基于《知网》的词汇语义相似度计算
一种改进的基于知网的句子相似度计算方法

主观题 自动 批 改 是 在线 考 试 系 统 中 的关 键 技术 。
由于 主观题 的答 题 特 点呈 现 出复 杂性 , 目前 还 没 有 一 种考试 系统 能较好 地完 成 自动批改 。主观题 的 自动 批
结合 的方 法等 J 。该方 法仅 从 句子 的表 层 结构 信 息
进行 匹 配而忽 略 了语句 语义分 析 , 在局 限 性 , 响 了 存 影 自动批改 的准 确度 。因此文 中提 出 了一 种新 的基 于 知
An I p o e n e e S m ia iy Ca c l to M eho s d o o nn t d Ba e n H w- t
L n k i XU a la g IYi g a , Xio in
( col f o p t c n e aghuD az U i rt,H nzo 10 8 h a Sho o m ue Si c ,H nzo i i n e i C r e n v sy aghu30 1 ,C i ) n
Ab ta t I r e o o ec me t ee t fifr ain r d nd n y i tree c d lcl o tmu o e — sr c n o d rt v r o he d fcs o nom t e u a c nefr n e a o a p i m fs n o n tn e smia t ac lto a e n lxc li m , t i p p rp o o e e s n e c i lrt ac lto t o e c i lr y c uain b sd o e ia t i l e hs a e rp s sa n w e tn e smi i c luain meh d a y
汉语词语语义相似度计算研究

文 识码:A 献标
中圈 分类号: P9 T 31
汉语 词语 语 义相似 度 计 算研 究
夏 天
( 国人民大学信息资源 管理 学院,北京 10 7 ) 中 82 0
摘 要 :汉语词语 的语义相似度计算是 中文信 息处理 中的一个关键问题 。该文 提出了一种基于知 网、面向语义、可扩展的相似度计算新方
[ e od iWod m l i ; o n ; o cp; e e e K y r s rs i i r y H w  ̄ C n etS m m w s at
汉语词汇相似度计 算在 自动问答、情 报检 索、文本聚类 等应用 中都是一个非常关键的问题” J 。针对这一问题 ,人们
smia iy c mpu a i n wh c s b s d o wn t e r d t e n i n o l e e p n e .T e n w t o e n s a s mi rt omp tto i lrt o tto ih i a e n Ho e ,g a e o s ma t a d c u d b x a d d h e me d d f e i l i c c h i a y uain f r u a a ng Ho e ’ e e sa c r i g t n o ai n t e r , n s awa u fi u t h tOOV r sc n o a t i a e i e n i o m l mo wn tSs m me c o d n o i f r to o y f d y o t t di c l t a m h i of he y wo d a n tp ri p t n s ma t c c
t e s m a t e e mo g a b ta y wo d n l . p r e t lr s l o LI i d c t s t a c u a y r t f t e n w e h d sne ry 1 % h e n i l v la n ir r r s n ia e h tt a c r c a e o h e m t o i a l c r i y m he 5 h g e a e e to e . i h rt npr s n n s h
基于马尔科夫模型的词汇语义相似度计算

D F= {atl 件 : atoio E pr 部 PrP si tn= {er I hat
机变量 X( ) 已知条件 : t) lX(2 = t在 X( 1 = , t)
收 稿 日期 :2 0 —0 —2 09 9 1 作者简介 :皮慧娟(9 1 , , 17 一) 女 湖北鄂州人 , 华侨大学实验师 , 硕士 .
网》 系统 中义原除 了上下位关 系还有很多其他关 系 , 文只讨 论上 下位关 系 . 本 2 2 利 用马 尔科 夫 模型 计 算树 状 结构 的义 原体 .
系相似 度
2 2 1 关 系义 原 的计算 ..
词语 的 D F的义原分 为两 大类 : E 基本 义原 和 关 系义 原 . 笔者认为只有在关系义原相 同的条件下 才去计算 关系义原下的子义原之间 的相 似度 , 如果
心 }w o ={ ty实体 } , hl e i f e nt }
6
沈
阳
大
学
学
报
第2 2卷
其中, NO. 是概 念 编号 , — G— E— w C、 C、 C分 别 是 汉 语词语 、 词性 和 例子 . — G— w E、 E和 E— E分 别 表 示 英 语 的词 语 、 词性 和 例 子 . E D F表 示 的是 概 念 的 定 义 , 达 了 主要 的信 息 . E 表 D F可 看 成 一个 树 状 的结 构 , 图 1所 示 . 中包 含 义原 : 件 、 如 其 部
t,1 2 t): F( tl , x, t).
() 1
则称 此过 程为 马尔科 夫过 程[ .
12 知 . 网
义距离的一种度量 . 王斌采用这种方法利用《 同义 词词 林》 计 算 汉 语 词 语 之 间 的相 似 度n . 些 来 ]有
中文词语语义相似度计算_基于_知网_2000

《知网》的 基本形式是对中 文词语的释义 和描 述。与一般的语义词典如 Wordnet 不同的地 方有 两点:
第一, 词语( 概念) 的意义不是通过一些其他的 常用词语来解释、说明, 而是通过 / 义原0来描述、定 义。比如/ 打0 ( 打篮球, 打太极) , 这个词有一 项描 述是:
DEF = exer cise| 锻炼, spo rt| 体 育
DEF = human | 人, # occu-
医生 pation| 职位, * cure | 医治, *
medica l| 医
患者
DEF= human| 人, * SufferFr om| 罹患, $ cur e| 医治
$
obtain | 得 到, po ssession = 得利 pros| 益( 注: 等号左边为/ 动 =
%
颜色
DEF= attr ibute| 属性, color | 颜色, & physical| 物质
&
布
DEF= mater ial| 材料, ? clo thing | 衣物
?
DEF= Inst itutePlace | 场所,
医院 @ cure | 医 治, # disease| 疾 @
病, medical| 医
见表1从表1的例子中可以看出知网义原加标识符来定义词语的方式不但给出了词语的语义信息比如医院0是医疗场所也显式地给出了概念之间的联系比如医治0的实施者是医生0受事者是患者0而地点是医院0
一种基于《知网》的文本语义相似度的计算方法

造成 了文本 向量 的表 示 空 间难 以有 效 地 降维 。2 ) 由于不 同的文 本 可 能采 用 不 同 的词 汇 来 表 示 相 同
概念 , “ 一对 一” 的匹 配方法 在处 理 时就 显得 无 能 为 力 了¨ 6 ] 。特别 是 同义词 和 近义 词不 能 识别 , 造 成 了 聚类 的误 差 。例 如 : 文本 1 : 土 豆 盛 产 于 中 国 。文
总第 2 9 2期 2 0 1 4年第 2期
计算 机与数字工程
Co mp u t e r&. Di g i t a l En g i n e e r i n g
Vo 1 . 4 2 No . 2
1 87
一ห้องสมุดไป่ตู้
种 基 于 知 网 的 文本 语 义 相 似 度 的计 算 方 法
孙 滨 刘 林
4 5 1 1 0 0 ) ( 郑州华信学 院信息工程 系 郑州
摘
要
论文提 出一个基于语义 的文本 问的相似度算法 , 以文本 的特征词 相似度为基础 , 来计算文本 间的相似度 , 利用
聚类算法对文本簇进行 聚类 。实验结果证 明基于知 网的文本语义相似度方法在对文本相似度计算 以及文本 聚类方面 , 能有 效提 高聚类 的效果 。 关键 词 文本 聚类 ; 义原相似度 ; 语义相似度
Ab s t r a c t A s i mi l a r i t y a l g o r i t h m b a s e d o n s e ma n t i c s i mi l a r i t y i s p r o p o s e d ,wh i c h c a l c u l a t e s t h e s i mi l a r i t y o f t e x t s a c — c o r d i n g t O f e a t u r e wo r d s o f t h e t e x t a n d ma k e s t e x t c l u s t e r s b y e mp l o y i n g c l u s t e r i n g a l g o r i t h m. Th e e x p e r i me n t a l r e s u l t s p r o v e t h a t t h e me t h o d o f t e x t s e ma n t i c s i mi l a r i t y b a s e d o n CNKI i S v e r y e f f i c i e n t i n t e x t s i mi l a r i t y c a l c u l a t i o n a n d t e x t c l u s t e — r i n g ,wh i c h c a n e f f e c t i v e l y i mp r o v e t h e e f f e c t o f c l u s t e r i n g . K e y Wo r d s t e x t c l u s t e r i n g ,p r i mi t i v e s i mi l a r i t y,s e ma n t i c s i mi l a r i t y Cl a s s Nu mb e r TP 3 9 】
使用网络搜索引擎计算汉语词汇的语义相似度

使用网络搜索引擎计算汉语词汇的语义相似度高国强;黄吕威;陈丰钰【摘要】Similarity computation of Chinese words is a key problem in Chinese information processing. It measures semantic similarity between Chinese words using the information returned by web search engines. First,implement a model named WebPMI which computes similarity using page counts,and then,describe another model named CODC which analyzes semantic similarity using text snippets. Final-ly,present the algorithm based on the two models. Experimental results show that this algorithm outperforms all the existing web-based semantic similarity measures for Chinese,and is close to the traditional semantic similarity measures using lexicon.%汉字词语的语义相似度计算是中文信息处理中的一个关键问题。
文中利用网络搜索引擎提供的信息来计算汉语词对的语义相似性。
首先通过程序访问搜索引擎,获取汉字词汇的搜索结果数,并依此实现了相似度计算模型WebPMI;然后描述了根据查询返回的文本片段进行语义相关性分析的模型CODC;最后,结合这个两个模型,给出了文中算法的伪代码。
矿产

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
基于知网和同义词词林的词汇语义倾向计算

基于知网和同义词词林的词汇语义倾向计算黄硕;周延泉【摘要】在互联网飞速发展的今天,海量的数据在网络上共享传输,文本中的情感倾向获取对于文本的处理有着重要作用.而词汇的褒贬倾向研究是文本情感倾向研究的基础.本文基于知网(HowNet)和同义词词林信息融合的方法,为词林的词集添加知网def与情感倾向,进行词汇的语义倾向计算.实验结果表明,该方法更趋于合理,结果更符合人们的日常体验.【期刊名称】《软件》【年(卷),期】2013(034)002【总页数】3页(P73-74,94)【关键词】情感计算;知网;同义词词林;语义倾向【作者】黄硕;周延泉【作者单位】北京邮电大学计算机科学与技术系,北京100876【正文语种】中文【中图分类】TP3910 引言随着互联网的发展,海量的网络资源也随之而来,如何从中高效准确的获取我们所需的信息,是目前计算机领域研究的热点。
语义倾向性研究正是在这一背景下应运而生的。
文本倾向性识别就是通过对文本格式的信息资料中提取具有一定感情色彩的词汇、短语、常用结构等, 来判定文本的情感态度倾向,而词汇的褒贬倾向性判别是文本倾向性识别的基础。
词汇的语义倾向,即对于词汇的褒贬程度计算出一个度量值。
比较常用的做法是将度量值规定为位于±1之间的实数。
当度量值高于某阈值时,判别为褒义倾向;反之,则判为贬义倾向。
篇章中词汇的语义倾向值极大影响着篇章的语义倾向,对词汇的语义倾向计算是此类研究中的关键工作。
Hatzivassiloglou和McKeown[1]尝试使用监督学习的方法对英文的词语进行情感语义倾向性判别,准确率达到90%左右。
2003年,Turney [2]从大规模语料中利用统计信息对单词进行语义倾向判断。
其准确率达到82.18%。
目前已有的中文词语语义倾向性分析方法主要有以下两类:基于语义的倾向性分析法,例如复旦大学的朱嫣岚等通过手工选定少量的基准词[3],然后利用知网HowNet[4]的语义相似度和语义相关场功能来计算新词与基准词之间的相似度,从而得到新词的语义倾向性。
基于关系运算的汉语词汇语义相关度计算

c o r r e l a t i o n u n d e r d i f f e r e n t c i r c u ms t a n c e s ;F i n ll a y i t p r e s e n t s t h e c o mp u t a t i o n me t h o d o f v o c a b u l a r y’ S s e ma n t i c c o r r e l a t i o n u n d e r d i f e r e n t s i t u a t i o n s a c c o r d i n g t o t h e d i c t i o n a r y i n Ho wNe t .T h i s a p p r o a c h C n a ma k e f u l l u s e o f t h e s e ma nt i c i n f o r ma t i o n i n Ho wNe t i n c o mp u t a t i o n p r o c e s s ,mo r e o v e r ,i t a l s o t a k e s i n t o a c c o u n t t h e ul r e s i mp l i c a t e d b e t we e n t h e s e ma n t i c s .E x p e r i me n t p r o v e s i t t o b e e f e c t i v e . Ke y wo r d s Ho wN e t C o n c e p t u a l g r a p h s S e ma nt i c c o r r e l a t i o n S e ma n t i c r e l a t i o n Re l a t i o n a l o p e r a t i o n s
改进的基于《知网》的词汇语义相似度计算

摘
要: 针对 当前基 于《 知 网》 的词; r - 语义相似度计算方 法没有充分考虑知识库描述语 言对概 念描述 的线性特征
的情 况, 提 出一种改进 的词j r - 语 义相 似度 计算方法。首先, 充分考虑概念描 述式 中各 义原之 间的线性关 系, 提 出一种 位 置相 关的权 重分配策略 ; 然后 , 将所提 出的策略 结合二部 图最 大权 匹配进行概 念相似度计 算。实验结果表 明 , 采用 改进 方法得 到的聚类结果 F值较对比方法平均提 高 了5 %, 从 而验 证 了改进 方法的合理性 和有 效性 。
基于《知网》的语义相似度计算软件使用手册【模板】

基于《知网》的语义相似度计算软件使用手册1 功能简介本软件是根据[刘群2002]一文中的原理编写的词汇语义相似度计算程序。
主要实现了以下功能:1.1基于交互输入的义原查询、义原距离计算、义原相似度计算1.2基于交互输入的词语义项查询、义项相似度计算、词语相似度计算;1.3基于文件输入的词语义项查询、词语相似度计算;1.4相似度计算中的参数调整。
2 安装说明本软件包一共有四个文件:《基于<知网>的词汇语义相似度计算》软件使用手册.doc:本使用手册《基于<知网>的词汇语义相似度计算》论文.pdf:本软件所依据的论文,采用pdf格式,用Acrobat Reader阅读时需要安装简体中文支持包。
自然语言处理开放资源许可证.doc:本软件包的授权许可证WordSimilarity.zip:程序文件软件安装时,将文件WordSimilarity.zip文件解压缩一个目录下即可,解压缩后有以下几个文件:WordSimilarity.exe:可执行程序;Glossary.dat:《知网》数据文件Semdict.dat:《知网》数据文件Whole.dat:《知网》数据文件必须确保《知网》数据文件在程序执行时的当前目录下。
3 界面说明软件使用简单的对话框界面,如下所示:4 功能说明4.1义原操作4.1.1 义原查询1.首先在“输入1”框中输入义原名称;2.点击“察看义原1”按钮;3.在“义项1”框中将依次显示出该义原及其所有上位义原的编号、中文、英文;类似的方法可以查询“输入2”框中的义原;4.1.2 义原距离计算1.首先在“输入1”和“输入2”框中输入两个义原;2.点击“计算义原距离”按钮;3.在“输出”框中显示两个义原的距离;4.1.3 义原相似度计算1.首先在“输入1”和“输入2”框中输入两个义原;2.点击“计算义原相似度”按钮;3.在“输出”框中显示两个义原的相似度;4.2基于交互输入的词语操作4.2.1 词语义项查询1.首先在“输入1”框中输入要查询的词语;2.点击“察看义项1”按钮;3.在“义项1”框中将依次显示出该词语的所有义项;类似的方法可以查询“输入2”框中的词语义项;4.2.2 义项相似度计算1.首先分别在“输入1”和“输入2”框中输入要计算相似度的两个词语;2.点击“察看义项1”按钮和“察看义项2”按钮;3.在“义项1”框和“义项2”框中将分别显示出这两个词语的所有义项;4.分别在“义项1”框和“义项2”框中点击需要计算相似度的两个词语义项;5.点击“计算义项相似度”按钮;6.在“输出”框中将显示选中的两个义项的相似度;4.2.3 词语相似度计算1.首先分别在“输入1”和“输入2”框中输入要计算相似度的两个词语;2.点击“计算词语相似度”按钮;3.在“输出”框中将显示两个词语的相似度;说明:词语相似度定义为两个词语的所有义项相似度中的最大值。
一种基于知网的语义相关度计算方法

文本 特征 , 验结 果表 明,该方法更趋于合理 , 大部 分结果更符合人们 的 日常体验 ,有效 提高 了计 算结果 的 实 绝
精确 度和准确性.
关键 词 : 网 ; 原 ;语义相似度 ; 知 语义相关度
中图分类号 :P0 T 31
收 稿 日期 : 0 0— 3—1 21 0 5
文献标识码 : A
事 件类 义 原结 构 .
e ty 实 体 ni l t
一
定程 度 的应 用 ; 群 等人 提 出 的方法 可 以解决 刘
同一特 征 文件 中义 பைடு நூலகம் 间 的语义 相 似 度 问题 ,但 不 能
解决 不 同特 征 文件 义原 间 的语 义 相关 性 问题 .李 索 建 将 知 网和 同义 词 词 林 结 合 起 来 计 算 不 同特 征
文件 中词语 的 相似 度 , 一定 程 度 上解 决 了不 同特 在 征 文件 间词 语 的语 义相 关性 , 是 知 网和 同义 词词 但 林词 语 的组 织 方式 完全 不 同 , 以计 算 结 果 不是 很 所 理想 ;许 云 、 广正 等 提 出 了各 自的语 义相 关 王 度计 算 方法 .本文 根据 知 网 …各 个 特征 文 件 中下 位 义原 享 上位 义原 拥有 的属性 ,即 下位 义 原 对 其 上位
张振 幸 ,李 金 厚
( 安徽工业 大学 计算机学 院 , 安徽 马鞍 山 2 30 ) 4 0 2
摘
要: 本文 以知 网理论相似度 计算为基础 ,提出 了一种计 算词语相关度方法 ; 该方法将 知网中不 同特征文 件
间 的 义 原 通 过 其 解 释 义 原 与 其 它 特 征 文 件 中 的 义 原 建 立 联 系 ,进 而 计 算 它 们 之 间 的相 关 度 , 用 该 方 法 提 取 并
基于《知网》的词汇语义相似度计算

与一般的语义词典(如《同义词词林》,或Wordnet)不同,《知网》并不是简单的将所有的"概念"归结到一个树状的概念层次体系中,而是试图用一系列的"义原"来对每一个"概念"进行描述。
《知网》一共采用了1500义原,这些义原分为以下几个大类:
除了基于实例的机器翻译之外,词语相似度计算在信息检索、信息抽取、词义排歧等领域都有着广泛的应用。
2 词语相似度及其计算的方法
2.1 什么是词语相似度
什么是词语相似度?
我们认为,词语相似度是一个主观性相当强的概念。脱离具体的应用去谈论词语相似度,很难得到一个统一的定义。因为词语之间的关系非常复杂,其相似或差异之处很难用一个简单的数值来进行度量。从某一角度看非常相似的词语,从另一个角度看,很可能差异非常大。
我们的工作主要包括:
1. 研究《知网》中知识描述语言的语法,了解其描述一个词义所用的多个义原之间的关系,区分其在词语相似度计算中所起的作用;
2. 提出利用《知网》进行词语相似度计算的算法;
3. 通过实验验证该算法的有效性,并与其他算法进行比较。
关键词:《知网》 词汇语义相似度计算 自然语言处理
1. 每一个词的语义描述由多个义原组成,例如"暗箱"一词的语义描述为:part|部件,%tool|用具,body|身,"写信"一词的语义描述为:#TakePicture|拍摄write|写,ContentProduct=letter|信件;
2. 词语的语义描述中各个义原并不是平等的,它们之间有着复杂的关系,通过一种专门的知识描述语言来表示。
基于《知网》词语相似度计算

基于《知网》的词语相似度计算[摘要]词语相似度计算是计算机中文处理中的基础和重要环节,目前基于《知网》的词语相似度计算是一种常见的方法,本文将对该方法做系统介绍。
[关键词]《知网》词语相似度计算一、《知网》的结构《知网》(hownet)是我国著名机器翻译专家董振东先生和董强先生创建的,是一个常识知识库,它含有丰富的词汇语义知识以及世界知识,内部结构复杂。
《知网》中两个最基础的概念是“概念”和“义原”。
“概念”是用来描述词语语义。
因为一个词可以含有多个语义,所以一个词需要多个概念来描述。
使用“知识表示语言”对概念进行描述,“知识表示语言”使用的“词汇”便是义原。
《知网》中的不可再分的、最小的意义单位是“义原”,义原用来描述“概念”。
《知网》采用的义原有1500个,它们一共可以分为十类,具体见图1。
知网反映了概念之间、概念属性之间各种各样的关系,总体来说知网描述了16种关系:上下位关系;同义关系、反义关系、对义关系;部件-整体关系;属性-宿主关系;材料-成品关系;施事/经验者/关系;主体-事件关系;受事/内容/领属物等事件关系;工具-事件关系;场所-事件关系;时间-事件关系;值-属性关系;实体-值关系;事件-角色关系;相关关系。
由《知网》的结构得知义原之间组成的不是一个树状结构,而是一个复杂的网状结构。
然而义原关系中最重要的是上下位关系。
所有的“基本义原”以这种上下位关系为基础构成了义原层次体系,叫做义原分类树。
在义原分类树中,父节点义原和子节点义原之间具有上下位关系。
可以通过义原分类树来计算词语和词语之间的语义距离。
二、知网的知识词典知识词典是知网中最基本的数据库。
在知识词典中,每一个概念(概念又称为义项)可以用一条记录来描述。
一条记录含有八项信息,每一项由用“=”连接的两个部分组成,等号左边表示数据的域名,右边是数据的值。
比如下面就是一条描述概念的记录:no=017114w_c=打g_c=ve_c= ~乒乓球,~篮球w_e=playg_e=ve_e=def=exercise|锻炼,sport|体育其中,no表示概念的编号,w_c表示汉语词语,g_c表示汉语词语的词性,e_c表示汉语词语例子,w_e表示英语词语,g_e则表示英语词语词性,e_e表示英语词语例子,def表示概念的定义,通过一个语义表达式来描述。
基于语义相似度计算的词汇语义自动分类系统

基于语义相似度计算的词汇语义自动分类系统
李杰;曹谢东;余飞
【期刊名称】《计算机仿真》
【年(卷),期】2008(25)8
【摘要】词汇语义分类在文本聚类、信息检索、机器翻译等多个研究领域中拥有重要的理论及实践意义.介绍的知网语义相似度计算的词汇语义自动分类系统通过设计双向索引结构.高效的组织和挖掘了知网已有数据资源,并利用成熟的知网词语相似度计算方法,为词汇语义自动分类提供了不同于统计方法的新思路.目前系统的研究已取得实质性成果.在知网义原1564个分类的基础上,对知网提供的6万余条汉语常用词进行初步语义分类,进而开发了二次分类模块,针对初步分类结果进一步细化为适合实际需要的子类.实验结果证明该系统在分类性能上明显优于基于统计方法的分类系统,所作分类更加细腻、平滑.
【总页数】6页(P295-299,307)
【作者】李杰;曹谢东;余飞
【作者单位】西南石油大学计算机科学学院,四川,成都,610500;西南石油大学计算机科学学院,四川,成都,610500;西南石油大学计算机科学学院,四川,成都,610500【正文语种】中文
【中图分类】TP391
【相关文献】
1.基于知网的词汇语义自动分类系统 [J], 卢鹏;孙明勇;陆汝占
2.基于交通领域知识网络的词汇语义相似度计算 [J], 黄浩;陈怀新
3.基于知网与搜索引擎的词汇语义相似度计算 [J], 吴克介;王家伟
4.基于词汇语义信息的文本相似度计算 [J], 谷重阳;徐浩煜;周晗;张俊杰
5.基于Word2Vec的高效词汇语义相似度计算系统的设计实现 [J], 孙洪迪
因版权原因,仅展示原文概要,查看原文内容请购买。
基于知识图的汉语词汇语义相似度计算

基于知识图的汉语词汇语义相似度计算张瑞霞;朱贵良;杨国增【摘要】提出了一种基于知识图的汉语词汇相似度计算方法,该方法以<知网>2005版为语义知识资源,以知识图为知识表示方法,在构造词图的基础上,以知网中的语义关系为依据对词汇概念中的义原进行分类,通过计算不同类型义原的相似度得到概念的相似度;为了对词汇相似度计算方法进行客观评价,设计了词汇相似度计算方法的量化评价模型;采用该模型对所提出的计算方法进行评价,试验结果证明此方法的有效度为89.1%.【期刊名称】《中文信息学报》【年(卷),期】2009(023)003【总页数】5页(P116-120)【关键词】计算机应用;中文信息处理;知识图;知网;语义相似度【作者】张瑞霞;朱贵良;杨国增【作者单位】华北水利水电学院,信息工程学院,河南,郑州,450011;华北水利水电学院,信息工程学院,河南,郑州,450011;郑州师范高等专科学校,数学系,河南,郑州,450044【正文语种】中文【中图分类】TP391在自然语言信息处理领域中,词汇相似度的计算广泛应用于基于实例的机器翻译、信息检索、信息抽取和词义消歧等领域,并取得了丰富成果。
文献[1]提出了利用《知网》进行词汇相似度计算的方法;文献[2]以《同义词词林》的词汇分类体系为基础提出了基于相关熵的汉语词汇相似度的计算方法;文献[3]提出了利用语义格实现的一种改进Jaccard系数方法来计算词汇相似度;文献[4]通过引入事物信息量的思想来计算词语相似度。
文献[2-3]采用统计的方法,文献[1,4]根据世界知识(《知网》2000)进行计算,两类方法各有异同[1]。
根据世界知识计算词汇相似度,为使其计算精确,在计算过程中必须能够最大限度的合理的应用世界知识。
另外,目前对词汇相似度计算方法尚未出现定量评价,这样不利于方法的比较、改进以及应用。
鉴于上述原因,以知识图为知识表示方法,以《知网》2005版为语义知识资源,提出了一种基于知识图的汉语词汇相似度计算方法。
中国知网查重的原理

中国知网查重的原理
中国知网是一个文献检索和下载平台,提供了全文检索、查重以及其他多种功能。
其查重的原理是从语义层面进行比对,判断文本之间的相似度。
具体来说,中国知网的查重机制首先会对待检测的文本进行分词,将文本分解成一个个独立的词语,并根据不同的语言特征进行处理。
然后,系统会构建每个词语的语义向量,并将其与数据库中已有的文本进行对比。
在对比过程中,系统会分别计算待检测文本与已有文本之间的相似度得分。
相似度得分主要根据词语的共现频次、词语的语义相似性以及文本的结构特征等因素进行计算。
如果待检测文本与某篇已有文本之间存在较高的相似度得分,则会被判断为存在抄袭嫌疑。
需要注意的是,中国知网的查重机制并不会直接比对标题文本,而是以文本内容为基础进行比对。
这样做的目的是为了避免仅通过标题来判断重复,因为很多情况下,标题相同的文本并不代表整篇文本内容相同。
总的来说,中国知网的查重原理是基于语义相似度的比对,通过对待检测文本进行分析,在语义层面上判断其与已有文本的相似程度,从而识别重复、抄袭等问题。
基于HowNet句子相似度的计算

d o i : 1 0 . 3 9 6 9 / j . i s s n . 1 6 7 3 — 6 2 9 X. 2 0 1 5 . 1 1 . 0 1 1
Ca l c u l a t i o n o f S e n t e n c e S i mi l a r i t y Ba s e d o n Ho wNe t
状况 。在词语 相似 度计 算 的基础 上 , 针 对 目前句 子相 似度计 算方 法 的不 足 , 文 中提 出一 种基 于 H o w N e t 的计算 句 子相 似度
的方法 。在 《 知 网》 的词汇 语义 相似 度计 算基 础上 , 加入 了词 语定 义 义 原 间的反 义 、 对义关系、 单 义 原 的否 定 和符 号 义 原 、 定 义信 息来 计算 词语 的相 似度 。计算 句子 相似 度前 加入 词语 的消歧 , 在计 算 句子 相似 度 时考 虑 了词 语定 义 的关 系 义原 与 待 比较的词 定义 的某 个 义原相 等 的情况 , 并加 大 了关 系 义原 的权重 。实 验结 果表 明 , 在 同等 的测 试 条件 下 , 所提 出的句 子 相似 度计算 方法 可 以提 高句子 相似 度 的计算 精度 , 更符 合人 的直 观感觉 。 关键 词 : 知网 ; 词语相 似 度 ; 义原; 句 子相 似度 中图分类 号 : T P 3 9 1 . 1 文献 标识 码 : A 文章 编号 : 1 6 7 3 — 6 2 9 X( 2 0 1 5 ) 1 1 - 0 0 5 3 - 0 5
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于《知网》的词汇语义相似度计算1刘群†‡李素建†{liuqun,lisujian}@†中国科学院计算技术研究所‡北京大学计算语言学研究所摘要:《知网》是一部比较详尽的语义知识词典。
在基于实例的机器翻译中,词语相似度计算是一个重要的环节。
不过,由于《知网》中对于一个词的语义采用的是一种多维的知识表示形式,这给词语相似度的计算带来了麻烦。
这一点与WordNet和《同义词词林》不同。
在WordNet和《同义词词林》中,所有同类的语义项(WordNet的synset或《同义词词林》的词群)构成一个树状结构,要计算语义项之间的距离,只要计算树状结构中相应结点的距离即可。
而在《知网》中词语相似度的计算存在以下问题:1.每一个词的语义描述由多个义原组成,例如“暗箱”一词的语义描述为:part|部件,%tool|用具,body|身,“写信”一词的语义描述为:#TakePicture|拍摄write|写,ContentProduct=letter|信件;2.词语的语义描述中各个义原并不是平等的,它们之间有着复杂的关系,通过一种专门的知识描述语言来表示。
我们的工作主要包括:1.研究《知网》中知识描述语言的语法,了解其描述一个词义所用的多个义原之间的关系,区分其在词语相似度计算中所起的作用;2.提出利用《知网》进行词语相似度计算的算法;3.通过实验验证该算法的有效性,并与其他算法进行比较。
关键词:《知网》词汇语义相似度计算自然语言处理1 引言在基于实例的机器翻译中,词语相似度的计算有着重要的作用。
例如要翻译“张三写的小说”这个短语,通过语料库检索得到译例:1)李四写的小说/the novel written by Li Si2)去年写的小说/the novel written last year通过相似度计算我们发现,“张三”和“李四”都是具体的人,语义上非常相似,而“去年”的语义是时间,和“张三”相似度较低,因此我们选用“李四写的小说”这个实例进行类比翻译,就可以得到正确的译文:the novel written by Zhang San1本项研究受国家重点基础研究计划(973)支持,项目编号是G1998030507-4和G1998030510。
如果选用后者作为实例,那么得到的错误译文将是:* the novel written Zhang San通过这个例子可以看出相似度计算在基于实例的机器翻译中所起的作用。
在基于实例的翻译中另一个重要的工作是双语对齐。
在双语对齐过程中要用到两种语言词语的相似度计算,这不在本文所考虑的范围之内。
除了基于实例的机器翻译之外,词语相似度计算在信息检索、信息抽取、词义排歧等领域都有着广泛的应用。
2 词语相似度及其计算的方法2.1什么是词语相似度什么是词语相似度?我们认为,词语相似度是一个主观性相当强的概念。
脱离具体的应用去谈论词语相似度,很难得到一个统一的定义。
因为词语之间的关系非常复杂,其相似或差异之处很难用一个简单的数值来进行度量。
从某一角度看非常相似的词语,从另一个角度看,很可能差异非常大。
不过,在具体的应用中,词语相似度的含义可能就比较明确了。
例如,在基于实例的机器翻译中,词语相似度主要用于衡量文本中词语的可替换程度;而在信息检索中,相似度更多的要反映文本或者用户查询在意义上的符合程度。
本文的研究主要以基于实例的机器翻译为背景,因此在本文中我们所理解的词语相似度就是两个词语在不同的上下文中可以互相替换使用而不改变文本的句法语义结构的程度。
两个词语,如果在不同的上下文中可以互相替换且不改变文本的句法语义结构的可能性越大,二者的相似度就越高,否则相似度就越低。
相似度是一个数值,一般取值范围在[0,1]之间。
一个词语与其本身的语义相似度为1。
如果两个词语在任何上下文中都不可替换,那么其相似度为0。
相似度这个概念,涉及到词语的词法、句法、语义甚至语用等方方面面的特点。
其中,对词语相似度影响最大的应该是词的语义。
2.2词语相似度与词语距离度量两个词语关系的另一个重要指标是词语的距离。
一般而言,词语距离是一个[0,∞)之间的实数。
一个词语与其本身的距离为0。
词语距离与词语相似度之间有着密切的关系。
两个词语的距离越大,其相似度越低;反之,两个词语的距离越小,其相似度越大。
二者之间可以建立一种简单的对应关系。
这种对应关系需要满足以下几个条件:1) 两个词语距离为0时,其相似度为1;2) 两个词语距离为无穷大时,其相似度为0;3) 两个词语的距离越大,其相似度越小(单调下降)。
对于两个词语W1和W2,我们记其相似度为Sim(W1,W2),其词语距离为Dis(W 1,W 2),那么我们可以定义一个满足以上条件的简单的转换关系:αα+=),(),(121W W Dis W W Sim (1)其中α是一个可调节的参数。
α的含义是:当相似度为0.5时的词语距离值。
这种转换关系并不是唯一的,我们这里只是给出了其中的一种可能。
在很多情况下,直接计算词语的相似度比较困难,通常可以先计算词语的距离,然后再转换成词语的相似度。
所以在本文后面的有些章节,我们只谈论词语的距离,而没有提及词语的相似度,读者应该知道这二者是可以互相转换的。
2.3 词语相似度与词语相关性度量两个词语关系的另一个重要指标是词语的相关性。
词语相关性反映的是两个词语互相关联的程度。
可以用这两个词语在同一个语境中共现的可能性来衡量。
词语相关性也是一个[0,1]之间的实数。
词语相关性和词语相似性是两个不同的概念。
例如“医生”和“疾病”两个词语,其相似性非常低,而相关性却很高。
可以这么认为,词语相似性反映的是词语之间的聚合特点,而词语相关性反映的是词语之间的组合特点。
同时,词语相关性和词语相似性又有着密切的联系。
如果两个词语非常相似,那么这两个词语与其他词语的相关性也会非常接近。
反之,如果两个词语与其他词语的相关性特点很接近,那么这两个词一般相似程度也很高。
2.4 词语相似度的计算方法词语距离有两类常见的计算方法,一种是根据某种世界知识(Ontology )来计算,一种利用大规模的语料库进行统计。
根据世界知识(Ontology )计算词语语义距离的方法,一般是利用一部同义词词典(Thesaurus )。
一般同义词词典都是将所有的词组织在一棵或几棵树状的层次结构中。
我们知道,在一棵树形图中,任何两个结点之间有且只有一条路径。
于是,这条路径的长度就可以作为这两个概念的语义距离的一种度量。
图1 《同义词词林》语义分类树形图O L B A a l …… a b 01 02... 01… 01… …… 01 01 02... 01 ... 01 … 01 …… … 01 01 … 01 …… ... 虚线用于标识某上层节点到下层节点的路径王斌(1999)采用这种方法利用《同义词词林》来计算汉语词语之间的相似度(如图1所示)。
有些研究者考虑的情况更复杂。
Agirre & Rigau (1995)在利用Wordnet计算词语的语义相似度时,除了结点间的路径长度外,还考虑到了其他一些因素。
例如:1) 概念层次树的深度:路径长度相同的两个结点,如果位于概念层次的越底层,其语义距离较大;比如说:“动物”和“植物”、“哺乳动物”和“爬行动物”,这两对概念间的路径长度都是2,但前一对词处于语义树的较高层,因此认为其语义距离较大,后一对词处于语义树的较低层,其语义距离更小;2) 概念层次树的区域密度:路径长度相同的两个结点,如果位于概念层次树中高密度区域,其语义距离应大于位于低密度区域。
由于Wordnet中概念描述的粗细程度不均,例如动植物分类的描述及其详尽,而有些区域的概念描述又比较粗疏,所以加入了概念层次树区域密度对语义距离的影响。
另一种词语相似度的计算方法是大规模的语料来统计。
例如,利用词语的相关性来计算词语的相似度。
事先选择一组特征词,然后计算这一组特征词与每一个词的相关性(一般用这组词在实际的大规模语料中在该词的上下文中出现的频率来度量),于是,对于每一个词都可以得到一个相关性的特征词向量,然后利用这些向量之间的相似度(一般用向量的夹角余弦来计算)作为这两个词的相似度。
这种做法的假设是,凡是语义相近的词,他们的上下文也应该相似。
李涓子(1999)利用这种思想来实现语义的自动排歧;鲁松(2001)研究了如何如何利用词语的相关性来计算词语的相似度。
Dagan(1999)使用了更为复杂的概率模型来计算词语的距离。
这两种方法各有特点。
基于世界知识的方法简单有效,也比较直观、易于理解,但这种方法得到的结果受人的主观意识影响较大,有时并不能准确反映客观事实。
另外,这种方法比较准确地反映了词语之间语义方面的相似性和差异,而对于词语之间的句法和语用特点考虑得比较少。
基于语料库的方法比较客观,综合反映了词语在句法、语义、语用等方面的相似性和差异。
但是,这种方法比较依赖于训练所用的语料库,计算量大,计算方法复杂,另外,受数据稀疏和数据噪声的干扰较大,有时会出现明显的错误。
本文主要研究基于《知网(Hownet)》的词语相似度计算方法,这是一种基于世界知识的方法。
3 《知网(Hownet)》简介按照《知网》的创造者――董振东先生自己的说法(杜飞龙,1999):《知网》是一个以汉语和英语的词语所代表的概念为描述对象,以揭示概念与概念之间以及概念所具有的属性之间的关系为基本内容的常识知识库。
《知网》中含有丰富的词汇语义知识和世界知识,为自然语言处理和机器翻译等方面的研究提供了宝贵的资源。
不过,在我们真正试图利用《知网》来进行计算机处理时,发现还是会遇到不少困难。
我们的感觉是,《知网》确实是一座宝库,但另一方面,《知网》的内容又非常庞杂。
尽管《知网》的提供了详细的文档,但由于这些文档不是以一种形式化的方式说明的,很多地方多少显得有些混乱。
当我们阅读这些文档时,很容易一下子陷入大量的细节之中,而很难对《知网》有一个总体的把握。
这使得我们在进行计算的时候觉得很不方便。
因此,我们在试图利用《知网》进行计算的过程中,也在逐渐加深我们对于《知网》的认识,并试图整理出一个关于《知网》的比较清晰的图象。
本节中,我们对于《知网》的描述是按照我们自己的语言来组织的,很多地方加入了我们的理解,并不一定都是《知网》文档中描述。
我们希望通过这种方法,使读者更快地了解《知网》,对《知网》有一个比较清晰而全面的印象。
当然,我们的理解也难免有错误和遗漏之处,欢迎《知网》的作者和其他读者批评指正。
3.1《知网》的结构董振东先生反复强调,《知网》并不是一个在线的词汇数据库,《知网》不是一部语义词典。
在介绍《知网》的结构之前,我们首先要理解《知网》中两个主要的概念:“概念”与“义原”。