第03章-5_快速傅里叶变换(FFT)
快速傅里叶变换(FFT)详解

⽂中内容均为个⼈理解,如有错误请指出,不胜感激前⾔先解释⼏个⽐较容易混淆的缩写吧FMT 快速莫⽐乌斯变化—>感谢stump提供多项式复数在介绍复数之前,⾸先介绍⼀些可能会⽤到的东西(好像画的不是很标准。
)定义设a ,b 为实数,i 2=−1,形如a +bi 的数叫复数,其中i 被称为虚数单位,复数域是⽬前已知最⼤的域在复平⾯中,x 代表实数,y 轴(除原点外的点)代表虚数,从原点(0,0)到(a ,b )的向量表⽰复数a +bi模长:从原点(0,0)到点(a ,b )的距离,即√a 2+b 2幅⾓:假设以逆时针为正⽅向,从x 轴正半轴到已知向量的转⾓的有向⾓叫做幅⾓运算法则加法:因为在复平⾯中,复数可以被表⽰为向量,因此复数的加法与向量的加法相同,都满⾜平⾏四边形定则(就是上⾯那个)乘法:⼏何定义:复数相乘,模长相乘,幅⾓相加代数定义:(a +bi )∗(c +di )=ac +adi +bci +bdi 2=ac +adi +bci −bd=(ac −bd )+(bc +ad )i单位根下⽂中,默认n 为2的正整数次幂在复平⾯上,以原点为圆⼼,1为半径作圆,所得的圆叫单位圆。
以圆点为起点,圆的n 等分点为终点,做n 个向量,设幅⾓为正且最⼩的向量对应的复数为ωn ,称为n 次单位根。
根据复数乘法的运算法则,其余n −1个复数为ω2n ,ω3n ,…,ωn n 注意ω0n =ωn n =1(对应复平⾯上以x 轴为正⽅向的向量)那么如何计算它们的值呢?这个问题可以由欧拉公式解决ωk n =cos k ∗2πn +i sin k ∗2πn例如图中向量AB 表⽰的复数为8次单位根单位根的幅⾓为周⾓的1n在代数中,若z n =1,我们把z 称为n 次单位根单位根的性质ωk n =cos k2πn +i sin k 2πn (即上⾯的公式)ω2k 2n =ωk n证明:ω2k 2n =cos2k ∗2π2n +i sin2k ∗2π2n =ωk nωk +n2n =−ωk n ωn2n =cos n 2∗2πn +i sin n 2∗2πn =cos π+i sin π=−1ω0n =ωn n =1讲了这么多,貌似跟我们的正题没啥关系啊。
《快速傅里叶变换》课件

FFT的历史背景
01
1960年代,Cooley和Tukey提 出了基于“分治”思想的FFT 算法,为快速傅里叶变换的实 用化奠定了基础。
02
随后,出现了多种FFT算法的 变种和优化,如Radix-2、 Radix-4等。
03
随着计算机技术的发展,FFT 算法在硬件实现上也得到了广 泛应用,如FPGA、GPU等。
《快速傅里叶变换》ppt课件
contents
目录
• FFT简介 • FFT基本原理 • FFT实现 • FFT的应用 • FFT的优化与改进 • FFT的挑战与未来发展
01 FFT简介
FFT的定义
快速傅里叶变换(FFT):一种高效计算离散傅里叶变换(DFT)及其逆变换的 算法。它将复杂度为$O(N^2)$的DFT计算降低到$O(Nlog N)$,大大提高了计 算效率。
详细描述
混合基数FFT算法结合了基数-2和基数-4算法的特点,利用两者在计算过程中的 互补性,减少了计算量,提高了计算效率。同时,该算法在处理大规模数据时 ,能够保持较高的精度。
分段FFT算法
总结词
分段FFT算法将输入数据分成若干段,对每一段进行快速傅里叶变换,以降低计算复杂度和提高计算效率。
详细描述
02 FFT基本原理
离散傅里叶变换(DFT)
定义
应用
DFT是时间域信号到频域的变换,通 过计算信号中各个频率成分的幅度和 相位,可以分析信号的频谱特性。
DFT在信号处理、图像处理、频谱分 析等领域有广泛应用。
计算量
DFT的计算量随着信号长度N的增加 而呈平方关系增长,因此对于长信号 ,计算量巨大。
快速傅里叶变换解析课件PPT学习

(2)两个N/2点的DFT运算量:复乘次数: N 2
2
复加次数: N ( N 1)
2
(3)N/2个蝶形运算的运算量:复乘次数: N
复加次数:
2 2
N
2
N
总共运算量:
复乘: 复加:
N2 N
N(N
1)/ 2 N 2
22
2
N(N
1) N
N2
2
2
*N点DFT的复乘为N2 ;复加N(N-1);与分解后相比可知,
X (k) X1(k) WNk X 2 (k) , k 0,1,
, N 1 2
(4-11)
X
k
N 2
X1
k
N 2
W
k
N 2
N
X 2
k
N 2
X1(k) WNk X 2 (k), k 0,1,, N 1 (4-12) 2
13
第13页/共57页
这样,就可将X(k)表达为前后两部分:
n0
n0
N 1
{Re[x(n)]Re[WNnk ] Im[x(n)]Im[WNnk ]
n0
j(Re[x(n)]Im[WNnk ] Im[x(n)]Re[WNnk ])}
(4-3)
由此可见,一次复数乘法需用四次实数乘法和二次实数加法; 一次复数加法需二次实数加法。 因而每运算一个X(k)需4N次实 数乘法和2N+2(N-1)=2(2N-1)次实数加法。 所以,整个DFT运算 总共需要4N2次实数乘法和2N(2N-1)次实数加法。
2
第2页/共57页
N 1
正变换: X (k ) x(n)WNnk
n0
反变换:
x(n)
《快速傅里叶变换FF》课件

DFT的计算方法
了解直接计算法和快速傅里叶变换(FFT)的概念和意义,以及FFT与DFT的区别和联系。
FFT算法的实现
介绍基于蝴蝶运算的FFT算法步骤和蝴蝶运算的实现原理和示意图,以及通过递归实现FFT算法。
FFT算法的应用
探讨信号处理与频谱分析中的FFT应用,以及图像处理和密码学中的FFT应用。
FFT算法的优化
了解基于分治思想的算法、原位计算法,以及位逆序置换的优化。
总结展望
总结经典FFT算法的局限性,并展望新兴FFT算法的发展方向。
致谢
感谢大家阅读此PPT课件,希望对大家了解和学习FFT算法有所帮助。
《快速傅里叶变换FF》 PPT课件
这是一份关于快速傅里叶变换(FFT)的PPT课件,旨在介绍傅里叶变换的概念、 计算方法、应用以及优化方向,帮助大家了解和学习FFT算法。
什么是傅里叶变换
傅里叶变换是一种将函数从一个域(通常是时间或空间域)转换为另一个域(频率域)的数学变换。引出离散 傅里叶变换(DFT)。
快速傅里叶变换PPT课件

WNk
-
6
4.3 按时间抽取的基2-FFT算法
算法原理
DIT-FFT(Decimation-In-Time)
按时间抽取基-2FFT算法与直接计算 DFT运算量的比较
按时间抽取的FFT算法的特点
按时间抽取FFT算法的其它形式流程图
-
7
4.3.1 算法原理
设N=2M,将x(n)按 n 的奇偶分为两组:
直接按DFT变换进行计算,当序列长度N很大时,计算
量非常大,所需时间会很长,实时处理难以实现。 1965年,图基和库利发表了《机器计算快速傅立叶级
数的一种算法》论文后,很快形成了快速计算DFT的计 算机算法FFT。(Fast Fourier Transform) FFT并不是一种与DFT不同的变换,而是DFT的一种快速 计算的算法。
2
28
观察原位运算规律
-
29
序列的逆序排列
序列的逆序排列
由于 x(n) 被反复地按奇、偶分组,所以流图输入端的 排列不再是顺序的,但仍有规律可循:
因为 N=2M ,对于任意 n(0≤n ≤N-1),可以用M个 二进制码表示为:
n (D)E C (n M 1 n M 2 n 2 n 1 n 0)(B)IN 0
nM1,nM2,,n2,n1,n0 1
n 反复按奇、偶分解时,即按二进制码的“0” “1” 分解。
-
30
倒位序的树状图(N=8)
-
31
码位的倒位序(N=8)
自然顺序 n 二进制数 倒位序二进制数 倒位序顺序nˆ 数
0
000
000
0
1
001
100
4
2
010
010
第03章-5 快速傅里叶变换(FFT)

令 得到
上面两式所表示的是N/2的DFT。
在实际计算中,首先形成序列g(n)和h(n),然后计算h(n)WNn,最后分 别计算g(n) 和h(n)WNn的N/2点DFT,便得到偶数输出点和奇数输出点 的DFT。计算流程图如图3. 24所示。
由于N是2的整数幂,所以N/2仍然是偶数。这样,可以将N/2点DFT 的输出再分为偶数组和奇数组,也就是将N/2点的DFT计算进一步分 解为两个N/4点的DFT计算,其推导过程如下。 将g(n)分为前后两组,得到
图中用n表示自然顺序的标号,用l表示码位倒置的标号。当l=n时, x(n)和x(l)不必互相调换。当l≠n时, 必须将x(l)和x(n)互相调换,但只 能调换一次,为此必须规定每当l>n时,要将x(l)和x(n)相互调换,即 把原来存放x(n)的存储单元中的数据调入存储x(l)的存储单元中,而 把原来存储x(l)的存储单元中的数据调入到存储x(n)的存储单元中。 这样,按自然序输入的数据x(n)经过变址计算后变成了码位倒 置的排列顺序,便可进入第一级的蝶形运算。
3. 5. 3 蝶形、同址和变址计算 1. 蝶形计算 任何一个N为2的整数幂(即N=2M)的DFT,都可以通过M次分解,最 后成为2点的 DFT来计算。M次分解构成了从x(n)到X(k)的M级迭代计 算,每级由N/2个蝶形组成。图3.20表示了蝶形的一般形式表示。 其输入和输出之间满足下列关系:
从上式可以看出完成一个蝶形计 算需一次复数乘法和两次复数加法。 因此,完成N点的时间抽选FFT计 算的总运算量为
大多数情况下复数乘法所花的时间最多,因此下面ቤተ መጻሕፍቲ ባይዱ以复数乘 法的计算次数为例来与直接计算进行比较。 直接计算DFT需要的乘法次数为αD=N2,于是有
FFT快速傅里叶变换word精品文档16页

快速傅里叶变换[编辑]维基百科,自由的百科全书跳转至:导航、搜索傅里叶变换Z变换傅里叶级数傅里叶变换离散傅里叶级数离散时间傅里叶变换离散傅里叶变换快速傅里叶变换分数傅里叶变换短时距傅立叶变换小波变换离散小波变换连续小波变换快速傅里叶变换(英语:Fast Fourier Transform, FFT),是离散傅里叶变换的快速算法,也可用于计算离散傅里叶变换的逆变换。
快速傅里叶变换有广泛的应用,如数字信号处理、计算大整数乘法、求解偏微分方程等等。
本条目只描述各种快速算法。
对于复数序列,离散傅里叶变换公式为:直接变换的计算复杂度是(参见大O符号)。
快速傅里叶变换可以计算出与直接计算相同的结果,但只需要的计算复杂度。
通常,快速算法要求n能被因数分解,但不是所有的快速傅里叶变换都要求n是合数,对于所有的整数n,都存在复杂度为的快速算法。
除了指数的符号相反、并多了一个1/n的因子,离散傅里叶变换的正变换与逆变换具有相同的形式。
因此所有的离散傅里叶变换的快速算法同时适用于正逆变换。
目录[隐藏]∙ 1 一般的简化理论∙ 2 快速傅里叶变换乘法量的计算∙ 3 Cooley-Tukey算法o 3.1 设计思想∙ 4 其他算法∙ 5 实数或对称资料专用的算法∙ 6 复杂度以及运算量的极限∙7 参考资料∙8 参阅一般的简化理论[编辑]假设一个M*N Sub-rectangular matrix S可分解成列向量以及行向量相乘:若有个相异的non-trivialvalues( where )有个相异的non-trivial values则S共需要个乘法。
Step 1:Step 2:简化理论的变型:也是一个M*N的矩阵。
若有个值不等于0,则的乘法量上限为。
快速傅里叶变换乘法量的计算[编辑]假设,其中彼此互质点DFT的乘法量为,则点DFT的乘法量为:假设,P是一个质数。
若点的DFT需要的乘法量为且当中 () 有个值不为及的倍数,有个值为及的倍数,但不为的倍数,则N点DFT的乘法量为:Cooley-Tukey算法[编辑]主条目:Cooley-Tukey快速傅里叶变换算法Cooley-Tukey算法是最常见的FFT算法。
《快速傅里叶变换FF》课件

contents
目录
• FFT简介 • FFT的基本原理 • FFT的应用 • FFT的实现 • FFT的性能优化 • FFT的局限性
CHAPTER 01
FFT简介
FFT的定义
快速傅里叶变换(FFT):一种高效计算离散傅里叶变换(DFT)及其逆变换的 算法。它将复杂度为$O(N^2)$的DFT计算降低到$O(Nlog N)$,极大地提高了 计算效率。
通过选择适合特定数据集的基数,混 合基数FFT可以在不同的应用场景下 获得最佳性能。
混合基数FFT结合了基于2的幂次和基 于其他基数的算法,以获得更好的计 算效率和精度。
CHAPTER 06
FFT的局限性
浮点运算的开销
快速傅里叶变换(FFT)是一种高效的算法,用于计算离散傅里叶变换(DFT)和其逆变换。然而, 由于FFT涉及到大量的复数运算,因此其计算开销相对较大,尤其是对于大规模数据。
分段FFT
分段FFT是一种将大规模FFT分 解为多个小规模FFT的方法, 可以显著提高计算速度。
通过将输入数据分成多个段, 每个段可以独立进行FFT计算 ,从而并行处理多个段。
分段FFT适用于大规模数据集 ,可以有效地利用多核处理器 和分布式计算资源,提高计算 效率。
混合基数FFT
混合基数FFT是一种将不同基数算法 结合在一起的FFT方法,可以获得更 好的性能。
快速傅里叶变换(FFT)算法
定义
快速傅里叶变换(FFT)是一种高效的计算离散傅里叶变换( DFT)和其逆变换的算法。它通过一系列数学运算将DFT的 计算量从N^2降低到了Nlog2N,大大提高了计算效率。
算法原理
FFT算法基于DFT的周期性和对称性,将一个N点的DFT分解 为多个较短序列的DFT,然后利用递归和分治的思想进行计 算,最终得到原始序列的频域表示。
快速傅立叶变换(FFT)

快速傅立叶变换(FFT)快速傅立叶变换(FFT)4.1引言快速傅立叶变换(FFT)并不是一种新的变换,而是离散傅立叶变换(DFT)的一种快速算法。
DFT的计算在数字信号处理中非常有用。
例如在FIR滤波器设计中会遇到从h(n)求H(k)或由H(k)计算h(n),这就要计算DFT;信号的谱分析对通信、图像传输、雷达等都是很重要的,也要计算DFT。
因直接计算DFT的计算量与变换区间长度N的平方成正比,当N较大时,计算量太大。
自从1965年图基(J. W. Tukey)和库利(T. W. Coody)在《计算数学》(Math. Computation , Vol. 19, 1965)杂志上发表了著名的《机器计算傅立叶级数的一种算法》论文后,桑德(G. Sand)-图基等快速算法相继出现,又经人们进行改进,很快形成一套高效运算方法,这就是快速傅立叶变换简称FFT(Fast Fourier Transform)。
这种算法使DFT的运算效率提高1~2个数量级。
4.2 基2 FFT算法一、直接计算DFT的问题及改进的途径设x(n)为N点有限长序列,其DFT正变换为= , k=0,1,…,N-1其反变换(IDFT)x(n)= ,n=0,1,…,N-1二者的差别只在于的指数符号不同,以及差一个常数乘因子1/N,因而下面我们只讨论DFT正变换的运算量,反变换的运算量是完全相同的。
考虑x(n)为复数序列的一般情况,每计算一个X(k),需要N次复数乘法以及(N-1)次复数加法。
因此,对所有N个k值,共需N2次复数乘法及N(N-1)次复数加法运算。
所以直接计算DFT,乘法次数和加法次数都是和N2成正比的,当N很大时,运算量是很可观的,因而需要改进对DFT的计算方法,以减少运算次数。
下面讨论减少运算工作量的途径。
仔细观察DFT的运算就可看出,利用系数以下固有特性,就可减小DFT的运算量:(1)的对称性()*=(2)的周期性 ==(3)的可约性 ==由此可得:==,=-1,=-。
FFT快速傅里叶变换23页word文档

快速傅里叶变换[编辑]维基百科,自由的百科全书跳转至:导航、搜索傅里叶变换Z变换傅里叶级数傅里叶变换离散傅里叶级数离散时间傅里叶变换离散傅里叶变换快速傅里叶变换分数傅里叶变换短时距傅立叶变换小波变换离散小波变换连续小波变换快速傅里叶变换(英语:Fast Fourier Transform, FFT),是离散傅里叶变换的快速算法,也可用于计算离散傅里叶变换的逆变换。
快速傅里叶变换有广泛的应用,如数字信号处理、计算大整数乘法、求解偏微分方程等等。
本条目只描述各种快速算法。
对于复数序列,离散傅里叶变换公式为:直接变换的计算复杂度是(参见大O符号)。
快速傅里叶变换可以计算出与直接计算相同的结果,但只需要的计算复杂度。
通常,快速算法要求n能被因数分解,但不是所有的快速傅里叶变换都要求n是合数,对于所有的整数n,都存在复杂度为的快速算法。
除了指数的符号相反、并多了一个1/n的因子,离散傅里叶变换的正变换与逆变换具有相同的形式。
因此所有的离散傅里叶变换的快速算法同时适用于正逆变换。
目录[隐藏]• 1 一般的简化理论• 2 快速傅里叶变换乘法量的计算• 3 Cooley-Tukey算法o 3.1 设计思想• 4 其他算法• 5 实数或对称资料专用的算法• 6 复杂度以及运算量的极限•7 参考资料•8 参阅一般的简化理论[编辑]假设一个M*N Sub-rectangular matrix S可分解成列向量以及行向量相乘:若有个相异的non-trivialvalues( where )有个相异的non-trivial values则S共需要个乘法。
Step 1:Step 2:简化理论的变型:也是一个M*N的矩阵。
若有个值不等于0,则的乘法量上限为。
快速傅里叶变换乘法量的计算[编辑]假设,其中彼此互质点DFT的乘法量为,则点DFT的乘法量为:假设,P是一个质数。
若点的DFT需要的乘法量为且当中 ()有个值不为及的倍数,有个值为及的倍数,但不为的倍数,则N点DFT的乘法量为:Cooley-Tukey算法[编辑]主条目:Cooley-Tukey快速傅里叶变换算法Cooley-Tukey算法是最常见的FFT算法。
快速傅立叶变换(FFT)

X(k)
X (000) = X (0) X (100) = X (4) X (010) = X (2) X (110) = X (6) X (001) = X (1) X (101) = X (5) X (011) = X (3) X (111) = X (7)
FFT的软件实现
3.2个实序列的DFT的计算 从FFT的流图可见,由第一级输出开始,算法的 所有变量都是复数,即此后蝶算的输入和输出均 为复数。因而在考虑FFT算法时将输入序列x(n) 设置为复数,更具有普遍意义。且将两个实数当 作一个复数来计算,可以减少运算量。下面来说 明如何由计算一个复数序列的FFT来等效得到两 个实数序列的FFT。
快速傅立叶变换(FFT)
理论及算法实现
直接计算DFT的问题及改进途径
设x(n)为N点有限长序列,其DFT为
N 1 n=0
x ( k ) = ∑ x ( n )w
nk N
, k = 0 ,1 ,... N 1
nk 一般来说,x(n)和wN 都是复数,X(k)也是复数, 因此每计算一个X(k)值,需要N次复数乘法以及 (N-1)次复数加法。而X(k)一共有N个点,所以 N 2 次复数乘法及 完成整个DFT运算总共需要 N(N-1)次复数加法。
N 1 n=0 nk 2 rk ( 2 r +1) k ∑ x ( n)W N = ∑ x ( 2r )W N + ∑ x ( 2r + 1)W N r =0 r =0 N 1 2 N 1 2
按时间抽取的FFT算法
可以得到
= ∑ x 1 ( r )( W
r=0 N 2 2 N N 1 2 k N ∑ r=0
直接计算DFT的问题及改进途径
由于一次复数乘法需用四次实数加法;一次复数 加法则需二次实数加法。因此每运算一个X(k)需 要4N次实数乘法及2N+2(N-1)=2(2N-1)次实数加 法。所以整个DFT运算总共需要 4N2 次实数乘法和 N × 2 ( 2 N 1) = 2 N ( 2 N 1) 次加法。 例如:N=1024时,DFT需要复乘1,048,576次。所 以,直接计算DFT对实时性很强的信号处理来说, 对计算速度要求是太高了。
快速傅里叶变换FFT

4.2.4 DIT-FFT的运算规律及编程思想
1)由图4.2.4可以看出,DIT―FFT的运算过程很有规 律。N=2M点的FFT共进行M级运算,每级由N/2个蝶形运 算组成。
p J 2ML
(4.2.13)
3. 序列的倒序
DIT-FFT算法的输入序列的排序看起来似乎很乱,
但仔细分析就会发现这种倒序是很有规律的。由于
N=2M,所以顺序数可用M位二进制数(nM-1nM-2…n1n0)
表示。
0
000 0
0
1
100 4
0
0
010 2
1
1
110 6
0 0
1 1
0 1
1
(n 2 n 1 n 0 )2
当N>>1时,N2 N(N1) ,即N点DFT的乘法和加法运 算次数均与N2成正比,当N较大时,运算量相等可观。
注意:
通常将算术乘法和算术加法的次数作为计算复杂性的度 量,因为这种方法使用起来很简单。如果在计算机上用 软件实现这些算法,则乘法和加法的次数就直接与计算 速度有关。
但是,在常用的VLSI实现时,芯片的面积和功率要求 往往是最重要的考虑因素,而它们有可能与算法的运算 次数没有直接的关系。
r 0
r 0
其中X1(k)和X2(k)分别为x1(r)和x2(r)的N/2点DFT,即
N/21
X1(k) x1(r)WNkr/2 DFT[x1(r)] r0
N/21
X2(k) x2(r)WNkr/2 DFT[x2(r)] r0
第三章离散傅里叶变换及其快速计算方法(DFT、FFT)

X (e jw )
(2)Z 变换 -- 提供任意序列的 z 域表示。
n
x( n)e jnw
X (z)
n
x ( n) z n
这两种变换有两个共同特征:
(1)变换适合于无限长序列 (2)它们是连续变量 ω 或 z 的函数
华北电力大学自动化系
3
3.1 问题的提出:可计算性
( k )W kn X N
k 0
21
N 1
华北电力大学自动化系
DFS 定义:反变换
DFS 变换对:时域周期序列与频域周期序列间的关系
N 1 X ( k ) x ( n)W N kn n 0 1 N 1 x ( n) X ( k )W N kn N k 0
其中:
2 N
称为频域中的取样间隔,
Im
也称为频率分辨率。
2 k N
1
2 N
Re
Z平面
华北电力大学自动化系
17
DFS 定义:正变换
X ( z ) |z e j X (e j ) x (n )e jn
n 0 N 1
X (e j ) |
则
2 k N
X (e
华北电力大学自动化系
5
3.1 问题的提出:傅里叶变换的四种形式 (2)
1. 连续信号(非周期)的付氏变换
x(t ) X ()
t
x(t ) X (),
1 x(t ) 2
t
X () x(t )e jt dt
X ()e d
jt
时域连续函数造成频域是非周期的谱 时域的非周期造成频域是连续的谱
《快速傅里叶变换》课件

应用广泛:快速傅里叶变换在信号处理、图像处理、通信等领域有着广泛的应用。
04 快速傅里叶变换的算法
快速傅里叶变换的基本步骤
输入信号:将输入信号分解为频率和相位 快速傅里叶变换:将输入信号进行快速傅里叶变换,得到频谱 频谱分析:对频谱进行分析,得到信号的频率和相位 逆傅里叶变换:将频谱进行逆傅里叶变换,得到输出信号 输出信号:输出信号与输入信号相同,但频率和相位发生了变化
信号压缩:快速傅里叶变换可以用于信号的压缩和去噪
信号识别:快速傅里叶变换可以用于信号的识别和分类,如语音识别、图 像识别等
在图像处理中的应用
图像去噪:通过快速傅里叶变换去 除图像中的噪声
图像压缩:通过快速傅里叶变换实 现图像的压缩和存储
添加标题
添加标题
添加标题
添加标题
图像增强:通过快速傅里叶变换增 强图像的对比度和清晰度
快速傅里叶变换在机器学 习领域的应用
感谢您的观看
汇报人:PPT
分块算法:将数据分成多个 块,分别进行FFT计算,提 高计算效率
并行算法:利用多核处理器 或分布式计算,实现FFT的 并行计算,提高计算速度
05 快速傅里叶变换的应用
在信号处理中的应用
信号分析:快速傅里叶变换可以用于分析信号的频率成分和相位信息
滤波器设计:快速傅里叶变换可以用于设计各种滤波器,如低通滤波器、 高通滤波器等
傅里叶变换的定义
傅里叶变换是一种数学变换,可以 将时域信号分解为频率域信号
傅里叶变换是信号处理、图像处理 等领域的重要工具
添加标题
添加标题
添加标题
添加标题
傅里叶变换可以将信号从时域转换 为频域,从而分析信号的频率成分
快速傅里叶变换(FFT)

快速傅⾥叶变换(FFT)其实很早就想学习⼀下 FFT 了,不过⽐赛的时候和 FFT 有关的题⽬我都交给了队友,所以也没什么动⼒学- -今天看到 Gilbert Strang 的线性代数书中竟然也介绍了 FFT,就顺便学习了⼀下。
FFT 解决的问题我们知道,⼀个 $n-1$ 次多项式可以这样表⽰:$$\sum_{k=0}^{n-1}a_kx^k$$ 这种表⽰⽅法称为多项式的“系数表⽰法”。
容易看出,只要确定了 $a_0,a_1,\dots,a_{n-1}$ 的值,就能唯⼀确定⼀个 $n-1$ 次多项式。
事实上,⼀个 $n-1$ 次多项式还可以⽤“点值表⽰法”进⾏表⽰。
我们把多项式看成函数 $f(x)$,只要给出 $n$ 个点 $(x_1,f(x_1)),(x_2,f(x_2)),\dots,(x_n,f(x_n))$,且这 $n$ 个点的 x 值互不相同,我们也能唯⼀确定⼀个 $n-1$ 次多项式。
确定这个多项式的过程称为“插值”。
为什么 $n$ 个点可以唯⼀确定多项式呢?我们可以把给出的 $n$ 个点看作⼀个⽅程组,⽤矩阵表⽰为 $$\begin{bmatrix}1 & x_1 & x_1^2 & \dots & x_1^n \\ 1 & x_2 & x_2^2 & \dots & x_2^n \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 & \dots &x_n^n\end{bmatrix} \begin{bmatrix}a_0 \\ a_1 \\ \vdots \\ a_{n-1}\end{bmatrix} = \begin{bmatrix}f(x_1) \\ f(x_2) \\ \vdots \\ f(x_n)\end{bmatrix}$$简记为 $Xa = f$,根据线性代数的知识我们知道,矩阵 $X$ 是范德蒙矩阵,其⾏列式为 $$\prod_{i\ne j}(x_i-x_j)$$ 显然,只要 x 的值各不相等,该矩阵的⾏列式就不为 0,说明该矩阵可逆,则我们能唯⼀确定多项式的系数向量为 $a = X^{-1}f$。
第03章-5快速傅里叶变换(FFT)PPT课件

(3.68)
(3.69)
(3.70) 这样,用式(3.67)~(3.70)4个公式就可计算图3.15中的两组N/2点 DFT。图3.16所示的是其中一组G(k)的计算。
将图3.16与图3.15所示的信号流程图合并,便得到图3.17所示的信 号流程图。
因为N=8,所以上图中N/4点的DFT就是2点的DFT,不能再分解了。
前面两种算法特别适用于N等于2的幂的情况。 对于N为合数的情况,本章也将介绍两种处理方法。
3. 5. 2 时间抽选基2FFT算法(库里—图基算法) 这种算法简称为时间抽选FFT算法,其基本出发点是,利用旋 转因子WNk的对称性和周期性,将一个大的DFT分解成一些逐次 变小的DFT来计算。 分解过程遵循两条规则:
大多数情况下复数乘法所花的时间最多,因此下面仅以复数乘 法的计算次数为例来与直接计算进行比较。
直接计算DFT需要的乘法次数为αD=N2,于是有
ቤተ መጻሕፍቲ ባይዱ
例如,当N=1024时,则:
205,即直接计算DFT所需复数乘法
次数约为FFT的205倍。显然,N越大,FFT的速度优势越大。
在导出FFT算法之前,首先来估计一下直接计算DFT所需的计算量。 DFT的定义
其中
将DFT定义式展开成方程组 将方程组写成矩阵形式 用向量表示
用复数表示:
从矩阵形式表示可以看出,由于计算一个X(k)值需要N次复乘法和 (N-1)次复数加法,因而计算N个X(k)值,共需N2次复乘法和N(N-1)次 复加法。每次复乘法包括4次实数乘法和2次实数加法,每次复加 法包括2次实数加法,因此计算N点的DFT共需要4N2次实数乘法和 (2N2+2N·(N-1))次实数加法。当N很大时,这是一个非常大的计算量。
快速傅里叶变换fft mathmatica

快速傅里叶变换(FFT)是一种非常重要的数学工具,它在信号处理、图像处理、计算机视觉等领域有着广泛的应用。
快速傅里叶变换算法的发明有利于对信号频谱的快速计算,从而加快了信号处理的速度。
在本文中,我们将从多个角度来探讨快速傅里叶变换,并深入理解它的原理和应用。
1. 什么是傅里叶变换?傅里叶变换是一种数学工具,它可以将一个函数从时间或空间域转换到频率域。
通过傅里叶变换,我们可以将一个信号拆分成不同频率的成分,从而更好地理解信号的特性。
在信号处理领域,傅里叶变换被广泛应用于声音、图像等数据的分析和处理中。
2. 快速傅里叶变换的原理快速傅里叶变换是一种高效的傅里叶变换算法,它可以在对数时间内完成信号频谱的计算。
其原理是基于分治法和递归思想的,通过将信号分解成子问题,并利用对称性质和周期性质,从而快速计算出频谱信息。
快速傅里叶变换算法的发明极大地加速了信号处理的速度,使得实时处理成为可能。
3. 快速傅里叶变换的应用快速傅里叶变换在信号处理、图像处理、通信等领域有着广泛的应用。
在音频处理中,通过快速傅里叶变换,我们可以快速计算出音频信号的频谱信息,从而进行音频分析、音频合成等操作。
在图像处理中,快速傅里叶变换可以用于图像的频域滤波、图像压缩等操作。
在通信领域,快速傅里叶变换也被应用于调制解调、信道估计等方面。
4. 我对快速傅里叶变换的个人观点和理解作为一种重要的数学工具,快速傅里叶变换在现代科学技术中扮演着不可或缺的角色。
它的高效性和广泛应用性使得它成为了信号处理领域中的核心算法之一。
虽然快速傅里叶变换算法本身较为复杂,但通过对其原理和应用的深入理解,我们可以更好地利用这一工具,为实际问题提供更好的解决方案。
总结在本文中,我们对快速傅里叶变换进行了全面的探讨,从傅里叶变换的基本概念到快速傅里叶变换算法的原理和应用,希望读者能更全面、深刻和灵活地理解这一重要的数学工具。
通过对快速傅里叶变换的研究,我们可以更好地处理和分析信号数据,为实际问题的解决提供更好的方法和工具。
快速傅里叶变换法(FFT)

FFT 程序设计报告快速傅里叶变换法(FFT )是离散傅立叶变换的一种快速计算方法,它能使N 点DFT 的乘法计算量由N 2次降为N N2log 2次。
下图是采样点数为8点FFT 时间抽取算法信号流图,本程序也是以这种形式设计的。
程序设计的基本思路是在程序开始时刻要求输入采样点数,如果采样点数是2的整数次方(不包括0次方),则要求输入采样点的数值,并根据采样点数分配响应的数组大小,计算迭代次数。
然后对采样点进行逆二进制排序,再按上图所示的算法进行计算,程序流程图如下图所示:本程序运用VC 语言对程序进行设计,下面分别对程序设计中复数类的应用,判断和求迭代次数,逆二进制排序,蝶形运算进行具体说明。
1. 复数类的应用C 语言本身并不包含复数数据类型,但C 语言可以根据需要定义自己的数据类型,本程序定义了一个复数结构体complex ,包括实部real 和虚部img 两部分,代码如下: typedef struct { double real; double img; }complex;在FFT 程序设计中,复数类主要被用来计算两复数的加法和乘法以及旋转因子Wk N,其中Nj NW/2π-=,式中N=2的m+1次方,m 代表计算流图的第m 级,而k 代表第k 次蝶形运算,由于C 中的math.h 函数库中没有带参数的复数运算函数,所以本程序编写了带参数的复数运算cw(double x,double y),用于计算Nj NW/2π-=,设计的基本思路,首先把e 的次幂用欧拉公式化成三角函数,然后化复数乘法和除法运算为几个复数基本单元的加法运算和除法运算,其中运算的次数由函数输入参量double x 决定。
函数mul(complex x1, complex x2)用于计算复数的乘运算。
2. 判断和求迭代次数本程序编写iternumb(int numb)函数对采样点数进行判断,如果采样点数不符合2的整数次方或采样点数为1或0,则跳出程序,程序设计基本思路是对输入采样点数的十进制形式进行模2运算和除法运算,在除法运算结果大于1之前,一旦模2运算的结果等于1,则说明输入采样点数不符合要求,而如果符合要求,则把出发结果存入数组当中,函数代码如下:int iternumb(int numb) {int iternumb1=0;if((numb==0)||(numb==1)) {printf("numb error!\n"); exit(0); }while ((numb!=0)&&(numb!=1)) {if (numb%2) {printf("numb error!\n"); exit(0); }numb=numb/2;iternumb1=iternumb1+1; }return iternumb1; }3. 码位倒置在逆二进制排序程序中,设置for 循环分别将输入数据数组input[i]的索引号i 进行模2运算,所得的结果按逆序存入inverse[ ]数组(存入inverse[ ]数组的顺序是从数组尾部开始)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图中用n表示自然顺序的标号,用l表示码位倒置的标号。当l=n时, x(n)和x(l)不必互相调换。当l≠n时, 必须将x(l)和x(n)互相调换,但只 能调换一次,为此必须规定每当l>n时,要将x(l)和x(n)相互调换,即 把原来存放x(n)的存储单元中的数据调入存储x(l)的存储单元中,而 把原来存储x(l)的存储单元中的数据调入到存储x(n)的存储单元中。 这样,按自然序输入的数据x(n)经过变址计算后变成了码位倒 置的排列顺序,便可进入第一级的蝶形运算。
3. 5. 3 蝶形、同址和变址计算 1. 蝶形计算 任何一个N为2的整数幂(即N=2M)的DFT,都可以通过M次分解,最 后成为2点的 DFT来计算。M次分解构成了从x(n)到X(k)的M级迭代计 算,每级由N/2个蝶形组成。图3.20表示了蝶形的一般形式表示。 其输入和输出之间满足下列关系:
从上式可以看出完成一个蝶形计 算需一次复数乘法和两次复数加法。 因此,完成N点的时间抽选FFT计 算的总运算量为
因为
所以
对频率再进行偶奇分,则得频率的偶数项为
频率的奇数项为 通过类似的推导可得
上面4式所表示的计算都是N/4点的DFT计算,从而得到图3.25所示 的形式。
与时间抽选的FFT算法一样,图3.27所示的流程图的基本运算也是 蝶形运算,但是与时间抽选中的蝶形单元(图3.20)有所不同。
(3. 72) 式(3. 72)虽然包含两个N/2点求和公式,但是在每个求和公式中出 现的是WNkn,而不是WN/2kn,因此这两个求和公式都不是N/2点的DFT。 则得: 如果合并这两个求和公式,并利用
其次,按规则(2),将频率偶奇分,即 X(k)={X(0), X(2), X(4), X(6), | X(1), X(3), X(5), X(7)} 如果用X(2r)和X(2r+1)分别表示频率的偶数项和奇数项,则有
3. 5. 2 时间抽选基2FFT算法(库里—图基算法) 这种算法简称为时间抽选FFT算法,其基本出发点是,利用旋 转因子WNk的对称性和周期性,将一个大的DFT分解成一些逐次 变小的DFT来计算。 分解过程遵循两条规则: ①对时间进行偶奇分解; ②对频率进行前后分解。 设N=2M,M为正整数。为了推导方便,取N=23=8,即离散时间 信号为 按照规则(1),将序列x(n)分为奇偶两组,一组序号为偶数,另一 组序号为奇数,即 分别表示为:
令 得到
上面两式所表示的是N/2的DFT。
在实际计算中,首先形成序列g(n)和h(n),然后计算h(n)WNn,最后分 别计算g(n) 和h(n)WNn的N/2点DFT,便得到偶数输出点和奇数输出点 的DFT。计算流程图如图3. 24所示。
由于N是2的整数幂,所以N/2仍然是偶数。这样,可以将N/2点DFT 的输出再分为偶数组和奇数组,也就是将N/2点的DFT计算进一步分 解为两个N/4点的DFT计算,其推导过程如下。 将g(n)分为前后两组,得到
(3.67)
(3.68)
(3.69)
(3.70) 这样,用式(3.67)~(3.70)4个公式就可计算图3.15中的两组N/2点 DFT。图3.16所示的是其中一组G(k)的计算。
将图3.16与图3.15所示的信号流程图合并,便得到图3.17所示的信 号流程图。
因为N=8,所以上图中N/4点的DFT就是)把原来N点DFT的计算分解成两个N/2点DFT的计 算。照此可进一 步把每个N/2点DFT的计算再各分解成两个N/4点 DFT的计算。具体说来,是把{x(0),x(2),x(4),x(6)}和{x(1),x(3), x(5),x(7)}分为{x(0),x(4) | x(2),x(6)}和{x(1),x(5) | x(3),x(7)}。这样, 原信号序列被分成{x(0),x(4) | x(2),x(6) I x(1),x(5) I x(3),x(7)}4个2项 信号。G(k)和H(k)分别计算如下:
根据DFT的定义
因为 WN2=WN/21,所以上式变为
(3.64) 上式中的G(k)和H(k)都是N/2点的DFT。
按照规则(2),将X(k)分成前后两组,即 由(3.64)表示的是N/2点DFT,前4个k值的DFT可表示为 (3.65) 后4个k值的X(k)表示为:
因为
所以
(3.66)
按照式(3.65)和式(3.66)可画出图3.15所示的信号流程图。
FFT算法是基于可以将一个长度为N的序列的离散傅里叶变换 逐次分解为较短的离散傅里叶变换来计算这一基本原理的。这 一原理产生了许多不同的算法,但它们在计算速度上均取得了 大致相当的改善。 在本章中我们集中讨论两类基本的FFT算法。 第一类 称为按时间抽取(Decimation-in-Time)的基2FFT算法,它 的命名来自如下事实:在把原计算安排成较短变换的过程中, 序列x(n)(通常看作是一个时间序列)可逐次分解为较短的子序列。 第二类称为按频率抽取(Decimation-in-Frequency)的基2FFT算法, 在这类算法中是将离散傅里叶变换系数序列X(k)分解为较短的 子序列。 前面两种算法特别适用于N等于2的幂的情况。 对于N为合数的情况,本章也将介绍两种处理方法。
3.变址计算 从图3. 19所示的流程图看出,同址计算要求输入x(n)是“混序” 排列的。所谓输入为“混 序”,并不是说输入是杂乱无章的,实 际上它是有规律的。如果输入x(n)的序号用二进制码来 表示,就可 以发现输入的顺序恰好是正序输入的“码位倒置”,表3. 3列出了 这种规律。
在实际运算中,按码位倒置顺序输入数据x(n),特别当N较大时, 是很不方便的。因此,数据总是按自然顺序输入存储,然后通过 “变址”运算将自然顺序转换成码位倒置顺序存储。实现这种转换 的程序可用图3. 21来说明。
第03章 离散傅里叶变换及其快 速算法
邹江 zoujiang@
3. 5 快速傅里叶变换(FFT)
3.5.1 DFT的计算量 离散傅里叶变换在实际应用中是非常重要的,利用它可以计算信 号的频谱、功率谱和线性卷积等。但是,如果使用定义式(3.20)来 直接计算DFT,当N很大时,即使使用高速计算机,所花的时间也 太多。因此,如何提高计算DFT的速度,便成了重要的研究课题。 1965年库利 (Cooley)和图基(Tukey)在前人的研究成果的基础上提出了 快速计算DFT的算法,之后,又出现了各种各样快速计算DFT的方 法,这些方法统称为快速傅里叶变换(Fast Fourier Transform),简称为 FFT。FFT的出现,使计算DFT的计算量减少了两个数量级,从而成 为数字信号处理强有力的工具。 快速傅里叶变换(FFT)是离散傅里叶变换(DFT)的快速算法。它是 DSP领域中的一项重大突破,它考虑了计算机和数字硬件实现的约 束条件、研究了有利于机器操作的运算结构,使DFT的计算时间缩 短了1~2个数量级,还有效地减少了计算所需的存储容量,FFT技术 的应用极大地推动了DSP的理论和技术的发展。
蝶形运算的特点是,首先每一个蝶形运算都需要两个输入数 据,计算结果也是两个数据,与其它结点的数据无关,其它蝶形 运算也与这两结点的数据无关、因此,一个蝶形 运算一旦计算完 毕,原输入数据便失效了。这就意味着输出数据可以立即使用原 输 人数据结点所占用的内存。原来的数据也就消失了。输出、输 人数据利用同一内存单 元的这种蝶形计算称为同位(址)计算。 可以看出, 每一级的蝶形的输入与输出在运算前后可以存储在 同一地址(原来位置上)的存储单元中,这种同址运算的优点是可以 节省存储单元,从而降低对计算机存储量的要求或降低硬件实现 的成本。
2.同址(原位)计算 图3. 19包含log2N级迭代运算,每级由N/2个蝶形计算构成。蝶形计 算的优点是可以进行所谓同址或原位计算。 现在来考察第一级的计算规律。设将输入x(0),x(4),x(2),x(6), x(1),x(5),x(3),x(7)分别存入计算机的存储单元M(1), M(2), M(3),…, M(7)和M(8)中。首先,存储单元M(1)和M(2)中的数据x(0)和x(4)进入运 算器并进行蝶形运算,流图中各蝶形的输入量或输出量是互不相 重的,任何一个蝶形的二个输入量经蝶形运算后,便失去了利用 价值,不再需要保存。这样,蝶形运算后的结果便可以送到M(1)和 M(2)存储起来。类似地,M(3)和M(4)中的x(2)和x(6)进入运算器进行蝶 形运算后的结果也被送回 到M(3)和M(4)保存,等等。第二级运算与 第一级类似,不过,M(1)和M(3)存储单元中的数 据进行蝶形运算后 的结果被送回M(1)和M(3)保存,M(2)和M(4)中的数据进行蝶形运算 后送回M(2)和M(4)保存,等等。这样一直到最后一级的最后一个蝶 形运算完成。
在导出FFT算法之前,首先来估计一下直接计算DFT所需的计算量。 DFT的定义
其中
将DFT定义式展开成方程组
将方程组写成矩阵形式
用向量表示
用复数表示:
从矩阵形式表示可以看出,由于计算一个X(k)值需要N次复乘法和 (N-1)次复数加法,因而计算N个X(k)值,共需N2次复乘法和N(N-1)次 复加法。每次复乘法包括4次实数乘法和2次实数加法,每次复加 法包括2次实数加法,因此计算N点的DFT共需要4N2次实数乘法和 (2N2+2N·(N-1))次实数加法。当N很大时,这是一个非常大的计算量。 FFT算法主要利用了WNk的两个性质: (1)对称性,即 (2)周期性,即 r为任意整数。
最后介绍一下时间抽选FFT算法的另外一些形式的流程图。对于任 何流程图,只要保持 各节点所连支路及其传输系数不变,则不论 节点位置怎样排列,所得到的流程图总是等效的,因而都能得到 DFT的正确结果,只是数据的提取和存储次序不同而已。 把图3. 19中与x(4)水平相邻的所有节点和与x(1)水平相邻的所有节 点交换,把与x(6)水平相邻的所有节点和与 x(3)水平相邻的所有节点 交换,而与x(2)、x(5)和x(7)水平相邻各节点位置不变,就可以从图3. 19得到图3.22。图3.22与图3.19的区别只是节点的排列不同,而支路 传输比,即WN的 各次幂保持不变。显然图3.22所示流程图的输入是 正序(自然顺序)排列的,输出是码位倒置 排列的,所以输出要进行 变址计算。图3. 22所示的流程图相当于最初由库利和图基给出的时 间抽选算法。