极限的求解方法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求函数极限的方法和技巧

1、运用极限的定义

2、利用极限的四则运算性质

若 A x f x x =→)(lim 0

B x g x x =→)(lim 0

(I)[]=±→)()(lim 0

x g x f x x )(lim 0

x f x x →±B A x g x x ±=→)(lim 0

(II)[]B A x g x f x g x f x x x x x x ⋅=⋅=⋅→→→)(lim )(lim )()(lim 0

(III)若 B ≠0 则:

B

A

x g x f x g x f x x x x x x ==→→→)(lim )

(lim )()(lim 0

00

(IV )cA x f c x f c x x x x =⋅=⋅→→)(lim )(lim 0

(c 为常数)

上述性质对于时也同样成立-∞→+∞→∞→x x x ,, 3、约去零因式(此法适用于型时0

,0x x →)

例: 求

解:原式=()

()

)

12102(65)

2062(103lim

2

23223

2

+++++--+---→x x x x x

x x x x x

x =)

65)(2()

103)(2(lim 222+++--+-→x x x x x x x

=)

65()

103(lim 222++---→x x x x x =)3)(2()2)(5(lim 2+++--→x x x x x =2

lim

-→x 73

5

-=+-x x 4、通分法(适用于∞-∞型)

12

16720

16lim 23232+++----→x x x x x x x

例: 求 )21

44(

lim 22

x

x x ---→

解: 原式=)2()2()

2(4lim

2x x x x -⋅++-→

=)2)(2()

2(lim

2x x x x -+-→

=4

1

21lim

2=+→x x

5、利用无穷小量性质法(特别是利用无穷小量与有界量之乘积仍为无穷小量的性质)

设函数f(x)、g(x) 满足: (I )0)(lim 0

=→x f x x

(II) M x g ≤)( (M 为正整数) 则:0)()(lim 0

=→x f x g x x

例: 求 x

x x 1sin

lim 0

⋅→ 解: 由 0lim 0

=→x x 而 11

sin

≤x

故 原式 =01

sin

lim 0

=⋅→x

x x 6、利用无穷小量与无穷大量的关系。

(I )若:∞

=)(lim x f 则 0)

(1

lim

=x f (II) 若: 0)(lim =x f 且 f(x)≠0 则 ∞=)

(1

lim x f 例: 求下列极限 ① 51lim

+∞→x x ②1

1

lim 1-→x x

解: 由 ∞=+∞

→)5(lim x x 故 051

lim =+∞→x x

由 0)1(lim 1

=-→x x 故 11

lim 1-→x x =∞

7、等价无穷小代换法

设'

'

,,,ββαα 都是同一极限过程中的无穷小量,且有: '

'

~,~ββαα,

''

lim β

α 存在,

则 βαlim 也存在,且有βαlim = ''

lim β

α

例:求极限2

22

0sin cos 1lim x x x x -→

解: ,~sin 2

2

x x 2

)(~cos 12

22

x x -

∴ 2220sin cos 1lim x x x x -→=212)(2

22

2=x x x 注: 在利用等价无穷小做代换时,一般只在以乘积形式出现时可以互换,若以和、

差出现时,不要轻易代换,因为此时经过代换后,往往改变了它的无穷小量之比的“阶数”

8、利用两个重要的极限。

1sin lim

)(0=→x x A x e x

B x x =+∞→)1

1(lim )(

但我们经常使用的是它们的变形:

)

)((,))(1

1lim()()0)((,1)

()

(sin lim

)()(''∞→=+→=x e x B x x x A x ϕϕϕϕϕϕ

例:求下列函数极限

x

a x x 1lim )1(0-→、 bx ax

x cos ln cos ln lim

)2(0→、 )

1ln(ln 1 ln )1ln( ,11 u a u x a a u x u a x x

+=

-+==-于是则)令解:(

a u a

u u a u a u x

a u x u

u u u x x ln )1ln(ln lim )1ln(ln lim )1ln(ln lim 1lim 0

10000=+=+=+=-→→→→→→故有:时,又当

)]

1(cos 1ln[)]

1(cos 1ln[(lim

)2(0-+-+=→bx ax x 、原式

1

cos 1

cos 1cos )]

1(cos 1ln[1cos )]1(cos 1ln[(lim

0--⋅--+--+=→ax bx bx bx ax ax x

1

cos 1

cos lim

0--=→ax bx x 222

2

22220220)2

()2()2

(2sin )2(2

sin lim 2sin 22sin 2lim a

b x a x b

x b x b x a x

a x

b x x x =⋅=--=→→α

9、利用函数的连续性(适用于求函数在连续点处的极限)。

)

()](lim [))((lim )()(lim )]([)()

()(lim )()(0

00a f x f x f a u u f a x x f ii x f x f x x x f i x x x x x x x x ======→→→→ϕϕϕϕ处连续,则在且

是复合函数,又若处连续,则在若

例:求下列函数的极限

相关文档
最新文档