常用液压元件的结构及原理分析(图文讲解)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图5.11 普通单向阀
直通式 管式阀
直角式 板式阀
直角式单向阀的进出油口A(P1)、B(P2)的轴线均和阀 体轴线垂直。
A
B
A
B
图5.11(a)所示的阀属于板式连接阀,阀体用螺钉固 定在机体上,阀体的平面和机体的平面紧密贴合,阀体 上各油孔分别和机体上相对应的孔对接,用“O”形密 封圈使它们密封。
• 泵在转子转一转 的过程中,吸油、 压油各一次,故称 单作用叶片泵。
e
•转 子 单 方 向 受 力 ,1
5
轴承负载大。
•改 变 偏 心 距 , 可 改变泵排量,形成 变量叶片泵。
23
4
2.3.2.1 工作原理
图中,当转子顺时 针方向旋转时,密 封工作腔的容积在 左上角和右下角处 逐渐增大,为吸油 区,在左下角和右 上角处逐渐减小, 为压油区;吸油区 和压油区之间有一 段封油区将吸、压 油区隔开。
图2.7为单 作用叶片泵的 工作原理。
泵由转2、定子 3、叶片4和配 流盘等件组成。
压油口
吸油窗口
吸油口 定子
图2.7单作用叶片泵工作原理 1—压油口;2 —转子;3 —定子;4 —叶片;5 —吸油口
定子的内表面是圆柱面,转子和定子中心之间存在着 偏心,叶片在转子的槽内可灵活滑动,在转子转动时的离 心力以及叶片根部油压力作用下,叶片顶部贴紧在定子内 表面上,于是两相邻叶片、配油盘、定子和转子便形成了 一个密封的工作腔。
表5.1 不同的“通”和“位”的滑阀式换向阀 主体部分的结构形式和图形符号
名称
结构原理图
图形符号
二位二通
二位三通
二位四通
三位四通
表5.1中图形符号的含义如下:
• 用方框表示阀的工作位置,有几个方框就表示有几 “位”
• 方框内的箭头表示油路处于接通状态,但箭头方向 不一定表示液流的实际方向
• 方框内符号“┻”或“┳”表示该通路不通 • 方框外部连接的接口数有几个,就表示几“通”
图2.12 双作用叶片泵工作原理 1—定子;2 —压油口;3 —转子;4 —叶片;5 —吸油口
2.3.2.1 工作原理
这种泵的转 子每转一转,每 个密封工作腔完 成吸油和压油动 作各两次,所以 称为双作用叶片 泵。
图2.12 双作用叶片泵工作原理 1—定子;2 —压油口;3 —转子;4 —叶片;5 —吸油口
(1)必须有一个大小能作周期性变化的封闭容积; (2)必须有配流动作,即
封闭容积加大时吸入低压油 封闭容积减小时排出高压油 液压泵 封闭容积加大时充入高压油 液压马达 封闭容积减小时排出低压油 (3)高低压油不得连通。
齿轮泵
齿轮泵是一种常用的液压泵,它的主要优点是结构简 单,制造方便,价格低廉,体积小,重量轻,自吸性好, 对油液污染不敏感,工作可靠;其主要缺点是流量和压力 脉动大,噪声大,排量不可调。
直通式单向阀中的油流方向和阀的轴线方向相同。
123
123
A
BA
B
1—阀 体; 2—阀芯;3 —弹簧;
上图所示的阀属于管式连接阀,此类阀的油口可通过管 接头和油管相连,阀体的重量靠管路支承,因此阀的体积 不能太大太重。
直角式单向阀的进出油口A(P1)、B(P2)的轴线均和阀 体轴线垂直。
A
B
A
B
不但单向阀有管式连接和板式连接之分,其它阀类也 有管式连接和板式连接之分。大多数液压系统都采用板式 连接阀。
2.6 液压泵及液压马达的工作特点
2.6.2 液压泵的工作特点
➢液压泵的吸油腔压力过低将会产生吸油不足、异常
噪声,甚至无法工作。
➢液压泵的工作压力取决于外负载,为了防止压力过
高,泵的出口常常要采取限压措施。
➢变量泵可以通过调节排量来改变流量,定量泵只有
用改变转速的办法来调节流量。
➢液压泵的流量脉动。 ➢液压泵 “困油现象”。
液力传动则主要是利用液体的动能来传递能量。
液压传动的定义
那么,到底什么是液压传动呢? ?
液压传动(Hydraulics)是以液体为工作介
质,通过驱动装置将原动机的机械能转换为液压 的压力能,然后通过管道、液压控制及调节装置 等,借助执行装置,将液体的压力能转换为机械 能,驱动负载实现直线或回转运动。
A
B
A
A
B
K
B
K
〈b〉外泄式
4
L
5
A
B
6
K
K
〈a〉内泄式
图5.14(b) 带卸荷阀的液控单向阀(外泄式)
2-主阀芯;3-卸荷阀芯;5-控制活塞 A-正向进油口;B-正向出油口;K-控制口
5.3 换向阀
换向阀能改变液流方向,将换向阀与缸连接可以很方 便地使缸的活塞改变运动方向。
换向阀的类型有 按阀的结构形式:滑阀式、转阀式、球阀式、锥阀式。 按阀的操纵方式:手动式、机动式、电磁式、液动式、
2.6.2 液压马达的工作特点
➢马达应能正、反运转,因此,就要求液压马达在设计
时具有结构上的对称性。
➢当液压马达的惯性负载大、转速高,并要求急速制动
或反转时,会产生较高的液压冲击,应在系统中设置必 要的安全阀或缓冲阀。
➢由于内部泄漏不可避免,因此将马达的排油口关闭而
进行制动时,仍会有缓惯的滑转,所以,需要长时间精 确制动时,应另行设置防止滑转的制动器。
2.2.1 外啮合齿轮泵的结构及工作原理
泵主要由主、从动 齿轮,驱动轴,泵体及 侧板等主要零件构成。
泵体内相互啮合的 主、从动齿轮与两端盖 及泵体一起构成密封工 作容积,齿轮的啮合点 将左、右两腔隔开,形 成了吸、压油腔。
图2.3 外啮合齿轮泵的工作原理 1—泵体;2 —主动齿轮;3 —从动齿轮
当齿轮按图示方向旋转时,
或断。 二位二通换向阀的滑阀机能有:常闭式(O型)、常
开式(H型) 。
图5.15 二位二通换向阀的滑阀机能
二位阀的原始位置:若为手动控制,则是指控制手柄没 有动作的位置;若为液压控制则是指失压的位置若为电磁控 制则是指失电的位置。
(2)三位四通换向阀
三位四通换向阀的滑阀机能有很多种,常见 的有表5.1中所列的几种。中间一个方框表示其原 始位置,左右方框表示两个换向位。其左位和右 位各油口的连通方式均为直通或交叉相通,所以 只用一个字母来表示中位的型式。
5.1.2 液控单向阀
(1)液控单向阀的工作原理和图形符号
(1)简式内泄型液控单向阀
此类阀不带卸荷阀芯, 无专门的泄油口。
A—正向进油口; B —正向出油口
K —控制口
简式内泄型液控单向阀
1 —阀体;2 —阀芯;3 —弹簧; 4 —阀盖;5—阀座;
6 —控制活塞;7 —下盖。
1 2 (3)带卸荷阀的液控单向阀
电液动式、气动式。 按阀的工作位置数和控制的通道数:二位二通阀、二
位三通阀、二位四通阀、三位四通阀、三位五通阀等。
换向阀的工作原理
如下图,换向阀阀体2上开有4个通油口 P、A、B、T。
换向阀的通油口永远用固定的字母表示,它所表示的意义
如下:
P—压力油口;
A、B—工作油口;
T——回油口。
A
B
A
B
P
T
5.3.1.2 滑阀机能
滑阀式换向阀处于中间位置或原始位置时, 阀中各油口的连通方式称为换向阀的滑阀机能。
两位阀和多位阀的机能是指阀芯处于原始位 置时,阀各油口的通断情况。
三位阀的机能是指阀芯处于中位时,阀各油口 的通断情况。三位阀有多种机能现只介绍最常用 的几种。
(l)二位二通换向阀 二位二通换向阀其两个油口之间的状态只有两种:通
不能作单向阀
(2)对单向阀的要求
①开启压力要小。 ②能产生较高的反向压力,反向的泄漏要小。 ③正向导通时,阀的阻力损失要小。 ④阀芯运动平稳,无振动、冲击或噪声。
(3)单向阀的符号
单向阀和其它阀组合后, 成为组合阀,例如单向顺序阀、 单向节流阀等。
A
B
图5.10(C) 单向阀的职能符号
1一阀体; 2一阔芯; 3一弹簧; A一进油口; B一出油口。
右侧吸油腔内的轮齿脱离啮合, 密封腔容积不断增大,构成吸 油并被旋转的轮齿带入左侧的 压油腔。
左侧压油腔内的轮齿不
断进入啮合,使密封腔容积 减小,油液受到挤压被排往 系统,这就是齿轮泵的吸油 和压油过程。
2.3 叶片泵
单作用叶片泵
双作用叶片泵
2.3.1 单作用叶片泵
2.3.1.1 工作原理 压油窗口
T
P
AB PT
AB PT AB PT
AB TP
AB TP
AB TP
AB PT
下图表示阀芯处于中位时的情况, 此时从P 口进来的压力
油没有通路。 A 、B 两个油口也不和T口相通。
AB
PT
A
B
T
P
下图表示人向一侧搬动控制手柄,阀芯左移,或者说阀芯
处于左位的情况。此时P口和A口相通,压力油经P、A到其它 元件;从其它元件回来的油经B、阀芯中心孔,T 回油箱。
AB
PT
A
B
左位
T
P
下图表示人向另一侧搬动控制手柄阀芯右移, 或者说
阀芯处于右位时的情况。此时,从P口进来的压力油经P、 B 到其它元件。从其它元件回来的油经A、T回油箱。
A
B
右位
T
P
AB
PT
5.3.1 换向机能
5.3.1.1 换向阀的“通”和“位” “通”和“位”是换向阀的重要概念。不同的“通”和
表5.1中图形符号的含义如下:
• 一般,阀与系统供油路连接的进油口用字母P表示;阀 与系统回油路连通的回油口用T(有时用O)表示;而阀 与执行元件连接的油口用A、B等表示。有时在图形符 号上用 L 表示泄漏油口。
• 换向阀都有两个或两个以上的工作位置,其中一个为 常态位,即阀芯未受到操纵力时所处的位置,图形符 号中的中位是三位阀的常态位。利用弹簧复位的二位 阀则以靠近弹簧的方框内的通路状态为其常态位。绘 制系统图时,油路一般应连接在换向阀的常态位上。
(2)执行元件:把液体压力能转换成机械能以驱动工作机 构的元件,执行元件包括液压缸和液压马达。
(3)控制元件:包括压力、方向、流量控制阀,是对系 统中油液压力、流量、方向进行控制和调节的元件。如换向 阀15即属控制元件。
(4)辅助元件:上述三个组成部分以外的其它元件,如: 管道、管接头、油箱、滤油器等为辅助元件。
液压泵、马达概述
泵的符号
泵的输入参量 转矩 T 角速度 ω
输出参量 流量 Q 压力 p
pQ T
ω
泵
液压泵、马达概述
马达的符号
马达的输入参量 流量 Q 压力 p
输出参量 转矩 T 角速度 ω
pQ T
ω
马达
液压泵、马达概述
2.1.1 容积式泵、马达的工作原理
B
泵排出
Q
O
C
A
泵吸入
液压泵和液压马达工作的必需条件:
3
若在控制口K加控
பைடு நூலகம்
制压力,先顶开卸荷阀
芯3,B腔压力降低,
A
B
活塞5继续上升并顶开
4 主阀芯2,大量液流自
B腔流向A腔,完成反
内
5 向导通。此阀适用于反
泄 式
6 向压力很高的场合。
K 2-主阀芯;3-卸荷阀芯; 5-控制活塞 图5.14(a) 带卸荷阀的内泄式液控单向阀
1
2 (4)液控单向阀符号
3
“位”构成了不同类型的换向阀。
“位” (Position)一指阀芯的位置,通常所说的“二位 阀” 、 “三位阀”是指换向阀的阀芯有两个或三个不同的 工作位置,“位”在符号图中用方框表示。
所谓“二通阀” 、 “三通阀” 、 “四通阀”是指换 向阀的阀体上有两个、三个、四个各不相通且可与系统中 不同油管相连的油道接口,不同油道之间只能通过阀芯移 位时阀口的开关来沟通。
➢某些型式的液压马达必须在回油口具有足够的背压才
能保证正常工作。
5.2 单向阀
单向阀只允许经过阀的液流单方向流动,而不许 反向流动。单向阀有普通单向阀和液控单向阀两种。 5.2.1 普通单向阀
(b)
图5.10 普通单向阀
正向导通, 反向不通
单向阀的工作原理 A-B导通,B-A不通
B-A导通,A-B不通
液压传动系统的组成
动力元件
传动介质 控制元件 辅助元件
执行元件
液压传动系统的组成
从上图可以看出,液压传动是以液体作为工作介质来进 行工作的,一个完整的液压传动系统由以下几部分组成:
(l)液压泵(动力元件):是将原动机所输出的机械能 转换成液体压力能的元件,其作用是向液压系统提供压力油, 液压泵是液压系统的心脏。
常用液压元件 结构及原理分析
液压传动定义与发展概况
液压传动的定义 一部完整的机器是由原动机、传动机构及控制部分、
工作机(含辅助装置)组成。
◆传动机构通常分为机械传动、电气传动和流体传动机构。
◆流体传动是以流体为工作介质进行能量转换、传递和 控制的传动。它包括液压传动、液力传动和气压传动。
◆液压传动和液力传动均是以液体作为工作介质来进行能量 传递的传动方式。 ◆液压传动主要是利用液体的压力能来传递能量;
齿轮泵被广泛地应用于采矿设备、冶金设备、建筑机 械、工程机械和农林机械等各个行业。
齿轮泵按照其啮合形式的不同,有外啮合和内啮合两 种,外啮合齿轮泵应用较广,内啮合齿轮泵则多为辅助泵。
2.2.1 外啮合齿轮泵的结构及工作原理
•外啮合齿轮泵的工作原理; •排量、流量; •外啮合齿轮泵的流量脉动; •外啮合齿轮泵的问题和结构特点。
直通式 管式阀
直角式 板式阀
直角式单向阀的进出油口A(P1)、B(P2)的轴线均和阀 体轴线垂直。
A
B
A
B
图5.11(a)所示的阀属于板式连接阀,阀体用螺钉固 定在机体上,阀体的平面和机体的平面紧密贴合,阀体 上各油孔分别和机体上相对应的孔对接,用“O”形密 封圈使它们密封。
• 泵在转子转一转 的过程中,吸油、 压油各一次,故称 单作用叶片泵。
e
•转 子 单 方 向 受 力 ,1
5
轴承负载大。
•改 变 偏 心 距 , 可 改变泵排量,形成 变量叶片泵。
23
4
2.3.2.1 工作原理
图中,当转子顺时 针方向旋转时,密 封工作腔的容积在 左上角和右下角处 逐渐增大,为吸油 区,在左下角和右 上角处逐渐减小, 为压油区;吸油区 和压油区之间有一 段封油区将吸、压 油区隔开。
图2.7为单 作用叶片泵的 工作原理。
泵由转2、定子 3、叶片4和配 流盘等件组成。
压油口
吸油窗口
吸油口 定子
图2.7单作用叶片泵工作原理 1—压油口;2 —转子;3 —定子;4 —叶片;5 —吸油口
定子的内表面是圆柱面,转子和定子中心之间存在着 偏心,叶片在转子的槽内可灵活滑动,在转子转动时的离 心力以及叶片根部油压力作用下,叶片顶部贴紧在定子内 表面上,于是两相邻叶片、配油盘、定子和转子便形成了 一个密封的工作腔。
表5.1 不同的“通”和“位”的滑阀式换向阀 主体部分的结构形式和图形符号
名称
结构原理图
图形符号
二位二通
二位三通
二位四通
三位四通
表5.1中图形符号的含义如下:
• 用方框表示阀的工作位置,有几个方框就表示有几 “位”
• 方框内的箭头表示油路处于接通状态,但箭头方向 不一定表示液流的实际方向
• 方框内符号“┻”或“┳”表示该通路不通 • 方框外部连接的接口数有几个,就表示几“通”
图2.12 双作用叶片泵工作原理 1—定子;2 —压油口;3 —转子;4 —叶片;5 —吸油口
2.3.2.1 工作原理
这种泵的转 子每转一转,每 个密封工作腔完 成吸油和压油动 作各两次,所以 称为双作用叶片 泵。
图2.12 双作用叶片泵工作原理 1—定子;2 —压油口;3 —转子;4 —叶片;5 —吸油口
(1)必须有一个大小能作周期性变化的封闭容积; (2)必须有配流动作,即
封闭容积加大时吸入低压油 封闭容积减小时排出高压油 液压泵 封闭容积加大时充入高压油 液压马达 封闭容积减小时排出低压油 (3)高低压油不得连通。
齿轮泵
齿轮泵是一种常用的液压泵,它的主要优点是结构简 单,制造方便,价格低廉,体积小,重量轻,自吸性好, 对油液污染不敏感,工作可靠;其主要缺点是流量和压力 脉动大,噪声大,排量不可调。
直通式单向阀中的油流方向和阀的轴线方向相同。
123
123
A
BA
B
1—阀 体; 2—阀芯;3 —弹簧;
上图所示的阀属于管式连接阀,此类阀的油口可通过管 接头和油管相连,阀体的重量靠管路支承,因此阀的体积 不能太大太重。
直角式单向阀的进出油口A(P1)、B(P2)的轴线均和阀 体轴线垂直。
A
B
A
B
不但单向阀有管式连接和板式连接之分,其它阀类也 有管式连接和板式连接之分。大多数液压系统都采用板式 连接阀。
2.6 液压泵及液压马达的工作特点
2.6.2 液压泵的工作特点
➢液压泵的吸油腔压力过低将会产生吸油不足、异常
噪声,甚至无法工作。
➢液压泵的工作压力取决于外负载,为了防止压力过
高,泵的出口常常要采取限压措施。
➢变量泵可以通过调节排量来改变流量,定量泵只有
用改变转速的办法来调节流量。
➢液压泵的流量脉动。 ➢液压泵 “困油现象”。
液力传动则主要是利用液体的动能来传递能量。
液压传动的定义
那么,到底什么是液压传动呢? ?
液压传动(Hydraulics)是以液体为工作介
质,通过驱动装置将原动机的机械能转换为液压 的压力能,然后通过管道、液压控制及调节装置 等,借助执行装置,将液体的压力能转换为机械 能,驱动负载实现直线或回转运动。
A
B
A
A
B
K
B
K
〈b〉外泄式
4
L
5
A
B
6
K
K
〈a〉内泄式
图5.14(b) 带卸荷阀的液控单向阀(外泄式)
2-主阀芯;3-卸荷阀芯;5-控制活塞 A-正向进油口;B-正向出油口;K-控制口
5.3 换向阀
换向阀能改变液流方向,将换向阀与缸连接可以很方 便地使缸的活塞改变运动方向。
换向阀的类型有 按阀的结构形式:滑阀式、转阀式、球阀式、锥阀式。 按阀的操纵方式:手动式、机动式、电磁式、液动式、
2.6.2 液压马达的工作特点
➢马达应能正、反运转,因此,就要求液压马达在设计
时具有结构上的对称性。
➢当液压马达的惯性负载大、转速高,并要求急速制动
或反转时,会产生较高的液压冲击,应在系统中设置必 要的安全阀或缓冲阀。
➢由于内部泄漏不可避免,因此将马达的排油口关闭而
进行制动时,仍会有缓惯的滑转,所以,需要长时间精 确制动时,应另行设置防止滑转的制动器。
2.2.1 外啮合齿轮泵的结构及工作原理
泵主要由主、从动 齿轮,驱动轴,泵体及 侧板等主要零件构成。
泵体内相互啮合的 主、从动齿轮与两端盖 及泵体一起构成密封工 作容积,齿轮的啮合点 将左、右两腔隔开,形 成了吸、压油腔。
图2.3 外啮合齿轮泵的工作原理 1—泵体;2 —主动齿轮;3 —从动齿轮
当齿轮按图示方向旋转时,
或断。 二位二通换向阀的滑阀机能有:常闭式(O型)、常
开式(H型) 。
图5.15 二位二通换向阀的滑阀机能
二位阀的原始位置:若为手动控制,则是指控制手柄没 有动作的位置;若为液压控制则是指失压的位置若为电磁控 制则是指失电的位置。
(2)三位四通换向阀
三位四通换向阀的滑阀机能有很多种,常见 的有表5.1中所列的几种。中间一个方框表示其原 始位置,左右方框表示两个换向位。其左位和右 位各油口的连通方式均为直通或交叉相通,所以 只用一个字母来表示中位的型式。
5.1.2 液控单向阀
(1)液控单向阀的工作原理和图形符号
(1)简式内泄型液控单向阀
此类阀不带卸荷阀芯, 无专门的泄油口。
A—正向进油口; B —正向出油口
K —控制口
简式内泄型液控单向阀
1 —阀体;2 —阀芯;3 —弹簧; 4 —阀盖;5—阀座;
6 —控制活塞;7 —下盖。
1 2 (3)带卸荷阀的液控单向阀
电液动式、气动式。 按阀的工作位置数和控制的通道数:二位二通阀、二
位三通阀、二位四通阀、三位四通阀、三位五通阀等。
换向阀的工作原理
如下图,换向阀阀体2上开有4个通油口 P、A、B、T。
换向阀的通油口永远用固定的字母表示,它所表示的意义
如下:
P—压力油口;
A、B—工作油口;
T——回油口。
A
B
A
B
P
T
5.3.1.2 滑阀机能
滑阀式换向阀处于中间位置或原始位置时, 阀中各油口的连通方式称为换向阀的滑阀机能。
两位阀和多位阀的机能是指阀芯处于原始位 置时,阀各油口的通断情况。
三位阀的机能是指阀芯处于中位时,阀各油口 的通断情况。三位阀有多种机能现只介绍最常用 的几种。
(l)二位二通换向阀 二位二通换向阀其两个油口之间的状态只有两种:通
不能作单向阀
(2)对单向阀的要求
①开启压力要小。 ②能产生较高的反向压力,反向的泄漏要小。 ③正向导通时,阀的阻力损失要小。 ④阀芯运动平稳,无振动、冲击或噪声。
(3)单向阀的符号
单向阀和其它阀组合后, 成为组合阀,例如单向顺序阀、 单向节流阀等。
A
B
图5.10(C) 单向阀的职能符号
1一阀体; 2一阔芯; 3一弹簧; A一进油口; B一出油口。
右侧吸油腔内的轮齿脱离啮合, 密封腔容积不断增大,构成吸 油并被旋转的轮齿带入左侧的 压油腔。
左侧压油腔内的轮齿不
断进入啮合,使密封腔容积 减小,油液受到挤压被排往 系统,这就是齿轮泵的吸油 和压油过程。
2.3 叶片泵
单作用叶片泵
双作用叶片泵
2.3.1 单作用叶片泵
2.3.1.1 工作原理 压油窗口
T
P
AB PT
AB PT AB PT
AB TP
AB TP
AB TP
AB PT
下图表示阀芯处于中位时的情况, 此时从P 口进来的压力
油没有通路。 A 、B 两个油口也不和T口相通。
AB
PT
A
B
T
P
下图表示人向一侧搬动控制手柄,阀芯左移,或者说阀芯
处于左位的情况。此时P口和A口相通,压力油经P、A到其它 元件;从其它元件回来的油经B、阀芯中心孔,T 回油箱。
AB
PT
A
B
左位
T
P
下图表示人向另一侧搬动控制手柄阀芯右移, 或者说
阀芯处于右位时的情况。此时,从P口进来的压力油经P、 B 到其它元件。从其它元件回来的油经A、T回油箱。
A
B
右位
T
P
AB
PT
5.3.1 换向机能
5.3.1.1 换向阀的“通”和“位” “通”和“位”是换向阀的重要概念。不同的“通”和
表5.1中图形符号的含义如下:
• 一般,阀与系统供油路连接的进油口用字母P表示;阀 与系统回油路连通的回油口用T(有时用O)表示;而阀 与执行元件连接的油口用A、B等表示。有时在图形符 号上用 L 表示泄漏油口。
• 换向阀都有两个或两个以上的工作位置,其中一个为 常态位,即阀芯未受到操纵力时所处的位置,图形符 号中的中位是三位阀的常态位。利用弹簧复位的二位 阀则以靠近弹簧的方框内的通路状态为其常态位。绘 制系统图时,油路一般应连接在换向阀的常态位上。
(2)执行元件:把液体压力能转换成机械能以驱动工作机 构的元件,执行元件包括液压缸和液压马达。
(3)控制元件:包括压力、方向、流量控制阀,是对系 统中油液压力、流量、方向进行控制和调节的元件。如换向 阀15即属控制元件。
(4)辅助元件:上述三个组成部分以外的其它元件,如: 管道、管接头、油箱、滤油器等为辅助元件。
液压泵、马达概述
泵的符号
泵的输入参量 转矩 T 角速度 ω
输出参量 流量 Q 压力 p
pQ T
ω
泵
液压泵、马达概述
马达的符号
马达的输入参量 流量 Q 压力 p
输出参量 转矩 T 角速度 ω
pQ T
ω
马达
液压泵、马达概述
2.1.1 容积式泵、马达的工作原理
B
泵排出
Q
O
C
A
泵吸入
液压泵和液压马达工作的必需条件:
3
若在控制口K加控
பைடு நூலகம்
制压力,先顶开卸荷阀
芯3,B腔压力降低,
A
B
活塞5继续上升并顶开
4 主阀芯2,大量液流自
B腔流向A腔,完成反
内
5 向导通。此阀适用于反
泄 式
6 向压力很高的场合。
K 2-主阀芯;3-卸荷阀芯; 5-控制活塞 图5.14(a) 带卸荷阀的内泄式液控单向阀
1
2 (4)液控单向阀符号
3
“位”构成了不同类型的换向阀。
“位” (Position)一指阀芯的位置,通常所说的“二位 阀” 、 “三位阀”是指换向阀的阀芯有两个或三个不同的 工作位置,“位”在符号图中用方框表示。
所谓“二通阀” 、 “三通阀” 、 “四通阀”是指换 向阀的阀体上有两个、三个、四个各不相通且可与系统中 不同油管相连的油道接口,不同油道之间只能通过阀芯移 位时阀口的开关来沟通。
➢某些型式的液压马达必须在回油口具有足够的背压才
能保证正常工作。
5.2 单向阀
单向阀只允许经过阀的液流单方向流动,而不许 反向流动。单向阀有普通单向阀和液控单向阀两种。 5.2.1 普通单向阀
(b)
图5.10 普通单向阀
正向导通, 反向不通
单向阀的工作原理 A-B导通,B-A不通
B-A导通,A-B不通
液压传动系统的组成
动力元件
传动介质 控制元件 辅助元件
执行元件
液压传动系统的组成
从上图可以看出,液压传动是以液体作为工作介质来进 行工作的,一个完整的液压传动系统由以下几部分组成:
(l)液压泵(动力元件):是将原动机所输出的机械能 转换成液体压力能的元件,其作用是向液压系统提供压力油, 液压泵是液压系统的心脏。
常用液压元件 结构及原理分析
液压传动定义与发展概况
液压传动的定义 一部完整的机器是由原动机、传动机构及控制部分、
工作机(含辅助装置)组成。
◆传动机构通常分为机械传动、电气传动和流体传动机构。
◆流体传动是以流体为工作介质进行能量转换、传递和 控制的传动。它包括液压传动、液力传动和气压传动。
◆液压传动和液力传动均是以液体作为工作介质来进行能量 传递的传动方式。 ◆液压传动主要是利用液体的压力能来传递能量;
齿轮泵被广泛地应用于采矿设备、冶金设备、建筑机 械、工程机械和农林机械等各个行业。
齿轮泵按照其啮合形式的不同,有外啮合和内啮合两 种,外啮合齿轮泵应用较广,内啮合齿轮泵则多为辅助泵。
2.2.1 外啮合齿轮泵的结构及工作原理
•外啮合齿轮泵的工作原理; •排量、流量; •外啮合齿轮泵的流量脉动; •外啮合齿轮泵的问题和结构特点。