基于MATLAB的PID_控制器设计

基于MATLAB的PID_控制器设计
基于MATLAB的PID_控制器设计

基于MATLAB的PID 控制器设计

基于MATLAB的PID 控制器设计

一、PID控制简介

PID控制是最早发展起来的经典控制策略, 是用于过程控制最有效的策略之一。由于其原理简单、技术成,在实际应用中较易于整定, 在工业控制中得到了广泛的应用。它最大的优点是不需了解被控对象精确的数学模型,只需在线根据系统误差及误差的变化率等简单参数, 经过经验进行调节器参数在线整定, 即可取得满意的结果, 具有很大的适应性和灵活性。

积分作用:可以减少稳态误差, 但另一方面也容易导致积分饱和, 使系统的超调量增大。

微分作用:可提高系统的响应速度, 但其对高频干扰特别敏感, 甚至会导致系统失稳。

所以, 正确计算控制器的参数, 有效合理地实现PID控制器的设计,对于PID 控制器在过程控制中的广泛应用具有重要的理论和现实意义。

在PID控制系统中, PID控制器分别对误差信号e(t)进行比例、积分与微分运算, 其结果的加权和构成系统的控制信号u(t),送给对象模型加以控制。PID控制器的数学描述为

其传递函数可表示为:

从根本上讲, 设计PID控制器也就是确定其比例系数Kp、积分系数T i 和微分系数T d , 这三个系数取值的不同, 决定了比例、积分和微分作用的强弱。控制系统的整定就是在控制系统的结构已经确定、控制仪表和控制对象等处在正常状态的情况下, 适当选择控制器参数使控制仪表的特性和控制对象的特性相配合, 从而使控制系统的运行达到最佳状态, 取得最好的控制效果。

二、MATLAB的Ziegler-Nichols算法PID控制器设计。

1、PID控制器的Ziegler-Nichols参数整定

在实际的过程控制系统中, 有大量的对象模型可以近似地由一阶模型

来表示。这个对象模型可以表示为

sL

-

e

sT

1

K

G(s)

+

=

如果不能建立起系统的物理模型, 可通过试验测取对象模型的阶跃响应, 从而得到模型参数。当然, 我们也可在已知对象模型的情况下, 利用MATLAB,通过使用step ( ) 函数得到对象模型的开环阶跃响应曲线。在被控对象的阶跃响应中, 可获取K 、L 和T参数, 也可在MATLAB中由dcgain ( ) 函数求取K值。

2.在MATLAB下实现PID 控制器的设计与仿真

已知被控对象的K、L 和T 值后, 我们可以根据Ziegler —Nichols整定公式编写一个MATLAB函数ziegler_std ( )用以设计PID控制器。该函数程序如下:

function [num,den,Kp,Ti,Td,H]=Ziegler_std (key,vars)

Ti=[ ];Td=[ ];H=[ ];

K=vars(1) ;

L=vars(2) ;

T=vars (3);

a=K*L/T;

if key==1

num=1/a; %判断设计P 控制器

elseif key==2

Kp=0.9/a;Ti=3.33*L; %判断设计PI 控制器

elseif key==3,

Kp=1.2/a;Ti=2*L;Td=L/2; %判断设计PID控制器end

switch key

case 1

num=Kp;den=1; % P 控制器 case 2

num=Kp*[Ti,1];den=[Ti,0]; % PI 控制器 case 3 % PID 控制器 p0=[Ti*Td,0,0];

p1=[0,Ti,1];p2=[0,0,1]; p3=p0+p1+p2; p4=Kp*p3; num=p4/Ti; den=[1,0]; end

由图可知L 和T 令T

KL

=

α。在求得L 和α参数的情况下, 我们可通过表1中给出的Ziegler — Nichols 经验公式确定 P 、PI 和PID 控制器的参数。

三、对某传递函数3

)1s (1G(s)+=

的控制

未加控制器的仿真: Simulink 下的系统图

仿真输出图形如下:

第一次测量

T=3.28 L=1.38 K=1 T

KL

=α=0.42

P 控制

Kp=α

1

=

=2.38

Simulink 下的系统图

仿真输出图形如下:

峰值时间tp=4.15s,峰值为0.9518 上升时间td=2.953s 调节时间ts=14.4s

PI 控制

Kp=α

0.9

=

=2.14 Ti=3.33L=4.60

Simulink 下的系统图:

仿真后的输出曲线为:

峰值时间tp=4.48s,峰值1.019s 上升时间td=3.783s

调节时间ts=25.486s

PID控制

Kp=α1.2

==2.85 Ti=2L=2.76 Td=2

L

==0.69

Simulink 下的系统图

仿真后的输出曲线为:

峰值时间tp=4.028s 峰值1.077 上升时间td=3.565s 调节时间ts=28.50s

第二次测量

T=3.51 L=1.23 k=1 T

KL

=α=0.35

P 控制,

Kp=

α

1

=2.86

Simulink 下的系统图:

仿真后的输出曲线为:

峰值时间tp=3.685s峰值1.025 上升时间td=2.834s

调节时间ts=25.70s

PI 控制图如下:

Kp=α

0.9

=

=2.57 Ti=3.33L=4.10

Simulink 下的系统图:

仿真后的输出曲线为:

峰值时间tp=4.197s 峰值1.104 上升时间td=3.324s 调节时间ts=27.06s

PID 控制

Kp=α

1.2

=

=2.757 Ti=2L=0.262 Td=2

L

=

=0.0655 Simulink 下的系统图

仿真后的输出曲线为:

峰值时间tp=4.002s峰值1.169 上升时间td=3.023s

调节时间ts=22.26s

四、控制方案的选择:对于开环传递函数为3

)1s (1G(s)+=

的系统,经过两次测

量,并分别进行P ,PI ,PID 控制发现比例P 控制有较好的动态和稳态性能指标。取两次测量平均值K=1,L=1.305,T=3.40,则T

KL

=

α=0.383 五、由实验过程和仿真结果对P 、PI 、PID 控制的优劣性比较 比例(P )控制

单独的比例控制也称“有差控制”,输出的变化与输入控制器的偏差成比例关系,偏差越大输出越大。实际应用中,比例度的大小应视具体情况而定,比例度太大,控制作用太弱,不利于系统克服扰动,余差太大,控制质量差,也没有什么控制作用;比例度太小,控制作用太强,容易导致系统的稳定性变差,引发振荡。

对于反应灵敏、放大能力强的被控对象,为提高系统的稳定性,应当使比例度稍大些;而对于反应迟钝,放大能力又较弱的被控对象,比例度可选小一些,以提高整个系统的灵敏度,也可以相应减小余差。

单纯的比例控制适用于扰动不大,滞后较小,负荷变化小,要求不高,允许有一定余差存在的场合。工业生产中比例控制规律使用较为普遍。 比例积分(PI )控制

比例控制规律是基本控制规律中最基本的、应用最普遍的一种,其最大优点就是控制及时、迅速。只要有偏差产生,控制器立即产生控制作用。但是,不能最终消除余差的缺点限制了它的单独使用。克服余差的办法是在比例控制的基础上加上积分控制作用。

积分控制器的输出与输入偏差对时间的积分成正比。这里的“积分”指的是“积累”的意思。积分控制器的输出不仅与输入偏差的大小有关,而且还与偏差存在的时间有关。只要偏差存在,输出就会不断累积(输出值越来越大或越来越小),一直到偏差为零,累积才会停止。所以,积分控制可以消除余差。积分控制规律又称无差控制规律。

积分时间的大小表征了积分控制作用的强弱。积分时间越小,控制作用越强;反之,控制作用越弱。

积分控制虽然能消除余差,但它存在着控制不及时的缺点。因为积分输出的累积是渐进的,其产生的控制作用总是落后于偏差的变化,不能及时有效地克服干扰的影响,难以使控制系统稳定下来。所以,实用中一般不单独使用积分控制,而是和比例控制作用结合起来,构成比例积分控制。

这样取二者之长,互相弥补,既有比例控制作用的迅速及时,又有积分控制作用消除余差的能力。因此,比例积分控制可以实现较为理想的过程控制。

比例积分控制器是目前应用最为广泛的一种控制器,多用于工业生产中液位、压力、流量等控制系统。由于引入积分作用能消除余差,弥补了纯比例控制的缺陷,获得较好的控制质量。但是积分作用的引入,会使系统稳定性变差。对于有较大惯性滞后的控制系统,要尽量避免使用。

比例积分微分(PID)控制

最为理想的控制当属比例-积分-微分控制规律。它集三者之长:既有比例作用的及时迅速,又有积分作用的消除余差能力,还有微分作用的超前控制功能。

当偏差阶跃出现时,微分立即大幅度动作,抑制偏差的这种跃变;比例也同时起消除偏差的作用,使偏差幅度减小,由于比例作用是持久和起主要作用的控制规律,因此可使系统比较稳定;而积分作用慢慢把余差克服掉。只要三个作用的控制参数选择得当,便可充分发挥三种控制规律的优点,得到较为理想的控制效果。

PID控制中的积分作用可以减少稳态误差, 但另一方面也容易导致积分饱和, 使系统的超调量增大。

六、参考文献

张德丰编著、MATLAB控制系统设计与仿真、电子工业出版社、2009.6

胡寿松主编、自动控制原理(第五版)、科学出版社、2007

七、心得体会

我觉得学习MATLAB是不容易的,这是一件需要持之以恒的事,必须要坚持不懈的学习,还需要敢于开口向别人请教,更需要我们勤于思考,勤于动手,勤于记忆。程序设计是实践性很强的事情,需要我们亲自动手实际操作设计程序,熟悉MATLAB的操作环境,这对提高我们操作能力非常有效。

在这几天时间里,我仅仅学了一些皮毛,在编程过程中遇见许多问题,例如对工具栏了解不够,导致一些操作很混乱,对程序的运行,修改,添加往往是繁琐的,后来经过看书查阅资料有了基本了解,但是还是没有熟练掌握。虽然有的题目对我们来说还是有些难度的,但是在经过坎坎坷坷之后下我还是编出程序的,当我看到自己编的程序运行正确时,总是会万分的兴奋,充满成就感。虽然不能十分熟悉和运用MATLAB的所有程序,但是我们却打下了一定的基础,

想要进一步学习,还需要我在以后的实际应用里不断学习,改进自己不足之处,让自己有所进步,有所成长。

智能控制器使用手册

一概述 智能控制器是框架式空气断路器的核心部件,适用于50~60Hz电网,主要用作配电、馈电或发电保护,使线路和电源设备免受过载、短路、接地/漏电、电流不平衡、过压、欠压、电压不平衡、过频、欠频、逆功率等故障的危害;通过负载监控,需量保护,区域连锁等功能实现电网的合理运行。同时也用作电网节点的电流、电压、功率、频率、电能、需量、谐波等电网参量的测量;故障、报警、操作、电流历史最大值、开关触头磨损情况等运行维护参数的记录;当电力网络进行通讯组网时,智能控制器可用为电力自动化网络的远程终端实现遥测,遥信,遥控,遥调等,智能控制器支持多种协议以适用不同的组网要求。 二基本功能 对于M型无任何可选功能(加*的项目)时其功能配置为基本功能,如表1所示: 表1 基本功能配置 2.1.3 通讯功能 通讯功能为可选项,对于M型没有通讯功能,对于H型通讯协议可根据需要选择为Modbus,Profibus-DP,Device net.

2.1.4增选功能选择 增选功能为可选项,M型,H型都可以选择增选功能配置,不同增选功能代号与增选功能容如表2所示。 2.1.5 区域连锁及信号单元的选择 “区域连锁及信号单元”为可选项,M型、H型都可以选择信号单元的功能配置,当信号单元选择为S2,S3时,控制器具备区域连锁功能。 2.2 技术性能 2.2.1 适用环境 工作温度:-10℃~+70℃(24h?平均值不超过+35℃) 储存温度:-25℃~+85℃ 安装地点最湿月的月平均最大相对湿度不超过90%,同时该月的月平均最低温度不超过+25℃,允许由于温度变化产生在产品表面的凝露。 污染等级:3级。 (在和断路器装配在一起的情况下) 安装类别:Ⅲ。 (在和断路器装配在一起的情况下) 2.2.2工作电源 由辅助电源和电源互感器同时供电,保证负载很小和短路情况下控制都可以可靠工作。控制器的供电方式有下面3种方式:

流量控制器使用说明书样本

目录 一流量控制装置功能简介 (3) 二流量控制装置工作原理 (4) 三流量控制装置型号编制 (6) 四流量控制装置主要技术指标 (7) 五流量控制装置安装要求 (9) 六流量控制装置分体结构 (12) 七流量控制器电控部分操作说明 (13)

一、 LZJH-1型流量自动控制器功能简介 流量自动控制器是由流量仪表和流量调节器组成。 图1 安装示意图 高压自动流量测控装置是工业自动化过程测控中重要执行元件, 随着工业领域的自动化程度迅猛发展, 正被越来越多的应用在工业生产领域中。我公司根据市场需求, 参照国内外先进结构, 采用先进的嵌入式微处理器技术和仪表控制技术, 经与知名院校深入合作, 共同研发出LZJH-1流量控制装置( 简称控制器) 。该控制器广泛用于油田配注、化工、科研、工业污水处理等自动测控方案中。 流量控制装置是集多功能为一体的控制装置, 具有动态平衡, 静态自锁功能, 采用多级密封结构, , 适合应用在高压而且对于泄漏要求严格的场合, 也可用于母液配比混合液体的场合, 控制装置体积小、控制精度高、响应灵敏, 特别适合对压力、流量、液位、温度生产过程的调节。 控制方案多元化, 采用嵌入式微处理器控制、控制精度高。兼容多种信号输入方式: 包括4~20mA、 0~10KHz脉冲信号、RS485信号; 同时具有多种输出信号方式: 包括4~20mA电流信号和遵循标志MODBUS 通讯协议的RS485信号。具有设备自检、故

障自动提示、安全策略、误差自动调补、抗电磁干扰、断电自锁等功能。 二、流量控制装置工作原理 流量控制装置经过采样配套电磁流量计的实时瞬时流量信号、经过嵌入式微处理器处理和智能控制策略, 自动完成管道设定流量的调整。在母液配比应用中, 可经过同时采样母液流量和配比液流量, 自动完成混合液的定量配比。当您将所需要的流量设定值或混合液配比参数经过人机交互部分输入嵌入式控制器中, 流量控制装置便可经过比较设定值和流量计采样值, 结合智能的闭环控制策略, 自动控制阀门调整机构实现流量的精确调整。 流量控制装置的阀门采用升降式, 为保正测控装置具有较高精度的, 稳定的流量特性曲线, 采用复杂的多级阀芯调节。升降执行机构采用精密丝杆、铜质蜗轮, 特种电机、先进的微处理器组成, 确保了控制器阀门无泄漏, 流量控制精度在0.15~0.45m3/h, 流量控制范围为0.5 ~10m3/h, 流量控制误差在±2%。 中文液晶主显示界面显示管道中的实时瞬间流量; 设定当前控制瞬时流量( 控制总量或母液配比系数) ; 流量控制装置所运行的模式( 手动或自动) ; 实时时间。同时使用4只LED灯指示系统工作, 便于用户直观了解系统工作参数和状态。 流量控制装置是根据中国油田高压注水等实际使用情况, 在大庆油田有关单位指导下, 精心研制的, 完全实现自动化均匀注水, 按配注量注水。杜绝由于注水压力波动大, 所引起的注水流量的严

PID调节器的调节过程及其参数的整定方法

摘要 锅炉汽包水位是锅炉运行中的一个重要的监控参数,它间接反映了锅炉蒸汽负荷与给水流量之间的平衡关系。汽包锅炉给水自动控制的任务是使锅炉的给水量适应锅炉的蒸发量,以维持汽包水位在规定的范围内。由于给水系统的复杂性,现有的火电厂全程给水控制采用传统的PID控制,其精确数学模型难以建立,并且系统具有大滞后、时变性等一系列特点,往往难以满足火电机组复杂工况要求,所以许多大型火电厂对现有的全程给水控制提出了优化方案。 本文首先对控制系统进行时域分析,然后介绍PID调节器的调节过程及其参数的整定方法。重点分析了锅炉的给水控制系统,针对汽包水位控制对象的动态特性表现为有惯性、无自平衡能力的特点,采用先进的智能控制算法之一的模糊控制对其进行控制,并利用MATLAB分别对常规PID控制和模糊PID 串级控制进行仿真,结果表明采用模糊PID串级控制方法比常规PID控制方法迟延小、超调量小,使得汽包的动态特性得到优化。 关键词:模糊控制;给水控制;PID控制

Abstract The steam drum water level of boil is important monitoring parameter in a boiler movement, it had reflected indirectly the balance relations between the boiler steam load and the discharge of water. In the steam drum boiler for the water automatic control duty to adapt the boiler transpiration rate for the water volume, maintains the steam drum water level in the stipulation scope. As a result of for the water system complexity, the existing thermoelectric power station entire journey for the water control adopt the traditional PID control, its precise mathematical model establishes with difficulty, when the system has the big lag, denatured and so on a series of characteristics, often with difficulty satisfies the thermal power unit complex operating mode request, therefore many large-scale thermoelectric power stations proposed the optimization plan to the existing entire journey for the water control. First this article has analyzed the time domain of control system, then introduces the PID regulator’s adjustment process and the parameter installation method. And has analyzed great emphasis on the boil for the water control system, the steam drum water control object show the inertia, the non-self regulation ability, uses of a fuzzy control to control it, and separately carries on the simulation using MATLAB to the tradition PID control and the fuzzy PID cascade control, With comparing using the fuzzy PID cascade control method obtain result that is delay slightly, over small, enables the steam drum the dynamic characteristic to obtain the optimization. Keywords: Fuzzy control; For the water control; PID control

增量式PID控制算法的MATLAB仿真

增量式PID 控制算法的MATLAB 仿真 PID 控制的原理 在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID 控制,又称PID 调节。PID 控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID 控制技术最为方便。即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID 控制技术。PID 控制,实际中也有PI 和PD 控制。PID 控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。 一、 题目:用增量式PID 控制传递函数为G(s)的被控对象 G (s )=5/(s^2+2s+10), 用增量式PID 控制算法编写仿真程序(输入分别为单位阶跃、正弦信号,采样时间为1ms ,控制器输出限幅:[-5,5],仿真曲线包括系统输出及误差曲线,并加上注释、图例)。程序如下 二、 增量式PID 原理 { U(k)= ?u(k)+ U(k-1) 或 { U(k)= ?u(k)+ U(k-1) 注:U(k)才是PID 控制器的输出 三、 分析过程 1、对G(s)进行离散化即进行Z 变换得到Z 传递函数G(Z); 2、分子分母除以z 的最高次数即除以z 的最高次得到; )]}2()1(2)([)()]1()({[)(-+--++ --=?n n n T T n T T n n K n U D I P O εεεεεε)] 2()1(2)([)(i )]1()([)(-+--++--=?n n n Kd n K n n K n U P O εεεεεε

最新智能空调控制器用户手册资料

用户手册 ZHT-AC02D 空调智能切换控制器

目录 第一章产品概述 (1) 一.产品简介 (1) 二.产品功能特性和技术参数 (1) 1.主要功能特性 (1) 2.技术参数 (2) 三.安装环境 (2) 第二章安装指引 (3) 一.前面板 (3) 二.前面板指示说明 (3) 三.接口面板 (4) 四.后面板接口说明 (4) 五.智能控制启动系统定装与连接 (5) 1.安装步骤 (5) 2.实物联接图 (5) 3.控制器接线说明 (6) 第三章面板按键操作说明 (8) 一.操作流程图 (8) 二.系统设置说明 (9) 1.part setting(参与设置) (9) https://www.360docs.net/doc/b715811926.html,bin setting(组合设置) (9) 3.switch setting(切换设置) (9) 4.single setting(单独设置) (10) 5.sysclk setting(系统时间设置) (11) 6.system resrt(系统复位) (11) 7.learn code(学习红外码) (11) 8.detece vol(电压检测) (11) 9.temp mode(温度检测模式) (11) 第四章故障及排除 (13) 注意 本手册仅供用户查阅参考,不提供任何形式的担保,产品规格型号如有修正或更改不再另行通告。

第一章产品概述 一.产品简介 ZHT-AC02D型空调切换控制器是一种豪华型智能空调启动控制系统,支持2台空调机。实现单独或组合打包控制并监测空调机的运行状态,按照预先设置好的程序控制空调机的运行、停机及组合运行等。实现市电断电再来电自动启动空调,智能控制空调机的切换运行,且支持联机使用上位机软件管理配置。大大的提高了机房管理的效率,延长了空调的使用寿命。适用于民用、商用、中小型机房、通信基站、UPS机房的各种品牌柜式、分体壁挂、吸顶式空调机等各种机型。 该系统具有报警和自动撤消报警功能,当空调处于报警状态时,如果空调恢复了正常状态,则取消报警。 ZHT-AC02D型空调切换控制系统功能齐全、性能优越、安装设置方便快捷,最经济的方式解决空调来电启动和智能切换实际问题,是您节省电力资源和人力资源成本的最佳选择。 二.产品功能特性和技术参数 1.主要功能特性 壁挂式设计,LCD面板显示;按键操控面板,设置简便,LED灯显示运行状态 RS-485协议,通过PC连接上位机配置空调切换系统 最多支持2台空调,实现组合打包控制、定时切换、温控切换、故障切换 时间段定时开启功能、周期定时开启功能 远程实时获取空调开、关状态,远程实时获取机房环境温度功能 按用户配置温度,自动开启、关闭空调功能 供电恢复后,延时30秒启动空调 带断电记忆功能,该设备掉电后能保存之前设置的信息。 带电流监测功能,保证可靠开机,防止空调非断电情况下异常关机,可自动开机 具备记忆功能,供电恢复开起空调并达到停机前的模式、状态 具有断电来电或异常停机自启动功能:当空调机出现故障或停电时,空调机停机; 故障消除或重新来电后,控制空调机按设定的规则重新启动,不需要人工干预。独特优点:所有的逻辑开机动作,可开启至用户需要的温度及制冷模式 安装和维护简单,不需要拆开空调修改电路,,即插即用;不影响空调的其它功能 具备报警输出功能,连续3次开启空调不成功,输出报警信号 可与动力环境监控系统联网,空调启动失败时,输出报警开关量信号。(可选配我公司其它配件组成声光报警或拨打电话报警)

优倍智能调节器使用说明

智 能 调 节 器 使用说明书

一、智能调节器性能特点 1.采用专用仪表微处理器芯片设计制造,性能稳定可靠。 2.智能化的信号输入方式,可以在线修改输入信号的种类,自动零点补偿。 3.软件校准,无任何可调部件,性能稳定可靠。 4.对于线性信号,可在满量程内任意设置测量和报警范围。 5.具备配电功能,支持二线制变送器。 6.最多具有两路模拟量输入和输出功能。 7.输出电流的零点和满度可以在测量范围内任意设置。 8.过程量、给定量、控制量等数码管显示或光柱指示及模拟输出。 9.PID调节器正反作用可在线选择。 10.手/自动无扰动切换。 11.可分别设定控制量上限、下限输出控制范围。 12.可进行开机自动或开机手动方式设置。 13.具备远程手自动切换功能。 二、技术指标: 1、显示方式:双排四位LED显示测量值(PV值)和设定值(SV值),或阀位开度(FB值)。 2、显示范围:-1999~9999。 3、测量准确度:±0.2%FS±1字。 4、分 辨 率:末位一个字。 5、输入信号: 热 电 偶: K、E、S、B、J、T、R、N;冷端温度自动补偿范围0~50℃。 热 电 阻:Pt100、Cu100、Cu50、BA2、BA1;引线电阻补偿范围≤15Ω。 直流电流:0~10mA、4~20mA。 直流电压:0~20mV、0~75mV、0~200mV、0~5V、1~5V;0~10V(订货时需指 出)。 线性电阻:0~400Ω(远传压力表)。 频 率:0.1Hz-10KHz。(该功能需单独指定,与其它信号不可兼容输入)。 6、变送输出准确度:同测量准确度。 7、模拟输入阻抗:电流信号Ri=100Ω;电压信号Ri=500KΩ。 8、模拟输出负载能力: 电流信号:4~20mA输出时Ro≤750Ω;0~10mA输出时Ro≤1.5KΩ。 电压信号:要求外接仪表的输入阻抗Ri≥250KΩ,否则不保证连接外部仪表后的 输出准确度。 9、警继电器触点容量:AC220V 3A或24V 5A (阻性负载)。 10、PID控制方式:电流/电压输出、继电器开关量输出、正转/反转阀位控制。 11、配电输出:DC24±1V 30mA。 12、报警方式:2路报警控制(可选择下下限LL、下限L、上限H、上上限HH报警方式, 下同),LED指示。 13、报警精度:±1字。 14.保护方式:输入回路断线、输入信号超/欠量程报警。 15.通讯方式:RS232或RS485 。 16.设定方式:面板轻触式按键数字设定,设定值断电永久保存。 17.使用环境:环境温度:-10~55℃;相对湿度:10~90%RH。 18.耐压强度: 输入/输出/电源/通讯 ≥1000V.AC 1分钟。 19.绝缘阻抗: 输入/输出/电源/通讯 ≥100MΩ。 20.电 源:开关电源:交流85~265V,频率: 50Hz±2Hz; 线性电源:交流220V±10V,频率: 50Hz±2H; 直流电源:DC 24V±2V。 21.功 耗:<5W。 三、仪表参数设置: 1、仪表面板定义

智能型数字显示温度控制器使用说明书

XMT-2000 智能型数字显示温度控制器使用说明书 此产品使用前,请仔细阅读说明书,以便正确使用,并妥善保存,以便随时参考。 操作注意 为防止触电或仪表失效,所有接线工作完成后方能接通电源,严禁触及仪表内部和改动仪表。 断电后方可清洗仪表,清除显示器上污渍请用软布或棉纸。显示器易被划伤,禁止用硬物擦拭或触及。 禁止用螺丝刀或书写笔等硬物体操作面板按键,否则会损坏或划伤按键。 1.产品确认 本产品适用于注塑、挤出、吹瓶、食品、包装、印刷、恒温干澡、金属热处理等设备的温度控制。本产品的PID参数可以自动整定,是一种智能化的仪表,使用十分方便,是指针式电子调节器、模拟式数显温控仪的最佳更新换代产品。本产品符合Q/SQG01-1999智能型数字显示调节仪标准的要求。 请参照下列代码表确认送达产品是否和您选定的型号完全一致。 XMT□-□□□□-□ ①②③④⑤⑥ ①板尺寸(mm)3:时间比例(加热) 5:下限偏差报警 省略:80×160(横式) 4:两位PID作用(继电器输出) 6:上下限偏差报警 A:96×96 5:驱动固态继电器的PID调节⑤输入代码 D:72×72 6:移相触发可控硅PID调节 1:热电偶 E:96×48(竖式) 7:过零触发可控硅PID调节 2:热电阻 F:96×48(横式) 9:电流或电压信号的连续PID调节 W:自由信号 G:48×48 ④报警输出⑥馈电变送输出 ②显示方式 0:无报警 V12:隔离12V电压输出 6:双排4位显示 1:上限绝对值报警 V24:隔离24V电压输出 ③控制类型 2:下限绝对值报警 GI4:隔离4-20mA变送输出 0:位式控制3:上下限绝对值报警 2:三位式控制 4:上限偏差报警 2.安装 2.1 注意事项(5)推紧安装支架,使仪表与盘面结合牢固。 (1)仪表安装于以下环境 (2)大气压力:86~106kPa。2.3 尺寸 环境温度:0~50℃。 相对湿度:45~85%RH。 (3)安装时应注意以下情况 H h 环境温度的急剧变化可能引起的结露。 腐蚀性、易燃气体。 直接震动或冲击主体结构。 B l 水、油、化学品、烟雾或蒸汽污染。 b b’ 过多的灰尘、盐份或金属粉末。 空调直吹。阳光的直射。 热辐射积聚之处。 h’ 2.2 安装过程(1)按照盘面开孔尺寸在盘面上打出用来安装单位:mm 仪表的矩形方孔。型号 H×B h×b×1 h’×b’ (2)多个仪表安装时,左右两孔间的距离应大 XTA 96×96 92×92×70 (92+1)×(92+1) 于25mm;上下两孔间的距离应大于30mm。 XTD 72×72 68×68×70 (68+1)×(68+1) (3)将仪表嵌入盘面开孔内。 XTE 96×48 92×44×70 (92+1)×(44+1) (4)在仪表安装槽内插入安装支架 XTG 48×48 44×44×70 (44+1)×(44+1) 3.接线 3.1接线注意 (1)热电偶输入,应使用对应的补偿导线。 (2)热电阻输入,应使用3根低电阻且长度、规格一致的导线。 (3)输入信号线应远离仪表电源线,动力电源线和负荷线,以避免引入电磁干扰。 3.2接线端子 4.面板布置 ①测量值(PV)显示器(红) ?显示测量值。 ?根据仪表状态显示各类提示符。 ②给定值(SV)显示器(绿) ?显示给定值。 ?根据仪表状态显示各类参数。 ③指示灯 ?控制输出灯(OUT)(绿)工作输出时亮。 ?自整定指示灯(AT)(绿) 工作输出时闪烁。 ?报警输出灯1(ALM1)(红)工作输出时亮。 ?报警输出灯2(ALM2)(红)工作输出时亮。 ④SET功能键 ?参数的调出、参数的修改确认。 ⑤移位键 ?根据需要选择参数位,控制输出的ON/OFF。 ⑥▲、▼数字调整键 ?用于调整 数字,启动/退出自整定。

PID调节器说明书[2]

一、概述 SLRT系列智能PID调节仪是一种测量调节精度高,功能强的数字显示调节仪,它可为第一流的尖端设备提供优质服务,广泛地用于炼油、化工、冶金、建材、轻工、电子等行业温度、压力、流量、液位的自动检测和自动控制。 二、主要技术指标 1、测量精度:0.3级 2、报警输出:等同测量精度 3、PID无扰动稳态,温度±2℃ 4、变送输出精度:±0.3%FS 负载能力:0-600∩ 5、输入特性要求:0-10mA:500∩、4-20mA:250∩、DC.V:≥200K∩热电偶及DC.mV: ≥10M∩冷端自动补偿精度0-40℃范围内±0.3℃热电阻:三线制输入3×10∩以内完全补偿 6、继电器接点容量:AC220V 7A 7、过零触发式外接可控硅(可控硅小于500A)。 8、供电电源:AC220V±10%、直流DC24V±10%供选择 9、功耗:≤15W 10、工作环境:温度0-50℃、相对温度:<85%,无腐蚀性气体,无震动场合 11、控制参数:比例带(P):0-999.9%可调 积分时间(I):3-9999S可调 微分时间(d):1-9999S可调 调节周期(t):1-65S可调 12、可以接受的输入信号: 8种热电偶温度信号:K、E、S、B、J、T、EA、N 5种热电阻温度信号:Pt100、Cu100、Cu50、G53、BA1、BA2 3种线性mV信号:0-20mV、0-100mV、0-500mV 远传压力表等线性电阻信号:0-400∩ 2种线性mA信号:0-10mA、4-20mA 2种线性直流V信号:0-5V、1-5V 三、面板型式 “SET”设定键:在正常运行状态下,按下该键可查看有关设定值的参数,此时上排主显示窗显示参数名称代号,下排付显示窗显示参数值。停止按键1 分钟或同时按下退到正常运行状态。进入设定状态,当显示SP1(第一报警参数)符号时,键入,主显示窗显示“SEL”,辅助显示窗显示“555”.输入象征操作权限的密码后,进入正式设定状态。 “RIGHT”光标键:在设定状态下,每按一次光标键右移一位,如此反复,光标在下排辅助窗口上作周而复始的移动,光标所在的位置为设定操作的有效位置。 “∨”减少键:在设定状态下为减少,每按此键一次。光标位置的数码管减少1个字。在手动状态下按此键为输出减少。 “∧”增加键:在设定状态下为增加,每按此键一次。光标位置的数码管增加1个字。在手动状态下按此键为输出增加。

基于MATLAB的PID控制器参数整定及仿真

基于MATLAB的PID控制器参数整定及仿真 摘要: PID控制器结构和算法简单应用广泛,但参数整定方法复杂,通常用 凑试法来确定。文中探讨利用MATLAB实现PID参数整定及仿真的方法,并分析、比较比例控制、比例积分控制和比例微分控制,探讨了Kp, Ti, Td 3个参数对PID 控制规律的影响。 关镇词: MATLAB ; PID控制器;参数整定;仿真 Parameter tuning and emulation of PID controller based on MATLAB Ahstratct; The control structure and algorithm of PID is easy and widely applicable,but its setting meth-ods of parameter are multifarious. Generally utilize guessing and trying to fix. This artical is convenient to tune PID parameters and emulate through MATLAB experiment. Analyze and compare the proportion control, the proportion integral control and the proportion differential control. Discuss the influence of three parameters KP ,Ti and Td to the PID control rules. Key words ; MATLAB;PID controller; parameter tuning; emulation 引言 PID控制器又称为PID调节器,是按偏差的比例P( Proportional )、积分I(Integxal)、微分D ( Differential orDerivative)进行控制的调节器的简称,它主要针对控制对象来进行参数调节。PID控制器问世至今,控制理论的发展经历了古典控制理论、现代控制理论和智能控制理论3个阶段。在工业控制系统和工程实践中,传统的PID控制策略依然被广泛采用。因为它算法简单、稳定性好、工作可靠、鲁棒性好,在工程上易于实现。但PID控制器的参数整定方法复杂,通常采用PID归一参数整定法和试凑法来确定,费时、费力,且不能得到最优的整定参数。针对这一问题,文中探讨用MATLAB实现PID参数整定及仿真的方法及控制参数对PTD控制规律的影响。利用MATLAB强大的计算仿真能力,解决了利用试凑法来整定参数十分浩繁的工作,可以方便、快速地找到使系统达到满意性能指标的参数。 PID控制器的原理与算法 当被控对象的结构和参数不能被完全掌握,或得不到精确的数学模型时,应用PID控制技术最为方便。PID控制器就是根据设定值与实际值的误差,利用比例(P)、积分(I)、微分(D)等基本控制规律,或者把它们 适当配合形成有PI , PD和PID等的复合控制规律,使控制系统满足性能指标要求。 控制系统大多都有储能元件,这就使系统对外界的响应有一定的惯性,且能量和信息在传输和转化的过 程中,由于管道、距离等原因也会造成时间上的延迟,所以,按偏差进行比例调

日本岛电FP93调节器中文操作说明

日本岛电FP93可编程PID调节器中文操作说明 FP93是日本岛电公司高性能的0.3级可编程PID调节器,它功能完善,性能优良、设计细腻。具有自由输入,四位超大高亮的字符显示,众多的状态指示。可带4组曲线最大40段可编程,六组专家PID参数,更高级的区域PID 算法。带手动、停电和故障保护、模拟变送、通讯接口、两路时标输出,I/O 接口包括4组DI外部开关、3路继电器和4路OC扩展门共16种和事件。 FP93可分为六个窗口群,每个窗口群的第一个窗口用.星号代表,全部的子窗 口和用虚线表示的选件子窗口共95个。每个窗口采用了编号,例如传感器量程 选择窗口[5-5],表示第5窗口群的第5号窗口。进入子窗口,按增减ù 键修 改参数时,面板SV窗口的小数点闪动,按ENT键确认修改后,小数点灭。 三.简单加热系统定值调节的快速入门设置例 1.定值设置例:仪表选用FP93-8P-90-0000, K型热偶0.0~800.0℃输入,P 型输出接固态继电器。设定温度为600.0℃,EV1上限绝对值报警值650.0 ℃,EV2下限绝对值报警值550℃, EV2的报警为上电抑制。 首先按面板RUN/RST(运行/复位键),使仪表进入复位,面板RUN运行灯灭, .确定键和窗口是不被锁定或被转移到外部操作,参照中文流程图设置: 在[5-5]窗口,将传感器量程代码设定为:05(K型热偶0.0~800.0℃) 。 1)在[5-6]窗口,选择传感器量程的单位C(0.0~800.0℃)。 2)在[5-12]窗口,将调节输出极性设为:rA 反作用(加热)。 3)在[5-13]窗口,将调节输出的时间比例周期设为:2秒。 4)在[3-1]窗口,设置为ON,定值方式。 5)在[3-2]或[0-0]窗口,按增、减键将SV值设为600.0℃,按ENT键确认。 6)在[5-19]窗口, 将EV1报警方式设为:上限绝对值(HA)。 7)在[5-22]窗口, 将EV2报警方式设为:下限绝对值(LA)。 8)根据要求 ,在[5-24]窗口,设置下限报警应具有上电抑制功能,设为:2。 10)在[3-4]窗口, 设EV1报警值:650.0℃;在[3-5]设EV2报警值:550.0℃。 11)在[3-3]窗口,选择PID参数号1 注:0或1等同于1号PID 参数 12)接输出,在[0-0]窗口按住RUN键3秒钟,面板RUN灯闪 烁,启动运行。 13)在[0-7]自整定窗口,按增/减键将OFF改为ON,按ENT键启动自整定,AT 灯亮。当炉温到达设定值时, AT灯闪烁。经三,两个周期振荡,AT灯灭,自整 定完成。基本的设置和调整结束,可进行定值FIX的调节了。 四.用户的基本设置窗口 基本窗口[0-0]窗口 1) 传感器类型和范围/单位[5-5]/[5-6]窗口 2) 调节输出正/反作用[5-12]窗口 3)SSR(P型)和继电器接点(Y型)的输出比例周期 [5-13]窗口 4)PID参数,调节输出限幅和抗超调系数[4-0]~[4-8]窗口 5)PID参数的自整定AT执行[0-7]窗口 6)定值控制FIX和程序控制PROG选择[3-1]窗口 1.传感器类型和测量范围 .此窗口需首先设置,一旦更改将清除其它与量程有关的参数,例如设定值SV 输入类型的设定:(参照流程图上的量程代码表,在[5-5] “RANG”窗口,按增 /减键选择传感器类型和测量范围代码), 按确认键(ENT)确认。此外,可在[5- 6]窗口选择温度测量的摄氏(℃)或华氏(℉)的单位。 注:铂电阻Pt100或JPt100(旧国标BA2)的标准区别。 直流输入的可编显示量程:在[5-9]窗口选择直流信号的小数点位置 (DP):XXXX、XXX.X、XX.XX、X.XXX;[5-8][5-7]设置直流信号显示范围的上、 下限值:-1999~9999,最大间隔10~5000。由此定义了直流信号的工程显示量 程。例如:4~20mA表示为0~100.0兆帕的压力量程. 2.调节输出正/反作用 在[5-12]“ACT”窗口,选择调节输出反作用(加热)或正作用(致冷)。 反作用(RA):PV测量值与SV设定值的正偏差越大,调节输出越小(加热系统)。 正作用(DA):PV测量值与SV设定值的正偏差越大,调节输出越大(致冷系统)。 3.SSR(P型)和继电器接点(Y型)的输出比例周期:在[5-13]窗口设置Out的 输出比例周期。在比例周期内, 占空比脉宽调节输出正比于PID运算,用于交 流过零调功。P型输出比例周期一般选2~12秒(出厂值3秒)。继电器接 点(Y型)输出比例周期一般选20~30秒(出厂值30秒)。周期短调节变化快, 适合小惯性系统;惯性大的周期可选长些。负载电流大于300A时,可配功率扩 展板触发晶闸管。还可配置先进的ZAC10 I/P周波控制器,具有节能、不打表 针,调节精度高和提高电源功率因数的优点。 4.系统PID参数组 1)6组PID参数:比例P,积分I和微分D参数是决定系统调节品质的重要参 数,提供了0-6号的6组PID参数(0或1都代表1号),以对号入座的配制 在定值或曲线控制中。定值方式时,仅能在[3-3]窗口,选择1个PID号码。 程序方式,一组曲线最多可选择6个。 2)6组调节输出限幅:每个PID号码都有对应的一组输出限幅参数,分别 在[4-7] [4-8]窗口设定下限O-L(0~99%)和上限O-H(1~100%)。例如: O-L设 20%和O-H 设80%,对应0~10V和4~20mA分别是2~8V和 7.2~ 16.8mA。适用于限定阀门开度,避开如线性阀的非线性区,伺服动作 范围、减小加热功率以及对特殊加热元件某升温段的功率限制等。限幅虽 能减小超调,如果因调节量不足将影响调节速度造成欠调(如长时间温度不 能到达)。对反作用的加热,会因下限维持输出造成连续超调,一般不设下 限(保持0.0%)。 同上,在该PID参数窗口群中设其它5组PID号对应的调节输出限幅。 3)6组抗超调系数:每个PID号码都有对应的一组抗超调SF系数 图一:有超调、振荡无超调、无振荡欠调,过渡时间长 在[4-6]窗口,设置第1组PID参数的超调抑制系数SF。调整SF可使被控对象 到达目标设定值的过渡过程最平稳。其原理是提前进入比例调节,延迟进行积 分调节(克服积分饱和)。SF对过渡过程的影响见图--,理论上,到达新设定 值,过快的调节速度,容易产生振荡,而中间图的效果较为理想。可根据工艺时 间和允许超调量,现场具体选择超调抑制系数SF(0~1.00),SF = 0为常规PID; SF = 1超调抑制作用强,速度慢;SF = 0.4为出厂值,.建议初次采用。 同上,在该PID参数窗口群中设其它5组PID参数的SF。 4)PID参数的自整定AT执行: 专家系统的办法是利用自整定功能,自动找到系统最佳的PID参数。在定值控 制或程序控制运行状态时, 在[0-7]窗口,可执行自整定AT:执行(on)或停止 (off)。如图示的AT自整定起动on后, AT灯亮闪烁,在PV测量值到达SV 设定值后,AT灯常亮,产生对系统的二、三次扰动。根据超调振荡的大小和恢 复的周期,自动算出系统的PID参数。整定完成,AT灯灭,系统恢复正常控制。 在曲线运行时,对于选择多组 PID参数手动调整:(初学跳过 FP93为用户提供了6组PID参数。可在[4-1]~[4-8] PID窗口群中观察或手 动修改自整定后的参数。对于滞后和变频控制等特殊系统, 若反复整定效果不 理想,可手动修改PID参数。 A.当到达稳态前超调过大,如对到达稳态时间要求不高,可增大比例克服超调。 B.如要加快到达稳态的时间,而允许少量超调时,可适当减小比例带。 C.当测量值在设定值上下缓慢波动时,可适当增加积分时间或增大比例带。 D.当测量值在设定值上下频繁波动时,可适当减小微分时间。 5.PID算法外的其他方式: 手动更改PID参数设定窗口时,有下述的调节方式: 位式调节: 自整定示意图

PID调试步骤(应用最为广泛的调节器控制规律)

PID调试步骤 没有一种控制算法比PID调节规律更有效、更方便的了。现在一些时髦点的调节器基本源自PID。甚至可以这样说:PID调节器是其它控制调节算法的吗。 为什么PID应用如此广泛、又长久不衰? 因为PID解决了自动控制理论所要解决的最基本问题,既系统的稳定性、快速性和准确性。调节PID的参数,可实现在系统稳定的前提下,兼顾系统的带载能力和抗扰能力,同时,在PID调节器中引入积分项,系统增加了一个零积点,使之成为一阶或一阶以上的系统,这样系统阶跃响应的稳态误差就为零。 由于自动控制系统被控对象的千差万别,PID的参数也必须随之变化,以满足系统的性能要求。这就给使用者带来相当的麻烦,特别是对初学者。下面简单介绍一下调试PID参数的一般步骤: 1.负反馈 自动控制理论也被称为负反馈控制理论。首先检查系统接线,确定系统的反馈为负反馈。例如电机调速系统,输入信号为正,要求电机正转时,反馈信号也为正(PID算法时,误差=输入-反馈),同时电机转速越高,反馈信号越大。其余系统同此方法。 2.PID调试一般原则 a.在输出不振荡时,增大比例增益P。 b.在输出不振荡时,减小积分时间常数Ti。 c.在输出不振荡时,增大微分时间常数Td。 3.一般步骤 a.确定比例增益P 确定比例增益P 时,首先去掉PID的积分项和微分项,一般是令Ti=0、Td=0(具体见PID的参数设定说明),使PID为纯比例调节。输入设定为系统允许的最大值的60%~70%,由0逐渐加大比例增益P,直至系统出现振荡;再反过来,从此时的比例增益P逐渐减小,直至系统振荡消失,记录此时的比例增益P,设定PID的比例增益P为当前值的60%~70%。比例增益P调试完成。 b.确定积分时间常数Ti 比例增益P确定后,设定一个较大的积分时间常数Ti的初值,然后逐渐减小Ti,直至系统出现振荡,之后在反过来,逐渐加大Ti,直至系统振荡消失。记录此时的Ti,设定PID 的积分时间常数Ti为当前值的150%~180%。积分时间常数Ti调试完成。 c.确定微分时间常数Td 微分时间常数Td一般不用设定,为0即可。若要设定,与确定P和Ti的方法相同,取不振荡时的30%。 d.系统空载、带载联调,再对PID参数进行微调,直至满足要求。 2.PID控制简介 目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。智能控制的典型实例是模糊全自动洗衣机等。自动控制系统可分为开环控制系统和闭环控制系统。一个控制系统包括控制器﹑传感器﹑变送器﹑执行机构﹑输入输出接口。控制器的输出经过输出接口﹑执行机构﹐加到被控系统上﹔控制系统的被控量﹐经过传感器﹐变送器﹐通过输入接口送到控制器。不同的控制系统﹐其传感器﹑变送器﹑执行机构是不一样的。比如压力控制系统要采用压力传感器。电加热控制系统的传感器是温度传感器。目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器(intelligent

数字PID控制器的MATLAB仿真

数字PID控制器的MATLAB仿真 江苏科技大学 电子信息学院 实验报告 评定成绩指导教师实验课程:计算机控制技术 宋英磊实验名称:数字PID控制器的MATLAB仿真 学号: 1345733203 姓名: 胡文千班级: 13457332 完成日期: 2015年 11 月16日 一、实验目的 (1)掌握用SIMULINK对系统进行仿真的基本方法。 (2)对PID数字控制器进行仿真。 二、实验内容 1、基本的PID控制 在模拟控制系统中,控制器最常用的控制规律是PID控制。模拟PID控制系统原理 框图如图1-1所示。 比例y(t)r(t)+e(t)u(t)微分被控对象 +-积分 图1-1 模拟PID控制系统原理框图 PID控制规律为: t,,1de(t),,u(t),ke(t),e(t)dt,T pD,,,0TdtI,, ,,()1Us,,()1Gs,,k,,Ts或写成传递函数的形式 pD,,E(s)TsI,,

133仿真1 以二阶线性传递函数为被控对象,进行模拟PID控制。输入信号 2s,25s k,60,k,1,k,3,仿真时取,采用ODE45迭代方法,仿真时间 r(t),sin(2,*0.2t)pid 10s。 仿真方法:在Simulink下进行仿真,PID控制由Simulink Extras节点中的PID Controller 提供。 仿真程序:ex1_1.mdl,如图1-2所示。 图1-2 连续系统PID的Simulink仿真程序 将该连续系统的模拟PID控制正弦响应结果截图后至于下面的空白处: 连续系统的模拟PID控制正弦响应如图1-3所示。

图1-3 连续系统的模拟PID控制正弦响应 2、连续系统的数字PID控制仿真 计算机控制是一种采样控制,它只能根据采样时刻的偏差值计算控制量。因此 连续PID控制算法不能直接使用,需要采用离散化方法。在计算机PID控制中,使 用的是数字PID控制器。 按模拟PID控制算法,以一系列的采样时刻点kT代表连续时间t,以矩形法数 值积分近似代替积分,以一阶后向差分近似代替微分,可得离散PID位置式表达式: k,,TTD,,ukkekejekek(),(),(),((),(,1)),p,,TT,0jI,, kekek(),(,1)kekkejTk,(),(),,pidT,0j kpk,,k,kT式中,,e为误差信号(即PID控制器的输入),u为控制信号(即控 制idpDTI 器的输出)。 在仿真过程中,可根据实际情况,对控制器的输出进行限幅。连续系统的数字PID控制 可实现D/A及A/D的功能,符合数字实时控制的真实情况,计算机及DSP的实 时PID控制 都属于这种情况。 1Gs, 仿真2 设被控对象为一个电机模型传递函数,式中J=0.0067,B=0.1。输()2Js,Bs入信号为,采用PID控制,其中。采用ODE45方法求解连 k,20,k,0.50.5sin(2,t)pd续被控对象方程。 2dydyYs()1仿真方法: 因为,所以J,B,u,另Gs,,()22dtdtUsJs,Bs() ,y,y,,12,,则,因此连续对象微分方程函数ex3f.m如下 y1,y,y2,y,, y2,,(B/J)y,(1/J)*u,2, function dy = ex3f(t,y,flag,para)

电动阀门智能控制器说明书

电动阀门智能控制器说明书

————————————————————————————————作者:————————————————————————————————日期: 2

--------------------------------------------------------------------------------------------------- 产品的不断升级可能导致部分数据的变化,如有改动,恕不另行通知。KZQ07系列电子伺服式电动阀门智能控制器 使用说明书 本定位器出厂之前已对其输入、 输出性能进行严格标定,接线后一般 KZQ07-1A KZQ07-2A

尊敬的用户,请在安装本控制器前请仔细检查以下内容: 1、检查执行器的内部位置限位切换开关,确保限位开关在区域内工作,有无异 常现象,能否达到开度的零位与满位,确认限位开关能正常工作。 2、接线前请检查执行器中电位器有无强电,用万用表分别测量电位器三接线端 子,确保该电位器与电机控制端子绝缘,电位器在执行器运转过程中的阻值变化正常,排除断点等异常现象。 3、定位器与执行器间连线要正确,仔细检查两者端子的对应关系,特别注意定 位器电源、输入信号与输出信号接线,切莫把电源接至弱点信号端,同时用仪表测量控制输入信号在定位器接受信号范围内。 4、如与执行器配套使用,在严寒、酷热、高温的环境下开箱时,仪表应于现场 存放3小时以上方可进行标定效验。 目录 一、概述-----------------------------------------------------------------------------2 二、主要技术指标-----------------------------------------------------------------2 三、定位器控制原理--------------------------------------------------------------4 四、定位器面板与接线-----------------------------------------------------------5 五、基本操作方法-----------------------------------------------------------------9 六、标定接线及操作方法--------------------------------------------------------9 七、错误代码列表-----------------------------------------------------------------11 八、附录-----------------------------------------------------------------------------12 如客户所购买指明配置的本公司Z型(机电一体)执行器,无需对执行器转角标定,接线无误即可正常使用。 一、概述: KZQ07系列电动阀门智能定位器是专门为电动执行器配套开发的数字控制系统,采用汽车工业专用的微处理器作为核心处理单元,是真正意 义上的智能数字采集控制系统。可直接安装在电动执行器的接线盒内或以 DIN导轨方式固定在外,无须专门的控制箱,体积小,安装方便。 KZQ07系列电动阀门智能定位器使用固态可控硅进行无触点控制电机,简单可靠,配合高分辨率位置传感器,不但控制精度高,控制准确, 且寿命长,可靠性高。另外控制系统无须保持电池,可在完全停电后再次 通电时,自动识别出执行器位置的变化。 KZQ07系列电动阀门智能定位器能直接接收工业仪表或计算机等输出的4~20mA DC信号(其它输入信号类型可在出厂前定制),与安装有位置 反馈传感器的电动执行器配套,对各种阀门或装置进行精确定位操作,能 3

相关文档
最新文档