储氢罐定期检验及检修建议项目

储氢罐定期检验及检修建议项目
储氢罐定期检验及检修建议项目

储氢罐定期检验及检修建议项目

1.委托特种设备检测站的项目

1.1.储氢罐宏观检查(内外部表面腐蚀情况,本体、接口焊缝

处是否有裂纹、变形、泄漏等)。

1.2.壁厚测定。

1.3.发现缺陷的进行渗透探伤或磁粉探伤。

1.4.液压试验或气密性试验(未定,《压力容器定期检验规则》规定由特种设备检测站完成,但本厂也能做好。

1.5由特种设备检测站提供详细的检测报告,并出具检测合格证。2.安全伐送有资质的单位校验,并出具详细的校验报告。

3. 其它工作

3.1打开人孔门。

3.2更換所有法兰垫片。

3.3更換部分储氢罐底部排污门,排污管整直。

3.4压力表、温度计校验。

3.5更換所有法兰跨接线,并测量电阻详细记录。

3.6解体检修安全伐入口门。

3.7更換部分储氢罐顶部排空门。

3.8待全部工作完成后,油漆储氢罐。

4.需要提前准备的工作。

4.1自己加工好法兰跨接线。

4.2定制一根手动试压泵与储氢罐之间的连接管。

压力容器定期检验规则

一、单选题【本题型共37道题】 1.对于分散的点腐蚀,如果腐蚀深度不超过()不影响定级。 ?A.2mm? ?B.腐蚀裕量? ?C.壁厚(扣除腐蚀裕量)的1/3? ?D.壁厚(扣除腐蚀裕量)的1/2 正确答案:[C] 用户答案:[C] ??得分:2.10 2.安全状况等级为4级的压力容器,应当监控使用,累计监控使用时间不得超过()。 ?A.2年? ?B.4年? ?C.3年? ?D.6年 正确答案:[C] 用户答案:[C] ??得分:2.10 3.以下()检测方法可以判断缺陷的活动性。 ?A.射线检测? ?B.超声波检测? ?C.脉冲涡流检测? ?D.声发射检测 正确答案:[D] 用户答案:[C] ??得分:0.00 4.()以上的设备主螺柱在逐个清洗后,检验其损伤和裂纹情况,必要时进行无损检测。重点检验螺纹及过渡部位有无环向裂纹。 ?A.M30? ?B.M36?

?C.M42? ?D.M48 正确答案:[B] 用户答案:[B] ??得分:2.10 5.下列哪种情况下(),压力容器定期检验周期不需要缩短。 ?A.介质或者环境对压力容器材料的腐蚀情况不明或者腐蚀情况异常的? ?B.具有环境开裂倾向或者产生机械损伤现象,并且已经发现开裂的? ?C.服役10年的超高压水晶釜? ?D.使用单位没有按照规定进行年度检查的 正确答案:[C] 用户答案:[C] ??得分:2.10 6.为检验而搭设的脚手架,对离地面()以上的脚手架设置安全护栏。 ?A.1.5m? ?B.3m? ?C.1.2m? ?D.2m 正确答案:[D] 用户答案:[D] ??得分:2.10 7.小型制冷装置中压力容器的定期检验项目中必须包含()。 ?A.液氨成分检验? ?B.材料分析? ?C.强度校核? ?D.安全附件检查 正确答案:[A] 用户答案:[A] ??得分:2.10 8.不等厚度板对接接头,未按照规定进行削薄(或者堆焊)处理,经过检验未查出新生缺陷(不包括正常的均匀腐蚀)的,定为()。

(换热容器)压力容器定期检验方案

压力容器定期检验方案 编制: 审核: 批准: 2018年5月

压力容器定期检验方案 1、工程概况: 氯气液化器定期检验的周期已到,需进行定期检验。设计压力 1.4/0.6MPa,材料Q345R/10#,制造日期:2010年10月,制造单位:武汉新世界制冷工业有限公司,中国石化集团第十建设公司安装。现经使用单位申请,定于2018年5月3日至2018年5月7日拟对该台压力容器进行定期检验。特制定检验方案,检验过程严格按照本检验方案执行。 二、检验依据: 1.TSG 21-2016《固定式压力容器安全技术监察规程》(2016年10月1日) 2.TSG 08-2017《特种设备使用管理规则》(2017年1月16日) 3.NB/T 47013-2015《承压设备无损检测》 4.GB151《管壳式换热器》 5.其它相关标准。 三、人员配备: (以上人员包含各项无损检测资质和压力容器检验员、检验师资质) 四、设备: 钢卷尺;钢板尺;焊缝检验尺;5-10 倍放大镜;超声波测厚仪;手电筒;游标卡尺;手电、照明灯、安全帽、安全带、防静电工作服等。 五、检验工艺: (一)被检单位检验前的准备: 1、资料准备(受检单位应在容器检验前提供以下资料,以备资料审查) 1)、设计图纸、产品质量证明书、使用登记证书; 2)、运行记录,以及有关运行参数,介质成分,载荷变化情况,运行中出现的异常情况等资料; 3)、检验资料,上次检验报告、记录和有关资料; 4)、安全附件(安全阀、压力表、紧急切断阀、液位计、温度计等)的合格证明及检验证明。对照资料检查外观是否完好,安全附件是否齐全、铅封是否完好。 5)开、停机记录以及有关运行参数,介质成分、我荷变化情况、运行中出现的异常情况等资料

储氢的各种材料

一、前言 随着社会的发展,环境保护问题已经越来越为人们所重视。酸雨、温室效应、城市热岛效应等等 或初露倪端,或已对人类造成巨大的危害,这些环保问题的产生在很大程度上与人类大量使用化石能 源有关。同时,由于能源消耗量的迅猛增加,化石能源将不能满足经济高速发展的需求,需要开发新 的能源。在我国开发清洁的新能源体系更具有重要意义。 氢可以地球上近于无限的水为原料来制备,其燃烧产物也是水,具有零污染的优点,有望在石油中国论文联盟https://www.360docs.net/doc/b413994367.html, 时代末期成为一种主要的二次能源。氢能技术的发展,已在航天技术中得到了成功的应用。 氢是一种危险,易燃易爆的气体,在使用中必须保证安全,因此,一种安全、高能量密度(包括体积能量密度和重量能量密度)、低成本、使用寿命长的氢储、输技术的应用需求已越来越迫切。 二、目前主要的储氢方式 近年来研究较多的储氢方式有:(1)金属氢化物储氢;(2)液化储氢;(3)吸附储氢;(4)压缩储氢。 2.1金属氢化物储氢 氢和氢化金属之间可以进行可逆反应,当外界有热量加给氢化物时,它就分解为氢化金属并释放 出氢气。用来储氢的金属大多是由多种元素构成的合金,目前世界上研究成功的合金大致分为:(1)稀土镧镍,每公斤镧镍合金可储氢153L;(2)铁钛合金,储氢量大,价格低月在常温常压下释放氢;(3)镁系合金,是吸氢量最大的元素,但需要在287℃条件下才能释放氢,而且吸收氢十分缓慢;(4)钒、铌、铅等多元素系,这些金属本身是稀贵金属,因此只适用于某 些特殊场合。 与其它储氢方式相比,金属氢化物储氢具有压力平稳,充氢简单、方便、安全等优点,单位体积贮氢的密度,是相同温度、压力条件下气态氢的1000倍。该储氢方式存在的问题为在大规模应用中如 何提高储氢材料的储氢量和降低材料成本,节约贵重金属。国际能源机构确定的未来新型储素材料的标准为储氢量应大于5Wt%,并且能在温和条件下吸放氢。根据这一标准,目前的储氢合金大多尚不能满足这一性能要求。 2.2液化储氢 将氢气冷却到-253℃时氢气即可液化。液氢储存方式的质量能量密度最大,是一种轻巧紧凑的方式。但氢气液化成本高,能量损失大(氢液化所需能量为液化氢燃烧产热额的30%),且存在蒸发损 失。液氢贮存工艺首先用于宇航中,但需要极好的绝热装置来隔热,才能防止液态氢不会沸腾汽化, 导致液体贮存箱非常庞大。 2.3吸附储氢 C.CarPetis和W.Peschka是首先提出在低温条件下氢气能够在活性炭中吸附储存的两位学者。他们提出可以考虑将低温吸附刘运用到大型氢气储存中,并研究得到了在温度为-195℃和-208℃,压力为0-4.15MPa时,氢在多种活性炭上的吸附等温线:压力为4.2MPa 时,氢气在活性炭上的吸附容量分别可以达到 6.8wt%和 8.2wt%在果等温膨胀到0.2MPa,则吸附容量为4.2wt%和5.2wt%。 在一个最近的研究中,Hynek在27℃和-83℃条件下测试了一系列吸附剂,如活性炭、碳黑、碳气凝胶 以及碳分子筛等。测试结果为:在0-20MPa压力范围内,随着压力的增大,吸附剂的储氢量只有少 量的增加。 目前吸附储氢材料研究的热点是碳纳米材料。由于碳纳米材料中独特的晶格排列结构,其储氢数量大大的高过了传统的吸附储氢材料。碳纳米管产生一些带有斜口形状的层板,层

浅谈储氢材料

储氢材料的背景 人类社会发展进步到今天,生活现代化了。但是由于资源的大量开发、使用,使人类面临着全地球的能源危机和环境污染问题。长期以来,地球上的主 要能源煤炭、石油、天然气现在已面临枯竭的境地。在能源危机警钟响起时, 人们把注意力集中到太阳能、原子能、风能、地热能等新能源上。但是要使这 些自然存在形态的能量转变为人们直接能使用的电能,必须要把它们转化为二 次能源。那么最佳的二次能源是什么呢?氢能就是一种最佳的二次能源。 氢是地球上一种取之不尽的元素。用电解水法取氢就是氢元素的广阔源泉。氢是一种热值很高的燃料。燃烧1千克氢可放出62.8千焦的热量,1千克氢可以代替3千克煤油。氢氧结合的燃烧产物是最干净的物质--水,没有任何污染。未来最有前途的燃料电池也主要是以氢为能源。所以人们很自然地把注意力集 中在氢能源的开发和利用上。要利用好氢能源。摆在人们面前的问题是如何把 氢储存、运输和利用。 氢的来源非常丰富,若能从水中制取氢,则可谓取之不尽、用之不竭。氢 能的利用,主要包括两个方面:一是制氢工艺,二是储氢方法。 传统储氢方法有两种,一种方法是利用高压钢瓶(氢气瓶)来储存氢气, 但钢瓶储存氢气的容积小,瓶里的氢气即使加压到150个大气压,所装氢气的质量也不到氢气瓶质量的1%,而且还有爆炸的危险;另一种方法是储存液态氢,将气态氢降温到-253 0C变为液体进行储存,但液体储存箱非常庞大,需要极好的绝热装置来隔热,才能防止液态氢不会沸腾汽化。近年来,一种新型 简便的储氢方法应运而生,即利用储氢合金(金属氢化物)来储存氢气。 储氢材料的定义 储氢材料是一种能够储存氢的材料,储氢材料是能与氢反应生成金属氢化 物的物质,(狭义)具有高度的吸氢放氢反应可逆性;(广义)储氢材料是能 够担负能量储存、转换盒输送功能的物质,“载氢体”、或“载能体” 研究证明,某些金属具有很强的捕捉氢的能力,在一定的温度和压力条件下,这些金属能够大量“吸收”氢气,反应生成金属氢化物,同时放出热量。 其后,将这些金属氢化物加热,它们又会分解,将储存在其中的氢释放出来。 这些会“吸收”氢气的金属,称为储氢合金。 储氢材料的分类 化学吸附材料 金属氢化物及合金(如LaAlH4) 复合氢化物(NaAlH4、NaBH4、LiBH4等)等 物理吸附材料

换热容器)压力容器定期检验方案

压力容器定期检验方案 编制:____________________ 审核:____________________ 批准:____________________ 2018年5月

压力容器定期检验方案 1、工程概况: 氯气液化器定期检验的周期已到,需进行定期检验。设计压力 1.4/0.6MPa,材料 Q345R/1 0#,制造日期:20 1 0年10 月,制造单位:武汉新世界制冷工业有限公司,中国石化集团第十建设公司安装。现经使用单位申请,定于2018年5月3日至2018年 5 月7 日拟对该台压力容器进行定期检验。特制定检验方案,检验过程严格按照本检验方案执行。 二、检验依据: 1. TSG 21-2016《固定式压力容器安全技术监察规程》(2016年10月1 日) 2. TSG 08-2017《特种设备使用管理规则》(2017年1 月16日) 3. NB/T 47013-2015《承压设备无损检测》 4. GB151《管壳式换热器》 5. 其它相关标准。 三、人员配备:(以上人员包含各项无损检测资质和压力容器检验员、检验师资质) 四、设备: 钢卷尺;钢板尺;焊缝检验尺;5-10 倍放大镜;超声波测厚仪;手电筒;游标卡尺;手电、照明灯、安全帽、安全带、防静电工作服等。 五、检验工艺: (一)被检单位检验前的准备: 1 、资料准备(受检单位应在容器检验前提供以下资料,以备资料审查) 1 )、设计图纸、产品质量证明书、使用登记证书; 2)、运行记录,以及有关运行参数,介质成分,载荷变化情况,运行中出现的异常情况等资料; 3)、检验资料,上次检验报告、记录和有关资料; 4)、安全附件(安全阀、压力表、紧急切断阀、液位计、温度计等)的合格证明及检验证明。对照资料检查外观是否完好,安全附件是否齐全、铅封是否完好。 5)开、停机记录以及有关运行参数,介质成分、我荷变化情况、运行中出现的异常情 况等资料

储氢罐置换操作方案-注水置换

制氢站储氢罐置换操作方案 编制:____________ 安监:____________ 批准:____________ 年月日

制氢站储氢罐置换操作方案 1、隔离置换工作内容(以#1贮氢罐为例) #1贮氢罐除盐水置换氢气 2、危险点分析与控制关键点 2.1危险点分析 2.1.1本次隔离置换主要危险点为制氢站#1贮氢罐入口门与分配盘至贮氢罐入口门氢气母管隔离、#1贮氢罐氢气排空时必须经过阻火器管路且缓慢排氢; 2.1.2氢气为无色无臭无味气体,具有易燃易爆特性,它是以燃烧、爆炸为主要特征的危险气体。一旦泄漏,便可逸散在空中迅速扩散,与空气形成爆炸混合物,且遇火爆炸燃烧后的火焰容易顺风迅速蔓延扩展。 2.1.3向氢罐内注水时,为防止注水过程带入罐内空气,应待注水连接管路满水排空后,再行带水连接注水管路;为防止注水流速过快产生较大的摩擦能量,应严格控制注水流速。2.2控制关键点 2.2.1#1储氢罐氢气排空,首先开启储氢罐排空一次阀通过阻火器向大气排放,当压力降至0.5公斤时,连接软管连接除盐水供水出口阀阀后支管,软管另一端对接至储氢罐排污阀后支管(不紧固),小流量开除盐水供水出口阀,待软管对接储氢罐排污后支管处有水排出,10分钟后(确认无空气)紧固软管与储氢罐排污阀后支管处,开启储氢罐底部排污一次阀、缓慢开启贮氢罐排空二次阀; 2.2.2#1储氢罐当排空二次阀出水后,关闭二次阀,继续充除盐水当压力表显示2公斤压力,再次开启储氢罐排空二次阀,有水溢出后关闭排空二次阀,关闭除盐水供水阀,关闭储氢罐排污一次阀,待48小时后允许其他操作; 2.2.3向储氢罐充除盐水过程中保证压力表一次门开启状态; 2.2.4向储氢罐充除盐水过程中保证压力变送器一次门开启状态; 2.2.5工作人员应了解氢系统的管路及设备,熟悉掌握氢系统气体置换规程,氢系统的气体置换必须严格按操作规程进行; 2.2.6氢系统检修时须使用专用防爆工具。对氢系统与其它系统连接的隔离阀或直通大气的隔离阀必须认真检查,如有必要应在试验台上进行水压试验,保证无泄漏; 2.2.7氢系统的表计管路必须认真清理,决不允许存在堵塞。氢系统设备检修后应进行气密性试验,且验收合格;

储氢材料

课程名称:先进材料综合实验 指导老师: 成绩:_____________ 实验名称: 储氢材料 实验类型: 技术实验 同组学生姓名:__________ 一、实验目的和要求 二、实验内容和原理 三、主要实验仪器设备 四、操作方法与实验步骤 五、实验数据记录和处理 六、实验结果与分析 七、讨论、心得 一、实验目的 1.了解储氢材料的基本理论及实验方法; 2.掌握储氢材料的设计、制备技术及吸放氢性能测试方法; 3.增强对材料的成分、结构和储氢性能之间关系的认识。 二、实验原理 储氢材料:名义上是一种能有效储存氢的材料,实际上它必须是能在适当的温度、压力条件下进行可逆吸放氢的材料,其主要应用于染料电池和镍氢电池中。 特点: 1.容易活化,单位质量和体积储氢量大(电化学储氢容量高); 2.吸放氢速度快,氢扩散速度大,可逆性好; 3.有较平坦和较宽的平衡平台压区,平衡分解压适中。做气态储氢材料应用时,室温附近的分解压应为>0.1MPa ,做电池材料应用时以10-3——10-1MPa 为宜; 4.吸收、分解过程中的平衡氢压差,即滞后要小; 5.氢化物生成焓,作为储氢材料或电池材料时应该小,做蓄热材料时则应该大; 6.寿命长,能保持性能稳定,作为电池材料时能耐碱液腐蚀; 7.有效导热率大、电催化活性高; 8.价格低廉,不污染环境,容易制造。 分类: 目前研究较多的传统材料体系主要有以下几种类型:AB 5型稀土系材料,非AB 5型稀土 系材料,AB 2型Laves 相材料,AB 型钛系材料,Mg 基材料和V 基固溶体型材料;另外,还包括近年来研究非常热门的金属或非金属的配位氢化物储氢材料:如Al 基配位氢化物、B 基配位氢化物和氨基氢化物。 储氢材料的储氢机理: 1. 气-固储氢反应机理 在一定的温度和压力条件下,储氢材料和H 2通过气-固反应生成含氢固溶体和氢化物相。其吸、 放氢反应可表示为: o 222H MH x y H MH x y y x ?+-?+- 式中MH x 为含氢固溶体相(α相),MH y 为氢化物相(β相),?H o 表示氢化物生成焓或氢化反应 热。一般吸放氢反应为可逆反应,吸氢过程是放热反应,?H o <0,而放氢过程则是吸热反应,即?H o >0。 材料科学与工程学系 实验报告

表面吸附与效储氢材料

表面吸附与高效储氢材料 0809401083 匡鹏 一.能源危机与应用氢气的瓶颈 人类的历史某种程度上也是能源的发展历史,过去的五千年里,人类主要能源由草木,秸秆到煤天然气,尤其是近代以来,工业革命的发展与人们生活水平的快速提高使能源的需求快速增长,而据估计地球的化石能源只可以再支持50年的这种消耗速度,而即使没有能源枯竭的危机,人类使用化石能源也会受到极大的制约,因为化石带来的巨大污染近几十年来不断的浮现,更加促使人们寻找替代的能源。 当前几种有前途的能源解决方案——核聚变,裂变(体积太大,且危险过大),风能(不适宜携带,且有间隔性),太阳能(功率不够),都有各种缺陷,而不可以完全取代化石能源。氢能作为一种储量丰富,来源广泛(海水)能量密度高(氢气热值:143kJ/g,为汽油的3倍,酒精的3.9倍,焦炭的4.5倍)清洁(生成水),取代方便(利用原理与汽油等一样,稍加改进即可用于现在的发动机)的绿色能源受到了广泛的关注。 氢能是一种二次能源,其开发与利用需要解决氢的制取,储存,和利用三个问题,由于氢易燃,易爆且已扩散,这就使得人们实际应用中优先考虑氢储存,运输中的安全,高效和无泄漏损失,因此,氢的规模安全存储是现阶段氢能利用的瓶颈。 二.可以采用的氢气存储方法 根据氢的气体特征,其存储方式可以分为物理法与化学法。目前采用的储氢方式主要有四种:高压储氢,液化储氢,金属氢化物储氢以及吸附储氢。高压储氢的最大优点是操作方便,能耗小。

由以上表可以看到无论传统还是最近的金属氢化物,固态储氢都没有达到可以大规模应用的技术成熟水平。而吸附储氢在储氢密度,能源效率及操作安全性等方面颇具技术优势,其发展前景被看好。 三.表面吸附的原理及其对吸附材料的要求 固体表面的原子,由于周围原子对他的作用力不对称,即表面原子所受的力不饱和,因而有剩余力场,可以吸附气体或液体。制糖时,用活性炭来处理糖液,以吸附其中的杂质,得到洁白的产品,就是利用了活性炭的吸附能力。固体吸附有如下几个特点:1.固体表面分子移动困难,所以只可以靠降低界面张力的方法降低表面能2.固体表面是不均匀的,各个不同位置的吸附热与催化活性差别很大3.固体表面层的组成不同于体相内部。 按照吸附分子与固体表面的作用力的不同可以将吸附分为两类

氢冷设备和制氢储氢装置运行与维护规程范本

工作行为规范系列 氢冷设备和制氢储氢装置运行与维护规程 (标准、完整、实用、可修改)

编号:FS-QG-51171氢冷设备和制氢储氢装置运行与维 护规程 Operation and maintenance procedures for hydrogen cooling equipment and hydrogen storage and storage equipment 说明:为规范化、制度化和统一化作业行为,使人员管理工作有章可循,提高工作效率和责任感、归属感,特此编写。 1氢冷发电机的冷却介质进行置换时,应按专门的置换规程进行。在置换过程中,须注意取样与化验工作的正确性,防止误判断。 2发电机氢冷系统和制氢设备中的氢气纯度和含氧量,在运行中必须按专用规程的要求进行分析化验。在制氢电解槽氢气出口管上应有带报警的氢中含氧量在线监测仪表。氢纯度和含氧量必须符合规定标准;发电机氢冷系统中氢气纯度按容积计应不低于96%,含氧量不应超过1.2%;制氢设备氢气系统中,气体含氢量不应低于99.5%,含氧量不应超过0.5%。如果达不到标准,应立即进行处理,直到合格为止。 3制氢电解槽和有关装置(如压力调整器等)必须定期进

行检修和维护,保持正常运行,以保证氢气的纯度符合规定。值班室内应设有带报警的压力调整器液位监测仪表。压力调整器发生故障时应停止电解槽运行。 4氢冷发电机的轴封必须严密,当机内充满氢气时,轴封油不准中断,油压应大于氢压,以防空气进入发电机外壳内或氢气充满汽轮机的油系统中而引起爆炸。油箱上的排烟风机,应保持经常运行。如排烟风机故障时,应采取措施使油箱内不积存氢气。定期检测氢冷发电机组油系统、主油箱、封闭母线外套的氢气体积含量,超过1%应停机查漏消缺。当内冷水箱的含氢量达到3%时报警,在120h内缺陷未能消除或含氢量升到20%时,应停机处理。 5为了防止因阀门不严密发生漏氢气或漏空气而引起爆炸,当发电机为氢气冷却运行时,空气、二氧化碳的管路必须隔断,并加严密的堵板。当发电机内置换为空气时,氢气的管路也应隔断,并加装严密的堵板。 6氢冷发电机的排氢管必须接至室外。排氢管的排氢能力应与汽轮机破坏真空停机的惰走时间相配合。 7制氢室内和其他装有氢气的设备附近,均必须严禁烟

压力容器定期检验的内容

压力容器定期检验的内容压力容器定期检验的内容包括外部检查、内外部检验和耐压试验。 1.外部检查:在运行中进行。 ●压力容器的本体、接口部位、焊接接头等的裂纹、过热、变形、泄漏等。 ●外表面的腐蚀,保温层破损、脱落、潮湿、变质。 ●检漏孔、信号孔及各连接处有无漏液、漏气。 ●压力容器与相邻管道或构件的异常振动、响声,相互摩擦。

●进行安全附件检查。 ●支承或支座的损坏,基础下沉、倾斜、开裂,坚固件的情况。 ●运行的稳定情况;4级压力容器安全状况的监控情况。 2.内外部检验:在停用时进行。 ●外部检验的全部项目。 ●结构检验:筒体与封头连接处、开孔处、焊缝、支座、法兰。 ●几何尺寸:核对有资料可确认的容器的主要几何尺寸。

●表面缺陷:腐蚀与机械损伤、表面裂纹、焊缝咬边、变形等。 ●壁厚测定。 ●材质:主要受压元件的材质是否恶化。 ●保温层、堆焊层、金属衬里的完好情况。 ●焊缝埋藏缺陷的检查。 ●安全附件检查。 ●坚固件检查。

3.耐压试验: 压力容器的耐压试验应包括内外部检验的全部项目,并在内外 部检验合格的基础上进行压力试验。试验的内容、方法及评定应遵 守《压力容器安全技术监察规程》的有关规定。经耐压试验的容器,应由检验人员根据检验情况作出检验结论。 对定期检验的压力容器必须提交压力容器定期检验报告书,压 力容器定期检验报告书的内容应包括:原始资料的审查报告;内外 表面检查报告及缺陷部位图;无损探伤报告及探伤部位;材质化验、性能试验报告;安全附件检验报告;耐压试验报告;检验结论报 告。 检验报告是否有效,主要考虑检验单位是否持有检验许可证, 检验人员是否持有检验员证书。检验员和检验单位负责人签字手续 是否齐全,检验单位有无盖有印章。检验内容是否完整,包括缺陷 处理后的检验。检验结论明确与否。

我国储氢技术发展

促进我国储氢技术发展的必要 氢气是一种易燃、易爆、易泄漏的危险化学介质。日益加重的能源危机和环境污染问题迫切要求人们开发新能源。氢能以其燃烧产物洁净、燃烧效率高、可再生等优点被认为是新世纪的重要二次能源。随着氢燃料电池和电动汽车的迅速发展与产业化,氢源技术及氢能基础设施的研究和建设已引起发达国家的高度关注 发展氢燃料电池汽车的确需要高效储氢技术,因为这是方便使用氢能源的必须. 传统储氢方法有两种,一种方法是利用高压钢瓶(氢气瓶)来储存氢气,但钢瓶储存氢气的容积小,而且还有爆炸的危险;另一种方法是储存液态氢,但液体储存箱非常庞大,需要极好的绝热装置来隔热。近年来,一种新型简便的储氢方法应运而生,即利用储氢合金(金属氢化物)来储存氢气。 研究证明,在一定的温度和压力条件下,一些金属能够大量“吸收”氢气,反应生成金属氢化物,同时放出热量。其后,将这些金属氢化物加热,它们又会分解,将储存在其中的氢释放出来。这些会“吸收”氢气的金属,称为储氢合金。其储氢能力很强。单位体积储氢的密度,是相同温度、压力条件下气态氢的1000倍,也即相当于储存了1000个大气压的高压氢气。储氢合金都是固体,需要用氢时通过加热或减压使储存于其中的氢释放出来,因此是一种极其简便易行的理想储氢方法。目前研究发展中的储氢合金,主要有钛系储氢合金、锆系储氢合金、铁系储氢合金及稀土系储氢合金。 储氢合金还有将储氢过程中的化学能转换成机械能或热能的能量转换功能。储氢合金在吸氢时放热,在放氢时吸热,利用这种放热-吸热循环,可进行热的储存和传输,制造制冷或采暖设备。此外它还可以用于提纯和回收氢气,它可将氢气提纯到很高的纯度。例如,采用储氢合金,可以以很低的成本获得纯度高于99.9999%的超纯氢。 储氢合金的飞速发展,给氢气的利用开辟了一条广阔的道路。目前中国已研制成功了一种氢能汽车,它使用储氢材料90千克,可行驶40千米,时速超过50千米。今后,不但汽车会采用燃料电池,飞机、舰艇、宇宙飞船等运载工具也将使用燃料电池,作为其主要或辅助能源。 现在最常用的储氢手段 高压储氢是最常用和最直接的储氢方式。高压储氢可在常温下使用,通过阀门的调节就可以直接将氢气释放出来["],具有储氢罐结构简单、压缩氢气制备的能耗较少、充装速度快等优点,已成为现阶段氢能储运的主要方式 高压储氢缺点 高压氢气储罐不但有可能发生因强度不足(特别是高强钢脆化)引起的物理爆炸,而且有可能发生因氢气泄漏而引发的火灾、爆炸事故,且其风险程度随罐体容积增大、压力升高而加大。因此,如何降低高压储氢的风险程度,是加氢站建设十分关注的一个问题。 高压下运行的高压储氢罐,一旦发生破坏,罐内巨大的能量在瞬间释放,会产生冲击波、容器碎片猛然飞出和易燃、易爆氢气喷漏。冲击波的超压可以将建筑物破坏,也会直接危害在它所波及范围内的人身安全,冲击波后面的高速气流夹杂着碎片往往加重对人员的伤害。具

储氢材料的发展现状、应用与制备综述

储氢材料的发展现状、应用与制备 摘要:能源危机和开发新能源一直是人类发展进程中相互依赖和相互促进的两个重要因素。为了保护环境,开发新能源,可以利用太阳能、地热、风能及海水等。其中,氢能是人类未来的理想能源,它是一种高能量密度、清洁的能源,是最有吸引力的能源形式之一,具有热值高、资源丰富、干净、无毒、无污染等特性。而氢的贮存和运输一直是个技术难题,由于制造液氢的设备费用很高,液化时又要消耗大量的能量,氢气和空气混合还会有爆炸的危险,因此能否利用氢气作为能源的关键是能否解决氢气的贮存和运输技术。本文简要讲述了储氢材料的发展现状、主要应用与制备技术。 关键词:储氢材料、性质、应用、发展、制备 1引言 当前,人类面临着能源危机,作为主要能源的石油、煤炭和天然气由于长期的过量开采已濒临枯竭。为了开发新能源,人们利用太阳能、地热、风能及海水的温差等,试图将它们转化为二次能源。氢由于其优异的特性受到高度重视,首先氢由储量丰富的水做原料,资源不受限制;第二氢燃烧的生成物是水,环境污染极少,不破坏自然循环;第三,氢由于很高的能量密度;此外,氢可以储存、输送,用途十分广泛。本文主要简述了储氢材料的基本性质、发展现状以及制备工艺。 2储氢材料的基本性质 储氢材料是一种能在晶体的空隙量贮存氢原子的合金材料,具有可逆吸放氢的性质。大多数金属合金(M)在一定的温度和压力条件下,与氢生成金属氢化→MHx+ΔH(生成热)。 物(MHx):M+XH 2 2.1储氢材料应具备的基本条件 作为储存能量的材料,储氢材料应具备以下条件: (1)易活化,氢的吸储量大; (2)用于储氢时,氢化物的生成热小;用于蓄热时生成热要尽量大; (3)在室温附近时,氢化物的离解压为203-304kPa,具有稳定的合适的平衡分解压; (4)氢的吸储或释放速度快,氢吸收和分解过程中的平衡压(滞后)小; 、水分等的耐中毒能力强; (5)对不纯物如氧、氮、CO、CO 2 (6)当氢反复吸储和释放时,微粉化少,性能不会劣化; (7)金属氢化物的有效热导率大,储氢材料价廉; (8)吸收和释放氢的速度快,氢扩散速度大,可逆性好。 2.2影响储氢材料吸储能力的因素

高空气象观测站制氢用氢管理办法

高空气象观测站制氢用氢管理办法 (试行) 一、 总则 第一条 为加强高空气象观测站制氢用氢的管理,规范制氢用氢 工作流程,特制定本办法。 第二条 本办法适用于高空气象观测站水电解制氢、氢气储存、 氢气瓶充装、氢气瓶运输、高空气象观测业务用氢等。 二、 高空气象观测制氢用氢人员 第三条 从事水电解制氢操作人员,须进行水电解制氢相关知识 与操作技能的培训,了解水电解制氢设备的基本原理、结构与性能, 掌握制氢用氢安全操作技术。上岗前须按《固定式压力容器安全技术监察规程》(TSG R0004)的要求取得国家认可的特种设备作业人员证书。 第四条 各级气象部门应当对特种设备作业人员进行特种设备安

全教育与培训,保证特种设备作业人员具备必要的特种设备安全作业知识。特种设备作业人员在作业中应当严格执行特种设备的操作规程与安全规章制度。 第五条高空气象观测站制氢用氢人员应当按照《常规高空气象观测业务规范》的要求,持有高空气象观测岗位证书上岗。 第六条制氢用氢人员、设备保障维修人员上岗时必须配备防静电服装、防静电鞋、防碱手套等安全防护用品。 第七条高空气象观测站制氢人员必须严格按照《气象业务氢气作业安全技术规范》、相关操作规程要求操作、运行与维护制氢设备。 三、制氢设施与场地安全 第八条水电解制氢室的设计必须符合《高空气象台站水电解制氢建设要求》与《气象业务氢气作业安全技术规范》。所有设计与建设文件、图纸、设备检验报告等相关材料应当作为台站档案保存。 第九条新建制氢室、储氢室、充球室,应当符合《常规高空气象观测业务规范》对高空气象观测站制(储、用)氢的要求。 第十条探空平衡器、工作台面、储氢设施、汇流排等应具备良好的接地与防静电设施,其接地电阻应小于4Ω。每年定期检查一次防静电接地的有效性,确保接地牢固可靠。 第十一条储氢罐安全阀排气管、充球排气管等氢气出口处应安装防回火装置。

压力容器检验方案

压力容器检验方案 在用压力容器检验方案 聊城市锅炉压力容器检验所 - 1 - 检验方案的审签 编制: 审核: 批准: 二00七年七月二十六日 - 2 - 在用压力容器检验方案 1. 总则: 为了更好地贯彻执行《压力容器安全技术监察规程》,正确有效地开展在用压力容器的检验工作,确保设备安全运行,保障人民生命和财产的安全,特制定本方案。 2. 检验依据: 2.1 《特种设备安全监察条例》; 2.2 《压力容器安全技术监察规程》; 2.3 《压力容器定期检验规则》; 2.4 JB/4730-2005《承压设备无损检测》; 2.5 有关标准及要求。 3. 设备概况: 容器名称: 图号: 设计压力:

工作介质: 材质: 制造单位: 投用日期: 4. 安全及准备工作 4.1 使用单位 4.1.1 提供压力容器的原始资料(质量证明书、产品合格证、竣工 - 1 - 制造编号: 设计单位: 设计温度: 规格: 容积: 制造日期: 操作压力: 图、监检证)、历次检验报告、使用证、运行记录及修理、改造资料等。 4.1.2 切断有关电源,将内部介质排除干净,用盲板隔断所有液体、气体或蒸汽来源,并设置明显安全标志。 4.1.3 将内部清扫干净,并进行置换、中和、消毒、清洗等措施,确认容器内气体介质含量符合TJ36《工业企业设计卫生标准》,由使用单位安全责任人员出具“进罐作业票”,方可进行检验,并加装通风设备,检验过程中保证容器内通风。 4.1.4 提供外部用220V电源和进入容器内36V以下低压电源照明灯等,应有漏电保护装置,进入罐内插座、电线绝缘良好,应符合GB3805《安全电压》的规定。 4.1.5 检验现场应洁净,不应有影响检验的各种杂物。检验过程中,检验现场及周围不应有威胁到检验人员安全的不安全因素。 4.1.6 搭设安全牢固的脚手架、轻便梯等设施,便于进行检验检测工作。 4.1.7 清理内、外表面油污、附着物等影响缺陷显示的杂物,内表面100%除锈至金属光泽,外表面焊缝、应力集中部位等以及怀疑部位应打磨至金属光泽。 4.1.8 在检验过程中做好辅助、配合工作。

A储氢罐定期检验方案

化学制氢站A储氢罐定期检验方案 一、设备状况 国投钦州发电有限公司制氢站A储氢罐容积13.9m3,最高工作压力3.2Mpa,2007年投用,本次检验为第2次停机定期检验。 二、检验依据及检验方式 根据《压力容器定期检验规则》(TSGR7001-2013)的规定,公司委托广西特种设备监督检验院钦州分院对上述容器进行定期检验(合同编号QDAJ14-034)。为不影响机组正常运行,对检验氢罐采取隔离检验的方式。 三、准备工作: 1.备品准备:搭脚手架用木(竹)料(维护单位准备),氢罐人孔门用螺栓、垫片,防火板、去油漆用溶漆剂,铜锤、铜堵板,塑料管20米,铜丝刷、黄油,固定扳手(M36螺栓),二氧化碳灭火器3KG 六瓶、7KG四瓶,石棉布约5平米。 2.运行部对氢气检测仪进行检查、校准,确保检验工作进行期间仪器准确好用。 3.检修前运行人员与设备部、维护单位用漏氢检测仪对制氢系统及储氢罐进行漏点查找。 四、安全技术措施: 1.提交工作票,制氢系统停止运行,将检修氢罐隔离,将罐内氢气由排空门经阻火器排空。 2.从室内接除盐水至氢罐排污门,向氢罐内部注水。将排空门至地沟

排气门打开、观察,如有水流出,立即停止注水。否则水会流至阻火器及其他安全门处。 3.用排污门将罐内水排尽,用氢气检测仪检测罐内氢气含量为零。 4.将检验氢罐与其它罐隔离。 5.将二氧化碳灭火器及石棉布放置到检修区域。 6.在检修罐进出口手动门后及罐顶排污口法兰处加装金属堵板;将检修罐与制氢、供氢系统彻底隔断。 7.拆除安全阀,将安全阀处法兰用盲板封堵。 8.打开人孔门,用铜制扳手,或铁制扳手涂黄油;漏氢检测仪实时检测氢气含量为零。 9. 抽取外表面一处丁字焊缝3个方向各600mm、每条焊缝两边各200mm范围区域用溶漆剂除掉油漆(不彻底时用铜丝刷进行打磨),以便作UT检测,漏氢检测仪实时检测工作区域氢气含量。 10.打开人孔后检查内部腐蚀情况,漏氢检测仪实时检测罐内区域氢气含量合格后进入罐内搭设内部脚手架,需用木杆或竹杆,禁止用铁管,脚手架搭设完毕后用粗砂布内部进行除锈,并用粗砂布对所有内壁焊缝及其两侧各100mm区域进行重点刷磨、清理、露出金属光泽备检。本项工作进行过程中,人员每次进入氢罐前及氢罐内工作每间隔2小时均必须用漏氢检测仪实时检测区域内各点氢气含量并确保含量合格。 11.准备工作完毕后特检院检验人员对罐体内、外壁焊缝进行检查/检验,检查/检验过程中,人员每次进入氢罐前及氢罐内工作每间隔2

储氢材料与方式

储氢材料的研究概况与发展方向 随着社会发展、人口增长,人类对能源的需求将越来越大。以煤、石油、天然气等为代表的化石能源是当前的主要能源,但化石能源属不可再生资源,储量有限,而且化石能源的大量使用,还造成了越来越严重的环境污染问题。因此,可持续发展的压力迫使人类去寻找更为清洁的新型能源。氢能作为一种高能量密度、清洁的绿色新能源,氢能的如何有效利用便引起了人们的广泛研究。 目前来看,氢能的存储是氢能应用的主要瓶颈。氢能工业对储氢的要求总的来说是储氢系统要安全、容量大、成本低、使用方便。美国能源部将储氢系统的目标定为:质量密度为6.5%,体积密度为62kgH2/m3。瞄准该目标,国内外展开了大量的研究。本文综述了目前所采用或正在研究的主要储氢材料与技术,包括金属氢化物、碳质材料、配位氢化物、水合物,分析了它们的优缺点,同时指出其相关发展趋势。 1金属氢化物 金属氢化物储氢具有安全可靠、储氢能耗低、储存容量高(单位体积储氢密度高)、制备技术和工艺相对成熟等优点。此外,金属氢化物储氢还有将氢气纯化、 压缩的功能。因此,金属氢化物储氢是目前应用最为广泛的储氢材料。 储氢合金是指在一定温度和氢气压力下,能可逆地大量吸收、储存和释放氢气的金属间化合物。储氢合金由两部分组成,一部分为吸氢元素或与氢有很强亲和力的元素(A),它控制着储氢量的多少,是组成储氢合金的关键元素,主要是I A~ VB族金属,如Ti、Zr、Ca、Mg、V、Nb、Re(稀土元素);另一部分则为吸氢量小或根本不吸氢的元素(B),它则控制着吸/放氢的可逆性,起调节生成热与分解压力的作用,女口Fe、Co、Ni、Cr、Cu、Al等。图1列出了一些金属氢化物的储氢能力。 目前世界上已经研制出多种储氢合金,按储氢合金金属组成元素的数目划分,可分为:二元系、三元系和多元系;按储氢合金材料的主要金属元素区分,可分为:稀土系、镁系、钛系、钒基固溶体、锆系等;而组成储氢合金的金属可分为吸氢类(用A表示)和不吸氢类(用B表示),据此又可将储氢合金分为:AB5型、AB2 型、AB 型、A2B 型。 1.1稀土系储氢合金

压力容器定期检验(通用版)

压力容器定期检验(通用版) Safety management refers to ensuring the smooth and effective progress of social and economic activities and production on the premise of ensuring social and personal safety. ( 安全管理) 单位:_______________________ 部门:_______________________ 日期:_______________________ 本文档文字可以自由修改

压力容器定期检验(通用版) 根据《压力容器定期检验规则》:压力容器定期检验分:年度检查、全面检验和耐压检验。 (一)、年度检查(外部检验): 检验周期:为了确保压力容器在检验周期内的安全而实施运行过程中的在线检查,每年至少一次。年度检查可以由使用单位的持证的压力容器检验人员进行。(也可由检验单位承担) 1、年度检验内容: 压力容器年度检查包括使用单位压力容器安全管理情况检查、压力容器本体及运行状况状况检查和压力容器安全附件检查等。

在线的压力容器本体及运行状况的检查主要内容: A、压力容器的铭牌、漆色、标志及喷涂的使用证号码是否符合有关规定; B、压力容器的本体、接口(阀门、管路)部位、焊接接头等是否有裂纹、过热、变形、泄漏、损伤等; C、外表面有无腐蚀,有无异常结霜、结露等; D、保温层有无破损、脱落、潮湿、跑冷; E、检漏孔、信号孔有无漏液、漏气,检漏孔是否畅通; F、压力容器与相邻管道或者构件有无异常振动、响声或者相互摩擦; G、支承或者支座有无损坏,基础有无下沉、倾斜、开裂,紧固螺栓是否齐全、完好; H、排放(疏水、排污)装置是否完好; I、运行期间是否有超压、超温、超量等现象; J、罐体有接地装置的,检查接地装置是否符合要求; K、安全状况等级为4级的压力容器的监控措施执行情况和

储氢罐定期检验及检修安全措施(正式)

储氢罐定期检验及检修安全 措施(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 1. 严格的遵守氢站出入制度。 2. 待检修的储氢罐周围用警告带分隔。 3. 置換时注意储氢罐基咄是否有沉降现 象。 4. 储氢罐置換后应在供氢汇流排处有明显 的断开点,并应悬挂严禁操作标示牌。 5. 登高作业前一定要检查脚手架是否牢固 安全,脚手架围栏是否齐全。

6. 更换储氢罐顶部法兰及检修后的查漏时都要系好安全带。 7. 打开人孔门后,应让空气充分流通后,工作人员才能进入储氢罐內工作。 8. 储氢罐内工作应使用安全照明。 9. 松、紧人孔门大螺栓时尽量不使用锒头敲击,如果必须使用锒头敲击时,应在工作前测量人孔门周围的含氢量。 10. 储氢罐做气宻性或水压试验时,应按操作卡进行操作,注意监视,严禁超压。 11. 检修过程中需要动火工作的,应将需动火的管件放到氢站墙外施工。 12. 搭脚手架时注意不能碰撞其它储氢罐。

13. 要督促储氢罐检测人员遵守氢站出入制度,各项安全制度。 请在这里输入公司或组织的名字 Please enter the name of the company or organization here

储氢材料

目录 前言 (2) 1.储氢材料分类 (3) 1.1储氢合金 (3) 1.1.1稀土系储氢合金 (3) 1.1.2镁系储氢合金 (3) 1.1.3钛系储氢合金 (3) 1.2络合物储氢材料 (4) 1.3纳米材料 (4) 1.4玻璃微球储氢 (4) 2.储氢材料的制备方法 (5) 2.2机械合金化法 (5) 2.3氢化燃烧合成法 (5) 2.4化学合成法 (6) 2.5烧结法 (6) 3.储氢材料的应用 (6) 3.1 氢气的“固态化”储存与运输 (6) 3.2氢气的超纯净化 (7) 3.3 氢气的压缩 (7) 3.4 空调制冷与热泵 (7) 3.6 真空技术 (7) 3.7 氢化物-镍电池 (8) 4.结语与展望 (8) 参考文献 (9)

前言 随着石油资源的日渐匮乏和生态环境的不断恶化,氢能被公认为人类未来的理想能源。这是因为:a.氢燃烧释能后的产物是水,是清洁能源;b.氢可通过太阳能、风能等自然能分解水而再生,是可再生能源;c.氢能具有较高的热值,燃烧1 kg氢气可产生1.25×106kJ 的热量,相当于3kg汽油或4.5 kg 焦炭完全燃烧所产生的热量;d.氢资源丰富,氢可以通过分解水制得。另外,在化工与炼油等领域副产大量氢气,尚未充分利用。可以预见,未来世界将从以碳为基础的能源经济形态转变为以氢为基础的能源经济形态(简称“氢经济”)。 氢能的开发和利用涉及氢气的制备、储存、运输和应用4大关键技术。本文讨论氢气的储存技术。[1]其中能量的储存和转换一直是能量有效利用的关键所在。传统的储氢手段主要是用钢瓶来储存氢气,其缺点是效率低,同时需要钢瓶具有耐高压、防泄漏的特性,比较苛刻。储氢材料由于其具有很高的氢气存储密度而受到人类的瞩目因此成为材料科学中研究的重点功能材料之一。储氢材料就作为一种极其重要的功能材料,在二次能源领域内具有不可替代的作用,特别是在燃料电池、可充电电池研究中,具有举足轻重的地位。储氢材料的研究直接关系着电动汽车的应用,也同样对潜艇、航天器等领域有着重要的影响。近几十年来世界各国都投入了巨大的人力、物力、财力对储氢材料进行研究,力图抢占这一基础材料研究的制高点。[2]

压力容器定期检验通用检验方案

一般压力容器检验方案

编制:日期:审批:日期: 说明:1. 容器检验项目及要求在本次检验进行的项目的□中打√,没有的打× 在用球罐检验方案 方案编号:

资料审查设计、制造、安装、修理、改造及历次检验资料,管理制度、操作规程、维护检修规程、操作人员上岗持证,运行记录、检修记录等。

说明:1. 容器检验项目及要求在本次检验进行的项目的□中打√,没有的打× 山东省尿素合成塔通用检验方案 1 总则 尿素合成塔是尿素化肥生产企业中的核心装置。容器操作温度和操作压力较高、介质腐蚀性强。运行中会产生气孔、裂纹、CO2气蚀、硫腐蚀、氯离子腐蚀,操作条件较为苛刻。为更好地贯彻执行《特种设备安全监察条例》、《压力容器安全技术监察规程》和《压力容器定期检验规则》,全面有效地开展尿素合成塔的检验工作,确保设备的安全运行,保障人民生命和财产的安全,制订本方案。 本方案将尿素合成塔的检验分为全面检验和综合分析检验。全面检验的周期为1 年,综合分析检验的周期为3年。使用周期超过20年的综合分析检验周期应适当缩短。 本方案规定了尿素合成塔全面检验和综合分析检验的内容和方法,是尿素合 成塔检验的作业指导性文件。在检验过程中检验单位和设备使用单位应严格执行。 2 设备基本情况 尿素合成塔系多层包扎高压容器,塔壁由多层层板材构成,由内向外分成两 部分,内层为耐腐蚀衬里板,由单层超低碳不锈钢板构成,材料一般为316L;外层由盲层板(单层)、内筒板(单层)和层板(多层)构成,材料一般分别为16MnR 和 15MnVR。根据塔体内径的不同,塔壁总厚度可达100多毫米。每层层板的纵焊缝呈一定角度相互错开。塔体一般由每筒节环焊缝连接而成,环焊缝开双U型坡口,坡口面由手工堆焊层覆盖,厚度约为2~3mm。 以下为某型号尿素合成塔的典型结构参数: 2.1 设备主要结构 塔结构型式:多层内衬式高压容器 塔内径:Φ1400mm 塔高:26690mm 3 塔容积:37.5m 外筒:多层包扎(17 层层板十l层盲层板,17×6十6=108mm),共10个筒节

相关文档
最新文档