高吸水性树脂

合集下载

高吸水性树脂

高吸水性树脂

高吸水性树脂一、产品简介高吸水性树脂(Super Absorbent Polymer,简称SAP)是本公司运用具有自主知识产权的发明专利而研发生产的一种新型的功能性高分子吸水材料,含有大量的亲水基团和独特的体型网状结构,能够在短时间内吸收并保持超过自身重量数百倍的水分或者数十倍的生理盐水(体液),保水性能良好,它以优异的吸水保持性能,在医疗卫生用品领域得以广泛的应用。

随着现代社会的飞速发展,其应用范围正在不断地拓展到更为广阔的领域。

高吸水性树脂是一种交联型丙烯酸/丙烯酸钠共聚物,外观呈白色颗粒状粉末,采用先进的专利生产技术,产品凝胶强度高、抗压吸收量大,单体残留量低,无毒无臭,对皮肤无刺激,在一定条件下可以完全降解成水、二氧化碳等小分子物质,是一种真正的“绿色”环保的高科技化工产品。

二、产品规格及主要性能指标型号项目SP306 SP601外观白色固体粒状白色固体粒状目数(占80%以上) 30~60 60~100吸盐水倍数(生理盐水 ,60 分钟)g/g ≥53 ≥50 吸水倍数(蒸馏水,60 分钟)g/g ≥520 ≥400吸水倍数(自来水,60 分钟 )g/g ≥300 ≥260吸水速度(80g自来水/g) 秒≤60 ≤28受压吸收量(生理盐水 ,0.3psi)g/g ≥30 ≥28 渗出量 g/2g ≤5.0 ≤5.0pH 值 6.5~8.0 6.5~8.0 含水量,% ≤7.0 ≤7.0推荐应用范围尿裤复合纸、卫生巾包装规格纸塑复合袋,20kg/袋;太空袋,750kg/袋;另也可按客户要求定做三、应用范围1. 婴儿、成人纸尿裤;2. 卫生巾或卫生护垫;3. 复合纸;4. 手术床垫;5.宠物床垫;6. 浴足高分子等。

四、使用方法1、推荐用量:尿片(6~15g/条)卫生巾(3~6g/片)复合纸(30~80g/m2)2、以上用量仅供参考,客户应根据实际的产品设计及设备情况决定用量。

五、注意事项1、本商品具有吸湿性,为防止受潮,宜在干燥阴暗处密封储存。

高吸水树脂的吸水原理

高吸水树脂的吸水原理

高吸水树脂的吸水原理
高吸水树脂是一种具有高吸水性能的高分子材料,其吸水原理主要基于其特殊的分子结构和化学性质。

首先,高吸水树脂的分子链通常具有高度的交联结构,使得分子间的空隙较小,不易产生结晶。

这种结构使得树脂具有较好的弹性和可塑性,同时也有利于提高树脂的吸水性能。

其次,高吸水树脂分子中通常含有大量的亲水基团,如羧基、羟基、氨基等。

这些基团可以与水分子形成氢键,从而产生强烈的吸水作用。

当树脂与水接触时,水分子的极性基团与树脂的亲水基团相互作用,使得水分子被吸附在树脂的分子链上,形成一种类似凝胶的结构。

此外,高吸水树脂的吸水性能还与其内部的交联程度有关。

适当的交联程度可以使树脂在吸水膨胀时保持一定的弹性,从而更好地承受外部压力。

同时,适当的交联程度也可以控制树脂的吸水速率和吸水量,以满足不同应用场景的需求。

总的来说,高吸水树脂的吸水原理是基于其特殊的分子结构和化学性质,通过与水分子形成氢键等相互作用力,将水分子吸附在树脂的分子链上,形成类似凝胶的结构。

这种吸水作用使得高吸水树脂在多个领域都有着广泛的应用,如农业、医疗、环保等。

在农业领域,高吸水树脂可以用于土壤改良、节水灌溉等方面,以提高农作物的生长效率和抗旱能力。

在医疗领域,高吸水树脂可以用于制造吸收性卫生用品、药物控释载体等方面,以提高产品的舒适度和治疗效果。

在环保领域,高吸水树脂可以用于污水处理、水质净化等方面,以提高水质处理的效率和效果。

因此,对高吸水树脂的吸水原理进行深入研究,有助于更好地开发和应用这种具有重要应用价值的高分子材料。

高吸水性树脂

高吸水性树脂

在农业领域的应用
土壤改良:高吸水性树脂能吸收相当于其自身重量数百倍的水分可有效改善土壤湿度 和保水性能促进作物生长。
节水灌溉:通过使用高吸水性树脂可将灌溉水有效吸附并缓慢释放实现节水灌溉和 均匀供水。
农药和营养剂缓释:高吸水性树脂可以吸附农药和营养剂并在需要时缓慢释放提高农 药利用率和植物吸收率。
高吸水性树脂的制备方法主要包括化学合成和物理改性不同的制备方法可以得到不同性能的高吸水性树脂。
高吸水性树脂的分类
按原料分类:淀粉类、纤维素 类、其他天然产物类
按交联剂类型分类:羧甲基淀 粉、淀粉磷酸酯、纤维素黄原 酸酯等
按离子类型分类:阳离子型、 阴离子型、非离子型
按应用领域分类:农业、医疗 卫生、建筑材料等
高吸水性树脂的应用领域
卫生用品:用于生产婴儿尿布、成人失禁用品等 农业:用于土壤保水、植物生长调节剂等 医疗领域:用于吸收伤口渗出液、止血材料等 建筑材料:用于自修复混凝土、调节室内湿度等
化学合成法
原理:通过化学反应将原料转化为高吸水性树脂 优点:可控制产物的性质如吸水能力、分子量等 缺点:需要使用有机溶剂可能对环境造成污染 常用原料:丙烯酸、丙烯酰胺等单体
高吸水性树脂具有优异的保水性能 能够吸收相当于其自身重量数百倍 甚至上千倍的水分。
高保水性
在医疗领域高吸水性树脂可以用于 制造具有保湿功能的敷料和药物载 体促进伤口愈合。
添加标题
添加标题
添加标题
添加标题
在土壤改良、节水农业、园艺等领 域高吸水性树脂的高保水性有助于 提高植物生长效率和抗旱能力。
高保水性还使得高吸水性树脂在化 妆品、个人卫生用品等领域具有广 泛的应用前景。
回收再利用:将废弃 的高吸水性树脂经过 处理后重新用于生产 新的高吸水性树脂或 其他用途。

高吸水性树脂

高吸水性树脂

简介发展历史编辑本段简介高吸水性树脂是一种新型的高分子材料,聚丙烯酸钠盐SUPER-ABSORBENT POLYMER,1976年,日本三洋化成是全球最早研究和生产吸水性树脂的厂家.编辑本段发展历史1950年微架桥聚合丙烯酸(增粘剂)的工业化(Goodrich 公司;USA)1960年亲水性高分子上市,架桥聚氧化乙烯(土壤保水剂),架桥聚乙烯醇(人工水晶体)增粘剂1974美国农业部发表了吸水性树脂的研究成果. 1978年世界上最早的吸水性树脂的商业化生产开始 (三洋化成) 吸水性树脂1982年用于纸尿裤的需求增大。

高分子凝胶的相转移理论的发表(田中豊一)90年代高分子学会开始成立「高分子凝胶研究会」(对于机能性凝胶的研究发表日趋活跃)机能性凝胶它能够吸收自身重量几百倍至千倍的水分,无毒、无害、无污染;吸水能力特强,保水能力特高,通过丙烯酸聚合得到的高分子量聚合物→高保水量,高负荷下吸收量的平衡,所吸水分不能被简单的物理方法挤出,并且可反复释水、吸水。

应用于农林业方面,可在植物根部形成“微型水库”。

高吸水性树脂除了吸水,还能吸收肥料、农药,并缓慢的释放出来以增加肥效和药效。

高吸水性树脂以其优越的性能,广泛用于农林业生产、城市园林绿化、抗旱保水、防沙治沙,并发挥巨大的作用。

此外,高吸水性树脂还可应用于医疗卫生、石油开采、建筑材料、交通运输等许多领域。

现有的高吸水性树脂的厂家有:三大雅精细化学品有限公司、日本触媒、得米化工、住友精化、巴斯夫、台塑这几大公司占了全球产量的99%,其中三大雅占55%。

高吸水性树脂目录简介发展历史编辑本段简介高吸水性树脂是一种新型的高分子材料,聚丙烯酸钠盐SUPER-ABSORBENT POLYMER,1976年,日本三洋化成是全球最早研究和生产吸水性树脂的厂家.编辑本段发展历史1950年微架桥聚合丙烯酸(增粘剂)的工业化(Goodrich 公司;USA)1960年亲水性高分子上市,架桥聚氧化乙烯(土壤保水剂),架桥聚乙烯醇(人工水晶体)增粘剂1974美国农业部发表了吸水性树脂的研究成果. 1978年世界上最早的吸水性树脂的商业化生产开始 (三洋化成) 吸水性树脂1982年用于纸尿裤的需求增大。

高吸水性树脂

高吸水性树脂

高吸水性树脂
高吸水性树脂(SAP)是一种高分子材料,有着奇特的吸水性能和保水能力,吸水可达自身重量的数百倍甚至上千倍,并可在数秒内生成凝胶,且保水性强,在受热、加压条件下也不易失水,对光、热、酸碱的稳定性好,具有良好的生物降解性能,同时又具备高分子材料的优点。

高吸水性树脂是我公司与著名高校研究机构经过几年的研究共同开发出来的一种新型的产品,拥有自主的知识产权的吸水材料。

配方工艺独特,产品目前已能过省级鉴定,鉴定结果为“国内领先水平”。

用途:
可广泛用于干燥剂、脱氧保鲜剂、制热制冷设备、吸水膨胀橡胶、膨胀玩具、电缆阻水带、卫生巾、纸尿裤、凉垫、药品保湿、冰垫、冰帽、冰带、混凝土外加剂、农林园世抗旱保水、防沙治水等很多方面。

包装:
大包装:三层防潮塑编牛皮纸袋,25kg/袋。

高吸水性树脂

高吸水性树脂

高吸水性树脂高吸水性树脂是一种典型的功能高分子材料,能够吸收并保持自身重量数百倍乃至数千倍的水分或数十倍的盐水,通常又称为“高吸水性聚合物”、“吸水性高分子材料”、“吸水性高分子树脂”或者“超强吸水剂”等。

高吸水性树脂与普通吸水或吸湿材料,如脱脂棉、海绵、琼脂、硅胶、氯化钙和活性炭等相比,具有吸水速度快、保水能力强等特点,可以广泛应用于农业、林业和日常生活等领域中。

而普通水或吸湿材料一般只能吸收自身质量的几十倍或仅仅十几倍的水分,并且容易在加压时失水,保水能力很差,其开发应用因此受到了很大的限制。

高吸水性树脂发展很快,种类也日益增多,并且原料来源相当丰富,由于高吸水性树脂在分子结构上带有的亲水基团,或在化学结构上具有的低度联度或部分结晶结构又不尽相同,由此在赋予其高吸水性能的同时也各自形成了一些各自的特点,从不同角度出发,就形成了多种多样的分类方法。

按原料来源进行分类。

按照原料来源对高吸水性树脂进行分类,在高吸水性树脂的发展过程中,人们的分类方式也是随着发展水平的提高而不断变化和完善的。

日本的温品谦二曾将高吸水性树脂分为淀粉系列、纤维素系列和合成树脂系列三个系列。

后来,邹新禧结合高吸水性树脂的发展和自己的研究成果,从原料来源的角度提出了六大系列,即淀粉系、纤维素系、合成聚合物系、蛋白质系、其他天然物及其衍生物系和共混物及复合物系。

按亲水化方法进行分类。

高吸水性树脂在分子结构上具有大量的亲水化化学基团,这些化学基团的亲水性很大程度上影响着高吸水性树脂的吸水保水性性能,如何有效获得这些化学基团在高吸水性树脂化学结构上的组织结构,充分发挥各化学基团所在亲水点的效能,也是影响高吸水性树脂性能的重要方面。

因此,为了获得具有良好性能的高吸水性树脂,需要从亲水性化学基团的选择和化学结构的组织构造两个方面进行考虑,即从亲水化方法考虑。

从这个角度,可以将高吸水性树脂分为两大类。

亲水性单体直接聚合法:选择丙烯盐酸、丙烯酰胺等亲水性良好的单体,直接进行均聚合或者进行共聚合反应,获得如聚丙烯盐酸、聚丙烯酰胺或者丙烯酸/丙烯酰胺共聚物等高吸水性树脂。

7.高吸水性树脂资料

7.高吸水性树脂资料
25
高吸水性树脂
CH2 CH
+ CH2 CH R CH CH2
COOH
引发剂
CH2 CH CH2 CH CH2 CH CH2 CH
COOH
R
COOH
R
CH2 CH CH2 CH CH2 CH CH2 CH
COONa
COONa
NaOH
CH2 CH CH2 CH CH2 CH CH2 CH
COOH
R
COOH
14
高吸水性树脂
1.2 高吸水性树脂的制备方法 1.2.1 淀粉类高吸水性树脂的制备方法
美国农业部北方研究中心最早开发的淀粉 类高吸水性树脂是采用接枝合成法制备的。即 先将丙烯腈接枝到淀粉等亲水性天然高分子 上,再加入强碱使氰基水解成羧酸盐和酰胺基 团。这种接枝化反应通常采用四价铈作引发 剂,反应在水溶液中进行。
a. 用交联剂网状化反应; b. 自身交联网状化反应; c. 辐射交联; d. 在水溶性聚合物中引入疏水基团
或结晶结构。
a. 粉末状; b. 颗粒状; c. 薄片状; d. 纤维状。
7
高吸水性树脂
1.1.1 淀粉类 淀粉类高吸水性树脂主要有两种形式。一
种是淀粉与丙烯腈进行接枝反应后,用碱性化 合物水解引入亲水性基团的产物,由美国农业 部北方研究中心开发成功;另一类是淀粉与亲 水性单体(如丙烯酸、丙烯酰胺等)接枝聚 合,然后用交联剂交联的产物,是由日本三洋 化成公司首开先河的。
后将产物用碱水解后得到乙烯醇与丙烯酸盐的 共聚物,不加交联剂即可成为不溶于水的高吸 水性树酯。这类树脂在吸水后有较高的机械强 度,适用范围较广。
13
高吸水性树脂
(4)改性聚乙烯醇类 这类高吸水性树脂由聚乙烯醇与环状酸酐

高吸水性树脂的合成与性能研究

高吸水性树脂的合成与性能研究

高吸水性树脂的合成与性能研究摘要:高吸水性树脂是一类具有出色吸水性能的材料,正在广泛应用于许多领域,如卫生用品、农业、环境保护等。

本文旨在探讨高吸水性树脂的合成方法、性能及其在各个领域中的应用。

引言:随着科技的进步和人们对环境保护意识的提高,对高吸水性树脂这类具有独特性能的材料的需求不断增加。

高吸水性树脂能够吸收和保持大量的水分,具有较高的保水能力和稳定的化学性质。

因此,研究高吸水性树脂的合成方法和性能不仅对于材料科学的发展具有重要意义,也在实际应用中具有广泛的前景。

一、高吸水性树脂的合成方法高吸水性树脂的合成方法主要分为物理交联法和化学交联法两种方式。

1. 物理交联法物理交联法是通过聚合物间的相互作用力实现高吸水性树脂的制备。

其中,主要方法有自组装法、热交联法和辐射交联法等。

自组装法是将聚合物在适当的条件下,通过自身的分子间作用力形成交联结构的方法。

热交联法是通过热处理使聚合物颗粒之间产生交联结构的方法。

而辐射交联法则是通过辐射照射聚合物体系来形成交联结构。

2. 化学交联法化学交联法是通过在聚合物分子中引入交联剂进行交联反应来制备高吸水性树脂。

常用的交联剂有环氧化合物、异氰酸酯、有机过氧化物等。

化学交联法制备的高吸水性树脂具有较高的交联度和保水性能,但交联反应的控制较为复杂,合成条件较为苛刻。

二、高吸水性树脂的性能1. 吸水性能高吸水性树脂的主要性能之一是其出色的吸水性能。

当高吸水性树脂接触水分时,吸水性能会受到许多因素的影响,如温度、pH值、离子浓度等。

研究表明,高吸水性树脂的吸水性能与其交联度、孔隙率以及聚合物链的结构等有关。

2. 保水性能高吸水性树脂的保水性能是指其在吸收水分后能够保持水分,并不容易释放出来。

保水性能的好坏对于许多应用领域来说非常重要,如农业中的土壤保水、卫生用品中的液体吸收等。

许多研究表明,高吸水性树脂的保水性能与其交联度、孔隙率及分子链的结构有关。

3. 生物相容性高吸水性树脂在医学领域应用中的生物相容性是一个重要的考虑因素。

高吸水性树脂ppt课件.ppt

高吸水性树脂ppt课件.ppt

病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
• 吸水率随交联度的增大而降低。从提高吸水倍数的角度考虑,应在保 证树脂不溶解的前提下,尽可能地降低交联度。
• 外部溶剂的离子强度(包括离子的浓度和价数)越大,树脂网络内外 的渗透压越低;同时,固定在树脂上的电荷会受到外界离子的屏蔽作用, 降低静电斥力。这两种因素都导致吸水倍数的下降。
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,率的因素 • SAP 吸水时,一方面水向吸水性树脂内部扩散,另一方面组成吸水剂的高 分子链在水的作用下彼此分离、扩展。吸水速率取决于水向SAP 内部的扩 散速率以及高分子链在水的作用下扩展的速率。 • 吸水速率的因素主要有:吸水剂的种类、表面积大小以及表面结构。 • 离子型高吸水树脂的吸水速度较慢,达到最大吸水量需数小时甚至几十小 时。非离子型高吸水树脂的吸水速度非常快,达到饱和吸水量只需20min ~1h。
• 离子型SAP 在生理盐水中的吸水倍数为去离子水中的1/10 左右,耐盐 性差;而非离子型树脂由于受离子屏蔽效应的影响小,耐盐性优于离子 型树脂。
• 不同盐对吸水倍数的影响不同,其影响次序为:NaCl < Na2SO4 <MgCl2 < CaCl2 。
• SAP 在盐水中的吸水倍数是评价其性能的一个重要指标。如何提高离 子型SAP 的耐盐性是亟待解决的问题。
• 制备的方法一般是通过醚化、酯化、接枝共聚等方法中的一种或几种, 以制备纤维素基吸水性材料。
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程

高吸水性树脂

高吸水性树脂
生产需要使用高 成本的原料和复杂的工艺,导致 其成本较高。
02
03
性能稳定性差
安全性问题
高吸水性树脂的性能受温度、湿 度等因素影响较大,稳定性较差。
部分高吸水性树脂可能含有有害 物质,对环境和人体健康造成潜 在威胁。
高吸水性树脂的发展趋势和未来研究方向
01
02
03
降低生产成本
其他天然高分子类高吸水性树脂
03
如壳聚糖、蛋白质等天然高分子材料经改性后制备而成的高吸
水性树脂。
按功能分类
通用型高吸水性树脂
适用于一般吸水、保水、保鲜等用途 。
功能型高吸水性树脂
具有特殊功能,如离子交换、导电、 光敏等,可应用于更广泛的领域。
高吸水性树脂的吸水机理和性能指标
吸水机理
高吸水性树脂具有高度交联的三维网络结构,能够吸收相当于其自身数百倍乃 至数千倍的水分,同时通过物理交联作用将水分固定在三维网络中。
高吸水性树脂的发现和应用历史
1970年代初,日本科学家首先发现了高吸水性树脂的存在,并开始进行研 究和开发。
1980年代初,高吸水性树脂开始进入商业化应用阶段,广泛应用于农业、 卫生、医疗、工业等领域。
如今,随着人们对高吸水性树脂的不断深入研究,其应用领域不断扩大, 已经成为现代社会不可或缺的重要材料之一。
高吸水性树脂
目录
• 引言 • 高吸水性树脂的种类和特性 • 高吸水性树脂的生产方法和应用领域 • 高吸水性树脂的发展前景和挑战
01
引言
高吸水性树脂的定义
01
高吸水性树脂是一类能够吸收相 当于其自身重量数百倍甚至上千 倍的水,并保持较高的保有水分 的性能的聚合物材料。
02
高吸水性树脂具有高分子电解质 性质,能够在低湿度环境中吸收 大量的水分,同时具有良好的吸 水性和保水性。

高分子吸水性树脂

高分子吸水性树脂

2.高吸水性树脂分类
⑴淀粉类 淀粉是一种原料来源广泛、种类多、价格 低廉的多羟基天然化合物。与淀粉进行接 枝共 聚反应的单体主要是亲水性和水解后 变成亲水性的乙烯类单体。 目前合成高吸 水树枝通常采 用的是自由基型接枝共聚。 例如:淀粉接枝、羧甲基化淀粉、磷酸化 淀粉、淀粉磺酸盐等。
2.高吸水性树脂分类
工业化生产多以合成聚丙烯酸系为主,因为其反应易于 实现且树脂的各项性指标都比较 好,吸水能力高、保水 能力强,与淀粉等天然高分子接枝共聚物相比,具有生产 成本低、工艺条件简单、生产效率高、吸水性能好等一系 列优点。
⑵纤维素系类 由于淀粉系高吸水性树脂的 出现, 人想到 用纤维素为原料制备高吸水树脂。 纤维素 原料来 源广泛, 能与多种低分子反应, 是 近十年来高吸水树脂发展的一个方面。 例 如: 纤维素接枝、 羟丙基化纤维素、黄原 酸化纤维素等。
2.高吸水性树脂分类
⑶合成树脂系 它的种类很多,且随着研究的深入,也越来越多。 例如:聚丙烯酸盐类、聚乙烯醇类、 聚氧化烷烃类、 无机聚合物类。
⑷吸氨性强 树脂中含有羧基的聚合阴离子物,适当调节 pH 值, 使部分羧基呈酸性,可吸收氨,有明 显的防臭作用。
3.高吸水性树脂的特点
⑸增稠性 高吸水性树脂吸水后呈凝胶状,比普通水 溶性高分子具有更高的粘度,用在化妆品 上具 有明显的增稠效果。
⑹能和其它高分子材料共混
1.高吸水性树脂定义
高吸水性树脂(Super Absorbent Resin )简称 SAR, 又称高吸水性聚合物(SAP)是一 种含有羧基、 羟基等 强亲水性基团并具有一定交联度的水溶胀型高分子聚合物。 它不溶于水, 也不溶于有机溶剂,却有着奇特的吸水性 能和保水能力,同时又具备高分子材料的优点,与 传统 的吸水材料相比具有更大的优势:与海绵、棉花、纤维素、 硅胶相比,高吸水性树脂的 吸水量大,可以吸收比自身 重几百倍甚至上千倍的水,并且保水性强,即使在受热、 加压条 件下也不易失水,对光、热、酸、碱的稳定性好, 具有良好的生物降解性能。 [1]

高吸水性树脂的制备和应用

高吸水性树脂的制备和应用

高吸水性树脂的制备和应用高吸水性树脂是一种具有极高吸水性能的新型材料。

它具有非常强的水吸附性和保水性能,可以在单体、乳液或粉末形式等多种形式出现。

高吸水性树脂被广泛应用于各种领域,如医疗、农业、环保等等。

本文将介绍高吸水性树脂的制备及其应用。

一、高吸水性树脂的制备高吸水性树脂的制备方法主要有两种,分别是物理交联法和化学交联法。

其中,化学交联法是最常用的方法。

1. 物理交联法物理交联法是将含有吸水性单体的水溶液或水相悬浊液中加入一些交联剂,使得单体间形成物理交联点,从而形成高分子网络结构。

实验中可采用以下方法:(1)冻融法将含有吸水性单体的水溶液或水相悬浊液冷冻至低于0℃,然后加热至30~40℃进行融化,反复进行数次,直到交联点足够稳定。

(2)加盐交联法在吸水性单体水溶液或水相悬浊液中加入一些盐类,使得单体形成物理交联点。

2. 化学交联法化学交联法是将含有吸水性单体的水溶液或水相悬浊液中加入一些交联剂,在高温或室温下反应形成交联点。

实验中可采用以下方法:(1)自由基交联法使用引发剂进行自由基聚合反应,产生交联点。

通常使用双丙烯酰胺作为单体,N,N'-亚甲基双丙烯酰胺或N,N'-亚甲基双丙烯酰胺偶氮联产物作为引发剂。

(2)离子交联法使用离子反应组成交联点,通常使用一些含有羟基的单体,如丙烯酸、甲基丙烯酸和2-羟乙基丙烯酸等。

二、高吸水性树脂的应用1. 医疗用途高吸水性树脂被广泛应用于医疗领域,如医用敷料和尿不湿等。

吸收率高、吸收速度快、保持时间长等特点让它成为医疗敷料中重要的原料。

2. 农业用途高吸水性树脂可以被应用于土壤改良和植物生长促进。

在干旱或缺水期,将高吸水性树脂添加到土壤中可以提高土壤的保水性能,促进植物的生长。

3. 环保用途高吸水性树脂可以用于水处理和土壤污染治理。

它可以吸附有害物质、去除水的污染物和土壤中的重金属等。

高吸水性树脂作为一种新型的材料,在各个领域都有着广泛的应用前景。

高吸水性树脂简介

高吸水性树脂简介

高吸水性树脂简介高吸水性树脂也称超强吸水性聚合物简写为SAP.它是一种含有羧基,羟基等强亲水性基团并具有一定交联度的水溶胀型的高分子聚合物,不溶于水也不溶于有机溶剂,能够吸收自身重量的几百倍甚至上千倍的水,且吸水膨胀后生成的凝胶具有良好的保水性和耐候性,一旦吸水膨胀成水凝胶 ,即使加压也难以将水分离出来.同时 ,高吸水性树脂可循环使用.因此 ,越来越受到人们的关注.目前 ,超强吸水树脂已在工业,农业,林业,卫生用品等领域中得到广泛应用 ,并显示出更为广阔的发展前景.1. SAR的结构与吸水机理1.1 SAR的交联网络结构SAR 与传统的吸水材料不同,它可以吸收比自身重几百倍甚至几千倍的水.在处于吸水状态时其保水性好,在压力下水也不会从中溢出.而传统的吸水材料只能吸收自身重量的20倍的水.树脂的高吸水性主要与它的化学结构和聚集态中极性基团的分散状态有关,它具有低交联度亲水性的三维空间网络结构.它是由化学交联和聚合物分子链间的相互缠绕物理交联构成.吸水前,高分子链相互缠绕在一起,彼此交联成网状结构,从而达到整体上的紧固度;吸水后,聚合物可以看成是高分子电解质组成的离子网络和水的构成物.在这种离子网络中存在可移动离子对,它们是由高分子电解质离子组成的.1.2 SAR的吸水机理关于SAR的吸水机理存在不同的说法.其中有两种占主要地位,金益芬等认为SAR吸水有3个原动力:水润湿,毛细管效应和渗透压.高吸水能力主要由这3个方面的因素决定.水润湿是所有物质吸水的必要条件,聚合物对水的亲和力大,必须含有多个亲水基团;毛细管效应的作用则是让水容易迅速地扩散到聚合物中去;渗透压可以使水通过毛细管扩散,渗透到聚合物内部或者渗透压以水连续向稀释聚合物固有的电解质浓度方向发动.刘廷栋等[2]则认为当水与高分子表面接触时主要有 3 种相互作用:一是水分子与高分子电负性强的氧原子形成氢键;二是水分子与疏水基团相互作用;三是水分子与亲水基团的相互作用.上述两种理论虽然表述不相同,但二者的理论都是建立在高吸水聚合物的主体网络结构基础之上的,实质是相同的。

高吸水性树脂简介

高吸水性树脂简介

高吸水性树脂简介1、定义高吸水性树脂(Superabsorbent Polymer, SAP)是一种具有轻度交联的三维网络状吸水性的材料,含有大量的亲水性基团,能在很短的时间内迅速吸收大量的天然水分从而达到完全饱和状态,而且即便是施加一定的压力依旧能够有效保住水分的不流失。

2、高吸水性树脂的结构特点从化学结构看,SAP聚合网络链段上含有大量强亲水性基团,如羧基、羟基、酰胺基和磺酸基等,可以与水分子发生氢键作用,具备优异的亲和性能,所以,制备的SAP树脂与水接触后能够迅速吸收水分而达到溶胀平衡。

从物理结构看,SAP是一个三维网络结构,具有一定的交联密度,即使与水相遇也不容易发生溶解。

通常制备的SAP多为水溶性线性聚合物,如果没有经过交联处理,在吸收水分后便会形成一种流动性强的聚合液,无法达到保水效果。

进行适度的交联后,SAP在吸收水分溶胀后不会被水溶解。

水分被包裹在树脂网络内部,即便施加一定的压力水分也不会溢出,达到束水目的。

3、高吸水性树脂的性能(1)吸水性能SAP有着超高的吸水性能主要是因为其自身的三维网络结构,其聚合物网络链段上含有-COOH、-OH、-CONH2等多个强亲水性官能团,能够吸收大量的水分并将水分保持在网络内部。

其吸水性能也会因亲水基团类型的不同、网络结构、外部环境的变化而具有差异。

(2)耐盐性能根据SAP的吸水机制,可以大量吸收纯水中的自由水,但是如果水里含有盐离子的话,液体吸收能力会大幅下降,而SAP经常被广泛应用于农业、医疗、环保等领域,其吸收介质为肥料、血液、尿液和土壤等,其大多为混合的盐溶液,所以单纯的追求吸纯水的能力远不能满足其应用的要求,因此关于SAP耐盐性能的研究有重要的意义。

(3)保水性能保水性能是SAP的一个重要功能。

它可以通过交联网络将大量的水或水溶液锁定在网络内,从而保持大量的水。

即使在特定外压下,水分也难从网格中流出,吸水性树脂的网格构造是保水性的关键。

高吸水性树脂

高吸水性树脂

• 合成树脂系列:合成系高吸水保水材料是 20 世纪 70年代后讯速发
展起来的,是目前高吸水保水材料中发展最迅速、品种最多、产量最 大的一类高分子聚合物。主要由单体(主要有丙烯酸、丙烯腈、丙烯 酰胺、乙烯醇等)在交联剂作用下进行聚合/交联而成。与淀粉系、纤 维素系相比,合成系 SAP制备工艺简单、吸水、保水能力强,但其单 体的残留大、不易被降解,属于非环境友好材料。 • 其它天然物及其衍生物系列:其制备原理是将天然高分子进行化学改 性,在其分子上引入亲水基团,然后在交联剂的作用下形成网状结构。 研究较多的是纤维素衍生物的交联产物。以果胶类、海藻酸、肝素类、 壳聚糖类及有关衍生物等天然高分子为原料也可合成可降解的 SAP。 这些吸水性树脂虽然生物降解性好,原料来源广,但由于工艺复杂、 价格昂贵,无法工业化生产,目前难以推广。除了羧甲基纤维素交联 物外,其它品种均处于实验室阶段。
高吸水性树脂的应用
卫生用品:SAP最具规模的应用领域就是卫生行业,由于 SAP具有吸收率高,吸液量大,保液性好,且安全无毒和 重量轻等优点,因而卫生用品生产厂家把之添加在婴儿纸 尿裤、妇女卫生用品、成人失禁垫、宇航员尿袋和医用衬 垫内。其中高吸水性树脂用于婴儿纸尿裤等个人卫生用品 约占95%。 农业生产:研究表明,高吸水性树脂可以有效地抑制水分 的蒸发, 防止土壤中的水分流失, 并减小土壤的容重, 加 入旱田中可将农作物的产量提高20% 左右。用沥青铺底, 上面撒上一些高吸水性树脂, 再铺上一层十几厘米厚的土 层, 种植上几年农作物以后就可以将沙漠绿化. 这是治理 沙漠的一个重要途径, 在撒哈拉沙漠已经取得了成功. 这 对沙漠化越来越严重的我国来说有着极其重要的意义。
高吸水性树脂的分类
• 淀粉系列:淀粉是一种可再生、来源广泛的天然高分子化合物。

高吸水性树脂

高吸水性树脂

高吸水性树脂高吸水性树脂(Super Absothent Polymer,简称SAP),是由低分子物质经聚合反应合成或由高分子化合物经化学反应制成,是一种经适度交联而具有三维网络结构的新型功能高分子材料,分子链上含有很多强亲水基团,能吸收相当于自身重量几百倍甚至几千倍的水,这是以往材料所不可比拟的。

高吸水性树脂不但吸水能力强,且保水能力非常高,吸水后无论加多大压力也不脱水【5】。

因此被广泛地应用到农业、林业、园艺等的土壤改良剂、卫生用品材料、工业用脱水剂、保鲜剂、防雾剂、医用材料、水凝胶材料等。

1高吸水树脂的结构高吸水树脂是一种三维网络结构,它不溶于水而大量吸水膨胀形成高含水凝胶。

高吸水树脂的主要性能是具有吸水性和保水性。

要具有这种特性,其分子中必须含有强吸水性基团和一定的网络结构,即具有移动的交联度。

实验表明:吸水基团极性极性越强,含量越多,吸水率越高,保水性也越好。

而交联度需要适中,交联度过低则保水性差,尤其在外界有压力时水很容易脱。

高吸水性树脂的微观结构因合成体系的不同而呈现出多样性[1]。

1.1离子型高吸水树脂结构大多数高吸水性树脂是由分子链上含有强亲水性基团(如梭基、磺酸基、酞图1 高吸水树脂的离子网络结构胺基、轻基等)的三维网状结构所组成,如图1所示。

吸水时,首先是离子型亲水团在水分子的作用下开始离解,阴离子固定在高分子链上,阳离子作为可移动离子在树脂内部维持电中性由于网络具有弹性,因而可容纳大量水分子,当交联密度较大时,树脂分子链的伸展受到制约,导致吸水率下降。

随着离解过程的进行,高分子链上的阴离子数增多,离子之间的静电斥力使树脂溶胀,同时,树脂内部的阳离子浓度增大,在聚合物网络内外溶液之间形成离子浓度差,渗透压随之增大,使水进一步进入聚合物内部。

当离子浓度差提供的驱动力不能克服聚合物交联构造及分子链间相互作用(如氢键)所产生的阻力时,达到饱和量。

1.2淀粉接枝型高吸水性树脂结构日本三洋化成工业公司温品谦二等根据V on E. Cgruber等的方法探讨了淀粉接枝丙烯酸的聚合物结构,见图2如示【2】。

高吸水性树脂简介介绍

高吸水性树脂简介介绍
高吸水性树脂简介介绍
汇报人: 日期:
目录
• 高吸水性树脂概述 • 高吸水性树脂的工作原理 • 高吸水性树脂的制备方法 • 高吸水性树脂的发展前景
01
高吸水性树脂概述
定义及特性
01
02
03
定义
高吸水性树脂是一种具有 特殊吸水性能的高分子材 料。
吸水性能
高吸水性树脂具 倍的水分。
保水性能
该树脂吸水后能够保持水 分不易流出,具有良好的 保水性能。
类型及分类
交联型高吸水性树脂
通过交联剂使树脂形成三维网络结构,从而 提高吸水性能。
合成高吸水性树脂
通过化学合成方法制得的高分子材料,具有 优异的吸水性能和稳定性。
非交联型高吸水性树脂
通过物理或化学方法使树脂具有吸水性能, 不需要交联剂。
天然高吸水性树脂
由天然高分子材料制成,具有良好的生物相 容性和可降解性。
应用领域
医疗卫生领域
农业领域
高吸水性树脂可用于制造婴儿尿布、成人 失禁用品、医用敷料等,提供优异的吸水 保水性能,增加产品舒适度和使用时长。
高吸水性树脂可作为土壤改良剂,提高土 壤保水能力,减少水分蒸发,提高农作物 产量。
工业领域
物理吸水机制
高吸水性树脂具有三维网络结构,能够吸收并储存大量水分。当水分子进入树 脂网络时,由于毛细管作用和渗透压作用,水分子被迅速吸收并扩散到整个树 脂结构中。
吸水过程
快速吸水阶段
高吸水性树脂与水接触后,迅速 吸收表面水分,形成一层水膜。
缓慢吸水阶段
随着水分的不断渗入,树脂内部 的亲水基团开始发挥作用,通过 氢键等作用力将水分子牢固吸附 在树脂网络上,实现高吸水性能

吸水饱和阶段

高吸水性树脂的合成与应用

高吸水性树脂的合成与应用

高吸水性树脂(Super Absorbent Polymer, 简称SAP)是有一定交联度网络结构的高分子聚合物,其分子链上含有羟基(-OH)、羧基(-COOH)等强亲水性基团。

根据吸水量和用途的不同大致可以分为两大类:吸水量仅为干树脂量的百分之数十者,吸水后具有一定的机械强度,他们称之为水凝胶,可用做接触眼睛,医用修复材料,渗透膜等。

另一类吸水量可达到干树脂的数十倍,甚至高达3000倍,称之为高吸水性树脂。

高吸水性树脂用途十分广泛,在石化,化工,建筑,农业,医疗以及日常生活中有广泛的应用,如用作吸水材料,堵水材料,用于蔬菜栽培,吸水尿布等。

原理高吸水性树脂一般的说,高吸水性树脂在结构上应具备一下特点:1. 分子中具有强亲水性基团,如羧基,羟基等。

与水接触时,聚合物分子能与水迅速形成氢键或其他化学键,对水等强极性物质有一定的吸附能力。

2. 聚合物通常为交联型结构,在溶剂中不溶,吸水后能迅速溶胀。

由于水被包覆在呈凝胶状的分子网络中,不易流失和挥发。

3. 聚合物应具有一定的立体结构和较高的分子量,吸水后能保持一定的机械强度。

SAP内部的高分子链互相缠绕形成三维网状结构,其吸水过程分为三个阶段:①高吸水性树脂通过毛细管吸附作用吸入水分子;②在水分子作用下,SAP分子链上的亲水基团离解为阴离子和阳离子,阳离子作为可移动离子在树脂内部维持电中性,如图所示,阴离子固定在高分子链上,分子链上的阴离子之间的静电排斥将导致高吸水性树脂中三维网状结构的逐渐膨胀,与此同时亲水基团被不断电离,使三维网络结构内外的渗透压逐渐增大,从而使更多的水渗入高吸水性树脂内部;③吸水达到饱和,此时聚合物分子链间的阻力大于离子浓度差提供的驱动力。

SAP的吸水能力由物理作用和化学作用共同贡献,与海绵、棉花等材料的物理吸水并不相同。

SAP依靠分子链上亲水基团与水分子之间的范德华力将水分子吸收,并通过分子链交联成的网状结构将水分子束缚在网格中。

高吸水树脂实验报告

高吸水树脂实验报告

1. 了解高吸水树脂的制备方法及原理。

2. 掌握高吸水树脂的性能测试方法。

3. 分析高吸水树脂在不同溶液中的吸水性能。

二、实验原理高吸水树脂(Super Absorbent Polymer,SAP)是一种具有三维网状结构的高分子物质,主要由不饱和烯类单体(如丙烯酸、丙烯酰胺等)作为原材料,通过添加交联剂和引发剂经聚合反应合成。

SAP 分子链上带有大量亲水性基因,如-OH、-COOH、-CONH2、-SO3H等,使其具有极强的吸水性和保水性。

本实验通过制备高吸水树脂,测试其吸液率、吸水速率和保水性能,以评估其应用价值。

三、实验材料与仪器1. 实验材料:- 不饱和烯类单体(如丙烯酸、丙烯酰胺等)- 交联剂- 引发剂- 离子水- 氯化钠溶液- 烧杯- 托盘天平- 离子交换树脂- 滤纸- 质构仪2. 实验仪器:- 实验室常用仪器(如烧杯、玻璃棒、滴管等)- 质构仪1. 制备高吸水树脂:(1)称取一定量的不饱和烯类单体,加入适量交联剂和引发剂;(2)将混合物加入烧杯中,搅拌溶解;(3)在恒温条件下进行聚合反应,得到高吸水树脂;(4)将高吸水树脂进行干燥处理,得到干燥的高吸水树脂。

2. 吸液率测试:(1)称取0.6克干燥的高吸水树脂;(2)将树脂加入烧杯中,加入2000毫升离子水;(3)等待1小时后,用滤纸过滤多余的离子水;(4)称取过滤后的树脂,计算吸液率。

3. 吸水速率测试:(1)称取4.3克干燥的高吸水树脂;(2)将树脂加入烧杯中,加入1000毫升氯化钠溶液;(3)记录开始吸水时间,每30分钟记录一次树脂的吸水质量;(4)计算吸水速率。

4. 保水性能测试:(1)称取2.3克干燥的高吸水树脂;(2)将树脂加入烧杯中,加入4000毫升氯化钠溶液;(3)等待半小时后,用滤纸过滤多余的氯化钠溶液;(4)称取过滤后的树脂,计算保水性能。

5. 凝胶强度测试:(1)将干燥的高吸水树脂加入质构仪的样品夹具中;(2)设置质构仪的参数,进行凝胶强度测试;(3)记录测试结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

魔芋接枝丙烯酰胺-丙烯酸/凹凸棒石高吸水性树脂的制备与性能
【作者】胡盛;王雨佩;周红艳;田大听;张升晖;
【摘要】以凹凸棒石(AT)为无机填料,丙烯酰胺(AM)、丙烯酸(AA)两种单体同时对魔芋(KGM)进行接枝改性,采用水溶液聚合法制备了标题化合物。

考察了各合成因素对树脂吸液倍率的影响,并采用FT-IR,SEM对树脂进行了表征。

结果表明,当魔芋用量为15%(占单体丙烯酸质量百分比,下同)、凹凸棒石用量为30%、交联剂用量为0.08%、引发剂用量为0.4%和丙烯酰胺与丙烯酸的质量比为5∶1时,制备的树脂的吸蒸馏水倍率最高,达到978.47 g/g。

红外光谱(FTIR)测试分析表明魔芋葡甘聚糖、丙烯酸、丙烯酰胺和凹凸棒石共同参与了接枝聚合反应。

扫描电子显微镜(SEM)测试分析表明凹凸棒石的引入,树脂的表面变得粗糙并存在大小不一的孔隙。

更多还原
【关键词】魔芋;凹凸棒石;丙烯酸;丙烯酰胺;高吸水性树脂;
羧甲基纤维素/壳聚糖高吸水性树脂的制备与性能
【作者】傅明连;郑炳云;陈彰旭;陈赛贞;
【摘要】采用水溶液聚合法,制备了羧甲基纤维素/壳聚糖(CMC/CTS)高吸水性树脂。

考察了CMC/CTS比值(质量比)、甘油质量、聚乙二醇质量及反应温度等各因素对产物吸水性能的影响,并通过正交试验,确定最佳的合成条件。

采用红外光谱对产物结构进行分析。

结果表明,高吸水性树脂的最佳合成条件为CMC/CTS为3:1、甘油为1.60 g、聚乙二醇为3.20 g、反应温度为25℃时,其吸水率为405 g.g-1,且吸水速率适中,保水性能良好,是一种环境友好型高吸水性树脂。

更多还原
【关键词】羧甲基纤维素;壳聚糖;高吸水性树脂;吸水性能;
淀粉接枝丙烯酸制备高吸水性树脂
【作者】韩灵翠;潘韩铭;游向轩;
【摘要】利用硅酸钠为交联剂,过硫酸铵为引发剂,对淀粉接枝丙烯酸制备高吸水性树脂进行了实验研究。

结果表明,最佳合成工艺条件为:丙烯酸中和度为80%,交联剂用量为淀粉用量的0.3%(质量分数),反应温度60℃,反应时间3~4h;制备出的树脂吸水率可达300%(质量分数)以上。

本实验为制备高吸水性树脂的工艺研究提供了参考。

更多还原
【关键词】淀粉;丙烯酸;高吸水性树脂;
腐植酸-粘土高吸水性树脂的制备研究
【作者】侯小溪;孙晓然;尚宏周;张秀凤;刘春燕;
【摘要】以丙烯酸为单体,采用溶液聚合与腐殖酸钠、粘土进行反应合成新型腐植酸高吸水树脂GHA。

采用正交试验系统地考察了引发剂、交联剂、粘土及AA/HA对吸水树脂吸水倍率的影响。

结果表明当引发剂0.3%、交联剂0.1%、粘土20%和AA/HA为4∶1时,产物的吸蒸馏水倍率最大;当引发剂0.3%、交联剂0.1%、粘土20%和AA/HA为4∶1时,产物的吸蒸馏水速率达到361g/g,吸盐水倍率为86g/g,吸水后凝胶强度高。

更多还原
【关键词】腐植酸;高吸水树脂;粘土;
玉米淀粉接枝丙烯酸制备高吸水性树脂
【作者】乌兰;柳明珠;;
【摘要】用硝酸铈铵作引发剂,通过水溶液聚合法制得了玉米淀粉接枝丙烯酸高吸水性树脂。

研究了交联剂及引发剂用量、中和度、反应温度以及反应时间等对吸水率的影响。

得到的最佳反应条件为:交联剂和引发剂与丙烯酸的摩尔比分别为0.95×10-5和4.8×1-0 3,中和度
71%,反应温度45℃,反应时间2 h。

制得的高吸水树脂在室温下30 m in每克吸蒸馏水和自来水分别约为其自身质量的1000和200倍。

更多还原
【关键词】高吸水性树脂;玉米淀粉;丙烯酸;接枝共聚
高吸水性树脂及增效剂对土壤水分和氮素的保持效能研究
【作者】李嘉竹;
【摘要】针对五种常见高吸水性树脂类型的水分和氮素的吸持性能进行分析,优化筛选综合性能最优的高吸水性树脂类型。

开展最优高吸水性树脂类型与两种增效剂的全组合吸附试验研究,确定高吸水性树脂与增效剂的最优组合。

以玉米生长的需水、需肥规律为依据,采用层次分析一模糊综合评价法,评估正交试验各配比的保水、保肥、经济特性,在此基础上,阐明影响各特性的主导材料和材料最佳配比。

通过扫描电镜、能谱和尿酶等分析,提出其保水、保氮机理。

在上述研究的基础上,将其应用于大田验证性试验,从水分利用效率、氮素利用效率和经济效益等角度阐述其可行性,为干旱半干旱地区水肥高效利用及水土氮素污染的防治提供技术支持。

更多还原
【关键词】高吸水性树脂;增效剂;水分利用效率;氮素利用效率;
高吸水性树脂的合成与应用
【作者】陈卫星;石玉;;
【摘要】综述了丙烯酸型高吸水性树脂的制备方法,如溶液法、反相悬浮法及反相乳液法等.简述了利用Flory Huggins理论和溶液的热力学理论研究大分子结构及吸水机理的关系,并对丙烯酸型高吸水性树脂的应用及今后的发展做了简要评说更多还原
【关键词】高级水树脂;合成;应用
高吸水性树脂在鱼类保鲜中的应用研究
【作者】廖列文;崔英德;朱文渊;
【摘要】试验采用高吸水性树脂、丙二醇、乙酸制备的保鲜剂对鱼类进行冰衣处理,在0~4℃冷藏14d,鱼类仍能保持新鲜,与对照组相比在冷藏期间细菌的增长明显减少,pH值变化较小,对挥发性盐基氮的生成有明显的减缓作用。

为鱼类食品的冷藏保鲜提供了一种有效的方法。

更多还原
【关键词】高吸水性树脂;鱼类;冷藏;保鲜;
分子筛改性羧甲基纤维素类高吸水性树脂研究
【作者】冯晓琦;邓卫波;申峻;吴娟;寇子明;
【摘要】以羧甲基纤维素(CMC),丙烯酸(AA),2-丙烯酰胺-2-甲基丙磺酸(AMPS)为原料,过硫酸钾为引发剂,N,N′-亚甲基双丙烯酰胺为交联剂,经接枝共聚制备高吸水性树脂;为提高高吸水性树脂的耐热性能,使用分子筛对高吸水性树脂进行改性,探讨了分子筛种类和用量对高吸水性树脂性能的影响,测定了改性后高吸水性树脂的吸水倍率、吸水速率、再生性能和耐热性能,通过对其性能进行比较得出:添加0.5g的13X分子筛改性高吸水性树脂效果最佳,所得产物吸水倍率为675g.g-1,吸水速率、再生性能和耐热性能也比改性前有显著提高。

更多还原
耐盐性高吸水性树脂的制备及性能研究
【作者】黄帮裕;杜建军;尹国强;王新爱;卢其明;
【摘要】采用水溶液聚合法合成了耐盐性丙烯酰胺型高吸水性树脂,在系统地考察单体配比、中和度、交联剂和引发剂用量对高吸水性树脂加压(约2kPa)吸液性能影响的基础上,运用正交实验对工艺条件进行优化,制备出加压下在去离子水和质量分数为0.9%的盐水中的吸水倍率分别为75和23.1的高吸水性树脂。

更多还原
【关键词】高吸水性树脂;耐盐性;丙烯酰胺;丙烯酸铵;
参考文献:[1] 胡盛,田大听,张志用,周红艳,胡卫兵,史伯安,王雨佩,曹贞虎. 魔芋接枝丙烯酸-丙烯酰胺共聚物/凹凸棒石复合材料的制备与表征[J]. 化学工程. 2012(03)
∙[2] 陈红,王文波,张俊平,王爱勤. 冷冻-碾磨处理凹凸棒石黏土对复合高吸水性树脂性能的影响[J].
硅酸盐学报. 2010(11)
∙[3] 王吉会,李燕,张子洋. 凹凸棒粘土/聚丙烯酸复合材料的制备与调湿性能[J]. 材料研究学报. 20 10(02)
∙[4] 柯百胜,郭国宁,姚蕾,兰晶,倪学文,汪超,蔡冰,姜发堂. 耐盐性魔芋葡甘聚糖吸水树脂的制备[J].
高分子材料科学与工程. 2010(04)
∙[1] 王开明,黄惠莉,王忠敏. 壳聚糖接枝聚丙烯酸高吸水树脂的制备及抑菌性能[J]. 工程塑料应用.
2011(11)
∙[2] 李勤奋,黄棣,王江,王妍媖,江虹,李玉宝,张利. 可生物降解羧甲基纤维素/壳聚糖吸水保水材料的制备与表征[J]. 高分子材料科学与工程. 2010(12)
∙[3] 钟亚兰. 绿色高吸水性树脂的研究进展[J]. 化工新型材料. 2010(06)

∙[1] 涂晓燕. 淀粉类高吸水性树脂的研究及其应用[J]. 精细石油化工进展. 2007(07)
∙[2] 杨小晨. 高吸水性树脂的现状及发展方向[J]. 甘肃科技. 2005(10)
∙[3] 李兆丰,顾正彪,洪雁. 淀粉接枝丙烯酸类超强吸水剂的制备及其研究进展[J]. 化学与粘合. 20 04(02)

∙[1] 马敬昆,蒋淑丽,蒋庆哲,宋昭峥,柯明. 改性腐植酸盐-丙烯酰胺-丙烯酸复合吸水树脂制备及性能研究[J]. 环境工程学报. 2010(07)
∙[2] 陈振斌,马应霞,张安杰,董方. 聚丙烯酸钠高吸水性树脂的改性研究进展[J]. 应用化工. 2009(1
1)
∙[3] 谢建军,陶国华,罗迎社. 我国高吸水树脂发展中存在的问题与趋势[J]. 精细化工中间体. 2008
(04
∙[1] 孙福强,崔英德. 反相悬浮聚合法制备超强吸水树脂[J]. 河南化工. 2004(12)
∙[2] 李安,王爱勤,陈建敏. 聚丙烯酸(钾)/凹凸棒吸水剂的制备及性能研究[J]. 功能高分子学报. 20 04(02)
∙[3] 张卫英,李晓,刘健昌,黄荣荣. 聚丙烯酸钠高吸水性树脂的制备及性能研究[J]. 精细化工. 2000
(09)

∙。

相关文档
最新文档