运筹学教案设计(胡运权版)

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《绪论》(2课时)

【教学流程图】

运筹学

运筹学与数学模型的基本概念管理学

布置作业

【教学方法】

本课主要采用任务驱动和程序式思维相结合的教学方法,过程当中辅以案例讲解、启发提问、自主学习和协作学习等方式。任务驱动是实现本课教学目标和完成教学容的主要方法,任务是师生活动容的核心,在教学过程中,任务驱动被多次利用。自主学习能提高学生的自主探究能力,竞赛和协作学习调动学生的积极性,激发学生参与的热情。学生之间互帮互助,共同分享劳动果实,从而激发了学生的团队意识,达到理想的教学效果。

【教学容】

一、教学过程:

(一)举例引入:(5分钟)

(1)齐王赛马的故事

(2)两个囚犯的故事

导入提问:什么叫运筹学?

(二)新课:

绪论

一、运筹学的基本概念

(用实例引入)

例1-1战国初期,齐国的国王要求田忌和他赛马,规定各人从自己的上马、中马、下马中各选一匹马来比赛,并且说好每输一匹马就得支付一千两银子给予获胜者。当时齐王的马比田忌的马强,结果每年田忌都要输掉三千两银子。但膑给田忌出主意,可使田忌反输为赢。试问:如果双方都不对自己的策略,当齐王先行动时,哪一方会赢?赢多少?反之呢?

例1-2有甲乙两个囚犯正被隔离审讯,若两人都坦白,则每人判入狱8年;若两个人都抵赖,则每人判入狱1年;若只有一人坦白,则他初释放,但另一罪犯被判刑10年。求双方的最优策略。

乙囚犯

抵赖坦白

甲囚犯抵赖-1,-1 -10,0

坦白0,-10 -8,-8

定义:运筹学(Operation Research)是运用系统化的方法,通过建成立数学模型及其测试,协助达成最佳决策的一门科学。它主要研究经济活动和军事活动中能用数学的分析和运算来有效地配置人力、物力、财力等筹划和管理方面的问题。

二、学习运筹学的方法

1、读懂教材上的文字;

2、多练习做题,多动脑筋思考;

3、作业8次;

4、考试;

5、EXCEL操作与手动操作结合。

二、学生练习(20分钟)

三、课堂小结(5分钟)

《线性规划及单纯形法》(2课时)

【教学流程图】

运筹学

运筹学与线性规划的基本概念线性规划

线性规划的标准型

目标函数

结合例题讲解线性规划标准型的转化方法约束条件的右端常数

约束条件为不等式

布置作业

【教学方法】

本课主要采用任务驱动和程序式思维相结合的教学方法,过程当中辅以案例讲解、启发提问、自主学习和协作学习等方式。任务驱动是实现本课教学目标和完成教学容的主要方法,任务是师生活动容的核心,在教学过程中,任务驱动被多次利用。自主学习能提高学生的自主探究能力,竞赛和协作学习调动学生的积极性,激发学生参与的热情。学生之间互帮互助,共同分享劳动果实,从而激发了学生的团队意识,达到理想的教学效果。

【教学容】

一、教学过程:

第一章线性规划及单纯形法

第一节线性规划问题及其数学模型

(用实例引入)

例1-3 美佳公司计划制造Ⅰ、Ⅱ两种产品,现已知各制造一件时分别占用的设备A 、B 的台时数,及测试工序所需要的时间。问该公司应制造两种家电各多少件时才能使获取的利润最大?

212m ax x x Z +=

..t s 0

,5

242615

5212

1212≥≤+≤+≤x x x x x x x

例1-4 有A 、B 、C 三个工地,每天需要水泥各为17、18、15百袋。为此甲、乙两个水泥厂每天各生产23百袋和27百袋水泥供应这三个工地。其单位运价如下表,求最佳调运方案。

23

222113*********.1max x x x x x x Z +++++=

..t s

)

3,2,1;2,1(015

181727

23231322122111232221131211==≥=+=+=+=++=++j i x x x x x x x x x x x x x ij

一、 线性规划的基本概念

如果规划问题的数学模型中,决策变量的取值是连续的整数、小数、分数或实数,目标函数是决策变量的线性函数,约束条件是含决策变量的线性等式或不等式,则称这种规划问题为线性规划。 二、 将线性规划的普通型化为标准型

1、 对于minZ=CX,可转化为min(-Z)=-CX ;

2、 当约束条件中出现i n in i i b x a x a x a ≤+++ 2211时,在左边加上一

个“松弛变量”01≥+i x ,使不等式变为等式;当约束条件中出现i n in i i b x a x a x a ≥+++ 2211时,则在左边减去一个“松弛变量”01≥+i x 。

3、 当某个决策变量0∠j x 或符号不限时,则增加两个决策变量

'j x 和''j x ,令'''j j j x x x -=;

4、 当约束条件中有常数项0∠i b 时,则在方程两边同乘以(-1)。 例1-5 将下列非标准4型线性规划问题转化为标准型。

不限

321321321321321,0,20040065300432.

.423min x x x x x x x x x x x x t s x x x Z ≥≤++≤++≥+++-=

解:

,,,,,,200400

)(65300

)(432.

.000(423)min(654''3'3216''3'

3215'

'3

3'

214''33'216

54'

'3'

321≥≤+-++≤+-++≥--+++++--+-=-x x x x x x x x x x x x x x x x x x x x x x t s x x x x x x x Z

学生练习:P42习题1.2。

二、学生练习 (20分钟) 三、课堂小结(5分钟)

相关文档
最新文档