深基坑工程事故案例分析 PPT

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 计算参数的选择 1)设计单位未能根据当地软土特点综合判断、合理
选用基坑围护设计参数,力学参数选用偏高降低了基坑围 护结构体系的安全储备。
2)设计中考虑地面超载20kPa较小。基坑西侧为 一大道,对汽车动荷载考虑不足。根据实际情况,重载土 方车及混凝土泵车对地面超载宜取30kPa,与设计方案 20kPa相比,挖土至坑底时第三道支撑的轴力、地下连续 墙的最大弯矩及剪力均增加约4%~5%,也降低了一定的安 全储备。
其直接原因是施工单位违规施工、冒险作业、基坑严重超挖;支撑 体系存在严重缺陷且钢管支撑架设不及时;垫层未及时浇筑。监测单位 施工监测失效,施工单位没有采取有效补救措施。
1.2 工程概况
杭州地铁事故基坑,长107.8m,宽21m,开挖深度15.7~16.3m。设计 采用800mm厚地下连续墙结合四道(端头井范围局部五道)Φ609钢管支撑 的围护方案。地下连续墙深度分别为31.5m~ 34.5m。基坑西侧紧临大道 ,交通繁忙,重载车辆多,道路下有较多市政管线(包括上下水、污水、 雨水、煤气、电力、电信等)穿过,东侧有一河道,基坑平面图如下图所 示。
3)设计提出的监测内容相对于规范少了3项必测内 容。
2.4 施工问题
基坑土方超挖以及支撑施加不及时,支撑体系存在薄弱环节,基 坑边超载过大等均容易引起基坑失稳。由于在以上因素的作用下,会 引起基坑围护结构变形较大,容易导致支撑破坏或地下水管破裂,进 而引发事故的发生。如杭州地铁工程在施工方面主要有以下一些问题 。
杭州地铁破坏模式示意图
2.2 勘察问题
由于勘察工作量不足,加上勘察人员对土性的认识的 不足,造成基坑工程勘察资料不详细或土的物理力学指标 取值偏高,使设计计算失误引起的事故。如杭州地铁工程 在勘察方面主要有以下一些问题:
• 不符合规范要求 1)基坑采取原状土样及相应主要力学试验指标较少,不能 完全反映基坑土性的真实情况。
大家应该Baidu Nhomakorabea有点累了,稍作休息
大家有疑问的,可以询问和交流
地下工程安全管理
2、 杭州地铁深基坑事故的原因分析
2.1 破坏模式分析
根据勘查结果对基坑土体破坏滑动面及地下连续墙破 坏模式进行了分析,并绘制相应的基坑破坏时调查平面图 与施工工况图以及基坑土体滑动面与地下连续墙破坏形态 断面图。
• 考虑不周,经验欠缺 1)设计图纸中未提供钢管支撑与地下连续墙的连接
节点详图及钢管节点连接大样,也没有提出相应的施工安装 技术要求。没有提出对钢管支撑与地连墙预埋件焊接要求。
2)从地质剖面和地下连续墙分布图中可以看出,对 于本工程事故诱发段的地下连续墙插入深度略显不足,对于 本工程,应考虑墙底的落底问题。
据靠近西侧地下连续墙静力触 探试验表明,在绝对标高-8m~-10m 处(近基坑底部), qc值为0.20MPa (qc仅为原状土的30%左右),土 体受到严重扰动,接近于重塑土强 度,证明土体产生侧向流变,存在 明显的滑动面。
西侧地下连续墙墙底(相应标 高-27.0左右),C1孔静探qc值约为 0.6MPa(qc为原状土的70%左右) ,土体有较大的扰动,但没有产生 明显的侧向流变,主要是地下连续 墙底部产生过大位移而所致。
2)勘察单位未考虑薄壁取土器对基坑设计参数的影响,以 及未根据当地软土特点综合判断选用推荐土体力学参数。
3)勘察报告推荐的直剪固结快剪指标c、Φ值采用。平均值 ,未按规范要求采用标准值,指标偏高。
4)勘察报告提供的④2层的比例系数m值( m=2500kN/m4)与类似工程经验值差异显著。 • 提供的土体力学参数互相矛盾,不符合土力学基本理论。 1)推荐用于设计的主要地层土的三轴CU、UU试验指标、 无侧限抗压强度指标与验证值、类似工程经验值差异显著。
深基坑工程事故案例分析
一、深基坑的概念及特点 二、深基坑工程事故类型及处理措施 三、土方开挖阶段事故预防 四、深基坑工程事故预防及处理 五、深基坑工程事故案例分析
五、深基坑工程事故案例分析
1、杭州地铁深基坑事故概况
1.1 事故调查结果公布
2008年11月15日下午3时15分,正在施工的杭州地铁湘湖站北2基 坑现场发生大面积坍塌事故,造成21人死亡,24人受伤(截止2009年9月 已先后出院),直接经济损失4961万元。
根据勘察,北2基坑西侧坍塌区为深厚的淤泥质土层,平均厚度32m, 最大厚度35m,天然含水率近50%,呈流塑-软塑状,土体力学性质差 。地下潜水位为0.5m,无承压水。
各土层的物理指标
各土层的力学指标
1.3 事故概况
基坑土方开挖共分为 6 个施工段, 总体由北向南组织施工 至事故发生前 ,第1施工段完成底板混凝土施工,第2施工段完成底板垫层混凝土施工,第3施工 段完成土方开挖及全部钢支撑施工,第4施工段完成土方开挖及3道钢支撑施工、 开始安装第4道钢支撑,第5、6施工段已完成3道钢支撑施工、正开挖至基底的第5 层土方同时,第1施工段木工、钢筋工正在作业;第3施工段杂工进行基坑基底清理 ,技术人员安装接地铜条;第4施工段正在安装支撑、施加预应力,第 5、6 施工 段坑内2台挖机正在进行第5层土方开挖。
西
风情大道
第6施工段
第5施工段
第4施工段
第3施工段
第2施工段

第1施工段

首先西侧中部地下连续墙横向断裂并倒塌,倒塌长 度约75m,墙体横向断裂处最大位移约7.5m,东侧地下 连续墙也产生严重位移,最大位移约3.5m。由于大量淤 泥涌入坑内,风情大道随后出现塌陷,最大深度约6.5m 。地面塌陷导致地下污水等管道破裂、河水倒灌造成基 坑和地面塌陷处进水,基坑内最大水深约9m。下图所示 为一组事故现场照片。
• 试验原始记录已遗失,无法判断其数据的真实性。
2.3 设计问题
由于基坑设计涉及到多种学科,如土力学、基础工程 、结构力学和原位测试技术等,需要对场地周围环境、施 工条件、工程地质条件、水文地质条件详细了解和掌握, 是一门系统科学,具有复杂性。所以目前基坑支护的设计 方案与措施大多数是偏于保守的,即便如此,如果设计的 人员经验不足,考虑不周,也易引起相应的事故。对522 例基坑事故统计也说明基坑设计的不足,是引发事故的重 要原因。杭州地铁工程在设计方面主要有以下一些问题:
相关文档
最新文档