钕铁硼稀土永磁材料制备技术演变与发展
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钕铁硼稀土永磁材料制备技术演变与发展
稀土永磁材料是20世纪60年代出现的新型永磁材料,至今已形成三代,第三代便是以NdFeB合金为代表的Fe基稀土永磁合金。
它由主相Nd2Fe14B和少量富Nd相、少量富B相所组成,是一种三元金属间化合物。化学成分为Nd36%、Fe63%、B约1%。Nd2Fe14B熔点1170℃。用烧结法生产的其磁性能为:最大磁能积(BH)m=199~389kJ/m3,剩磁(Br)=1.31T,矫顽力(Hc)=12.47kOe,居里温度(Tc)=310K,使用温度(t)=100℃,密度=7.4g/cm3硬度(Hv)=600。①从 1983 年,佐川真人发现钕铁硼磁体以来,全球钕铁硼磁体产量从 1983
年的不足 1t,猛增到2006 年的 5 万多 t,其中烧结钕铁硼磁体产量占总量的 90 %,尤其是从 2003 年~2006 年的近 3 年时间内,全球烧结钕铁硼磁体年产量从 2 万t 猛增到 5 万 t,平均年增长率超过 30%。经过 20
多年的发展,烧结钕铁硼磁体的磁能积也由 279kJ/m3 提升至 474kJ/m3。
由于烧结钕铁硼磁体的特性和性价比较传统永磁材料优异,已被广泛应用于计算机、电动机、风力发电机、电动汽车、仪器仪表、磁传动轴承、高保真扬声器、核共振成像仪和航天航空导航器等各行各业,在磁悬浮列车等新兴技术领域具有巨大的潜在应用前景。我国凭借稀土资源优势和生产成本优势,大力发展钕铁硼磁体产业,已成为世界第一生产大国和消费大国。
2006
年,我国采取了一系列宏观调控措施,稀土原材料产品价格大涨,使烧结钕铁硼磁体价格出现了第一次上涨。
其后,随着钕铁硼生产成本的增加以及磁体价格的逐年降低,使得发达国家的磁体生产企业向中国转移,现在只有日本在高性能的磁体领域维持一定的产能。目前我国生产的烧结钕铁硼磁体价格远远低于世界平均价格,一方面是因为我国钕铁硼磁体产品质量不高,另一方面是由于各钕铁硼企业恶性竞争,竞相压价。②
在2003年以前,对烧结钕铁硼永磁材料研究的主要目标是提高其磁能积,而2003年以后则主要集中在提高材料的矫顽力和工作温度方面。
㈠烧结钕铁硼磁体生产工艺的发展
烧结磁体是目前最大宗的商品磁体。其工艺基本沿用制备钐—
钴磁体的粉末冶金法,程序为:熔烧—合金锭粉碎—研磨—磁场下取向成型—烧结—回火时效—充磁检测等。首先将Fe和B冶炼成Fe-
B合金,然后于真空反应炉中按一定要求配比,在Ar气下融化成三元合金,浇铸至水冷铜模中。然后进行制粉,通常采用球磨和气流磨等方法,还有还原扩散制粉,HDDR方法制粉,用快淬技术加球磨或气流磨方法制粉等。
烧结钕铁硼磁体的永磁性能取决于内禀磁性和微结构。内禀磁性主要由材料的化学成分决定,是结构不灵敏。内禀磁性决定了材料宏观磁性能的理论极限,
为得到高性能钕铁硼磁体,首先要提高钕铁硼磁体中磁性相的饱和磁极化强度,可以通过以下措施实现:
(1)保证原材料的纯度,以减少由于杂质元素引起的性能降低;
(2)增加钕铁硼磁体中磁性相的含量,这可以通过合适的成分配比,在保证矫顽力的前提下使得生产后磁体的组分接近磁性相的组分;
(3)提高磁性相的取向度,主要通过生产工艺保证磁体中的颗粒都是单晶颗粒或接近单晶颗粒,并且有良好的颗粒粒径分布。在原材料纯度一定的前提下,生产工艺决定了磁体的性能。
1°铸锭生产工艺及装备的发展③
合金铸锭的显微组织对于后续工艺的制粉环节、磁场取向成型环节、坯料烧结过程都有重要的影响,并进而影响到烧结钕铁硼磁体的性能。从制造永磁材料的角度来看,希望铸锭组织中不存在粗大的α—Fe 枝状晶。(这是由于α—Fe
枝状晶的塑性较好,使铸锭难以破碎,给制粉过程造成困难;同时需延长烧结时间以获得均匀的 Nd2Fe14B晶体。同时,如铸锭组织中存在团块状富 Nd
相,则会影响烧结时富 Nd 相均匀分布。)为了减少α—Fe
枝状晶,可以采用大容量的感应炉,并选用导热性能良好的铜锭模,采用以下两种工艺:一种工艺是把铸锭高温均匀化处理,在1000℃的温度且在惰性气体保护下恒温 10h 左右,可以减少α—
Fe,但该工艺耗费时间、增加成本,不适合工业化批量生产;另一种工艺是双相合金法,即主相和液相分别熔炼、破碎,然后混合、制粉、烧结,这种方法也可以用于生产高性能磁体,但工艺复杂,不适合大批量的工业生产。SC
鳞片技术的出现,使铸锭生产工艺达到最新水平。SC
鳞片技术是将熔融的合金浇注到旋转的水冷铜辊上,生产出鳞片状铸锭,厚度大约0.25~0.35mm。鳞片的冷凝速度快,可以很好的抑制α—Fe
的析出,且鳞片的粉碎性很好,同时鳞片技术改善了富钕相的分布,可以生产磁性能优异的钕铁硼磁体。 2°破碎制粉工艺及装备的发展
钕铁硼粉末的状态,特别是粒径分布、颗粒形状对磁体的取向度和烧结工艺有着重要的影响。粉末制备的传统方法是机械破碎与球磨制粉。机械破碎采用颚式破碎、带筛球磨等方法,在惰性气体保护下进行。球磨制粉有振动球磨和滚动球磨等,振动球磨制备的粉末形状不规则,不利于磁场取向;滚动球磨由于需要汽油保护,工艺复杂,效率不高。目前,钕铁硼厂家基本上都用气流磨制粉。气流磨制粉是采用物料自身的高速碰撞来粉碎,对磨室内壁无磨损,无污染,可以高效率地制备粉末。但是该工艺严重破坏了合金的主相晶粒结构,使富钕相不能均匀分布在主相晶粒边界,特别是对一些晶粒粗大的合金,破碎后的主相晶粒和富钕相各自分离,无法制备高性能的磁体。
现在采用HD工艺,即将钕铁硼合金置于氢气环境下,氢气沿富钕相薄层进入合金,使之膨胀爆裂而破碎,沿富钕相层处开裂,保证了主相晶粒及富钕晶粒间界相的完整。HD
工艺破碎后的气流磨制备的粉末粒度分布集中,表面缺陷少,可以用于制造高性能的磁体。稀土元素极易氧化,由于钕铁硼粉末的粒度特别小,更是易于氧化,因此气流磨制粉的过程中要用惰性气体保护,同时在制粉前添加一定比例的防氧化剂可以保护粉末使之不易氧化,并且可以提高制粉效率。
3°磁场取向成型工艺及装备的发展
磁场取向成型工艺中取向场的大小,与压制方向的相对方向,粉末的松装密度都对磁体的取向度有重要影响。目前已有:①湿压成型技术,是把钕铁硼的粗粉装入喷射式超细粉碎机,超细粉出口处进入溶剂油形成粉浆,注入模具内进行磁场取向成型,该技术粉浆不易氧化,可以取得较高的取向度,所制得的钕铁硼磁体晶粒尺寸小,均匀一致,磁性能较高
;②脉冲磁场取向技术,在压机恒磁场上加脉冲磁场,脉冲磁场一方面可以提高主相颗粒的取向度,还可以提高粉末的松装密度,从而进一步提高取向度,取向度约可提高1.5%
;③橡皮模压技术,将粉末装入橡皮模,在脉冲磁场中进行取向,再在压机的恒磁场中压制成型,在橡皮模中,粉末受到的的是等静压压缩,可以使磁体获得较高的取向度和剩磁,与金属模压相比,剩磁大约可以提高