矩阵的逆及其求法
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 , 2
于是
2 6 4
A1
1 A
A
1 2
3 2
6 2
5 2
,
2 6 4 2 9
x
1 2
3 2
6 2
5 2
1 4
10 3
.
3 4 ,
1
16
利用方阵的逆矩阵及矩阵的乘法给出了求解变量 个数等于方程个数的一种方法 ( 第一章给出了行列式 法 ) ,但对于 n 较大时,两种方法都不适用 .我们将 在余下的章节讨论第三种方法 .
•A是满秩矩阵 A是非奇异矩阵 A可逆 A 0
11
逆矩阵的求法一:伴随矩阵法
例 2.15 设
1 2
A
3
4
,
判断 A 是否可逆,如果可逆,求出其逆矩阵 .
解
因为
1 A
2 4 6 2 0 , 故 A 可逆,且
34
A1
1 A
A*
1 2
4 3
2
1
2 3 2
1
1 2
.
12
推论 若方阵 A、B 有 AB =Baidu NhomakorabeaE,则 A、B 均可逆. 证明 因为
1
am1x1 am2x2 amn xn bm
a11
a21
a12
a22
a1n
a2
n
x1 b1
x2
b2
am1
am2
amn
mn
xn
bm
AX B
(2)
2
则求(1)的解的问题归结为求(2)的解矢量问题,
而后者即求 AX B 中未知矩阵X的问题。这需要用到
a1n Ann
.
ann Ann
由第一章行列式展开定理及其推论知
A
AA*
A
0
0
A
E.
A
类似有 A A A E.
9
定理2. 2 矩阵 A 可逆充分必要条件是 A 0 .
且当 A 0 时,A1 1 A* . A
证明:必要性.设 A 可逆,于是有 AA1 E ,
两边取行列式有,
(4) ( AT )1 ( A1 )T .
证明 只证 (3) 和 (4) .
(3) (AB)(B-1A-1) = A(BB-1)A-1 =AEA-1 =AA-1
= E. (4) AT(A-1)T = (A-1A)T = (E)T = E,
6
矩阵可逆的条件: a11 a12
定义
设 矩阵
A
a21
AB A B E 1 , 故
A 0, B 0, 于是 A、B 均可逆 .
13
x1 2 x2 3 x3 2 ,
例 2.17
求解线性方程组
2
x1
2 x2
x3
1 ,
3
x1
4 x2
3 x3
4
.
解 方法一 ( Cramer 法则 )
由于 1 2 3
2 23
D 2 2 1 2 , D1 1 2 1 18 ,
4
x3
由于 A 2 0 , 故 A 可逆,因此 x A1b ,
其中
21
21
A11 4
2, 3
A12 3
3 , 3
22
23
A13 3
2, 4
A21 4
6, 3
15
13
12
2
A22 3 3 6 , A23 3 4 2 , A31 2
13
12
A32 2
1 5 , A33 2
又称可逆阵为非奇异阵,不可逆阵为奇异阵 . 例 设 A 1 1, B 1 2 1 2,
1 1 1 2 1 2 因为 AB = BA = E . 所以 B 是 A 的一个逆矩阵。
4
若方阵 A 可逆,则其逆矩阵唯一 .
证明 设 B 和 C 都是 A 的逆矩阵,则由定义 有 AB = BA = E,AC = CA = E, B = BE = B( AC ) = ( BA )C = EC = C .
所以逆矩阵唯一.
➢单位矩阵的逆为其本身。
➢对角矩阵的逆为(如果它可逆的话)
1
2
0
0 1
1 1
1 2
n
0
0
.
1 n
5
方阵的可逆满足性质:
(1) ( A1 )1 A;
(2) (kA)1 1 A1 (k 0) ; k
(3) A、B 均是同阶可逆阵,则 ( AB)1 B1 A1 ;
A A1 E 1 0, 因此 A 0 .
充分性.设 A 0 , 由定理 2.1 知
AA A A A E.
故有 A( 1 A* ) ( 1 A* )A E .
A
A
10
由逆矩阵定义知,A 可逆,且其逆为
A1 1 A* . A
定理 2.2 不仅给出了判断矩阵可逆的方法, 还给出了求解逆矩阵的一种方法 .
a22
an1 an2
中元素 aij 的代数余子式 Aij ,
a1n
a2n
ann
A11 A21
A*
A12
A22
A1n A2n
An1
An2
Ann
称为 A 的伴随矩阵.
7
例 2.16 求二阶方阵
A
a11 a21
a12
a22
的伴随矩阵.
解 A11 a22 , A22 a11 , A12 a21 ,
第六节
第二章
矩阵逆及其求法
一、逆矩阵的概念
二、方阵可逆的判别定理
三、逆矩阵的基本性质
四、用矩阵的初等变换求逆矩阵
1
线性方程组的矩阵表示法
设 A (aij )mn X (xi )n1 B (bi )m1
a11x1 a12x2 a1n xn b1
n 元线性方程组 a21x1 a22x2 a2n xn b2
17
2 1 1
例 2.18
设
A
2
6
4
,
AB
A B ,
求
A+B
.
2 1 3
解 由于 AB = A + B ,于是 ( A – E ) B = A ,
343
4 43
123
12 2
D2 2 1 1 20 , D3 2 2 1 6 ,
343
34 4
于是有 x1 9 , x2 10 , x3 3 .
14
方法二 ( 逆阵法 ) 因为方程可写成矩阵形式 Ax = b,其中
1 2 3 2 x1
A
2
2
1
,
b
1
,
x
x2
.
3 4 3
逆矩阵的问题。
代数方程 a x b 的解 x a1b
问矩阵方程 AX B 的解是否为 X A1B ? 若可以,那么 A1 的含义是什么呢?
3
一、逆矩阵的概念
定义1 设 A 为 n 阶方阵,如有 n 阶方阵 B ,使 AB = BA = E .
则称 A 为可逆阵,B 为 A 的逆阵,记作B A1 .
A21 a12 ,
所以
A*
a22 a12
a21
a11
8
定理2.1 AA A A A E.
a11
证明:AA*
an1
a11 A11
an1 A11
a1n A1n ann A1n
a1n A11
ann A1n
a11 An1
an1 An1
An1
Ann