∞+∞10. 写出折线ABCD 所表示的函数关系y f x =()的分段表示,其中A =(,)03, B =?(,)11,C =(,)32,。 D =(,)40

线性代数汇总汇总+经典例题

线性代数汇总汇总+经典例题

————————————————————————————————作者:————————————————————————————————日期:

线性代数知识点总结 1 行列式 (一)行列式概念和性质 1、逆序数:所有的逆序的总数 2、行列式定义:不同行不同列元素乘积代数和 3、行列式性质:(用于化简行列式) (1)行列互换(转置),行列式的值不变 (2)两行(列)互换,行列式变号 (3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k 乘此行列式 (4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。 (5)一行(列)乘k加到另一行(列),行列式的值不变。 (6)两行成比例,行列式的值为0。 (二)重要行列式 4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积 5、副对角线行列式的值等于副对角线元素的乘积乘 6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则 7、n阶(n≥2)范德蒙德行列式

数学归纳法证明 ★8、对角线的元素为a,其余元素为b的行列式的值: (三)按行(列)展开 9、按行展开定理: (1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0 (四)行列式公式 10、行列式七大公式: (1)|kA|=k n|A| (2)|AB|=|A|·|B| (3)|A T|=|A| (4)|A-1|=|A|-1 (5)|A*|=|A|n-1 (6)若A的特征值λ1、λ2、……λn,则 (7)若A与B相似,则|A|=|B| (五)克莱姆法则 11、克莱姆法则: (1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解

复旦《数学分析》答案第四章1、2节

第四章 微分 习 题 4.1 微分和导数 ⒈ 半径为 1cm 的铁球表面要镀一层厚度为0.01cm 的铜,试用求微 分的方法算出每只球需要用铜多少克?(铜的密度为8.9g/3cm 。) 解 球体积3 3 4r V π=,每只球镀铜所需要铜的质量为 12 .142 ≈?≈?=r r V m ρπρg 。 ⒉ 用定义证明,函数y x = 2 3 在它的整个定义域中,除了x =0 这一 点之外都是可微的。 证 当0x =时,32 x y ?=?是x ?的低阶无穷小,所以y x = 2 3 在0x =不可 微。当0x ≠时, (), y x x o x ?=== =+? 所以y x = 2 3 在0x ≠是可微的。

习 题 4.2 导数的意义和性质 1. 设'f x ()0存在,求下列各式的值: ⑴ lim ()() ???x f x x f x x →--0 00; ⑵ lim ()() x x f x f x x x →--0 00 ; ⑶ lim ()() h f x h f x h h →+--0 00。 解 (1))(') () ())((lim ) ()(lim 0000 000 x f x x f x x f x x f x x f x x -=?--?-+-=?-?-→?→?。 ⑵ )(') ())((lim ) ()(lim 00 0000 000 x f x x x f x x x f x x x f x f x x x x =---+=--→-→。 ⑶ h h x f h x f h ) ()(lim 000 --+→ ) ('2) ()(lim ) ()(lim 0000 000 x f h x f h x f h x f h x f h h =----+=→→。 2. ⑴ 用定义求抛物线y x x =+-2312的导函数; ⑵ 求该抛物线上过点(,)--12处的切线方程; ⑶ 求该抛物线上过点(,)-21处的法线方程; ⑷ 问该抛物线上是否有(,)a b ,过该点的切线与抛物线顶点与焦点的连线平行? 解 (1)因为 x x x x x x x x x x y ?++=?-+--?++?+= ??234) 132(1)(3)(22 2 ,所以 34lim )('0 +=??=→?x x y x f x 。 (2)由于1)1('-=-f ,切线方程为1[(1)](2)3y x x =-?--+-=--。 (3)由于 5)2('-=-f ,法线方程为17[(2)]15 5 x y x +=- --+= -。 (4) 抛物线顶点与焦点的连线平行于y 轴,即斜率为无穷大,由(1)可

相关文档
最新文档