算法设计技巧与分析答案
算法设计与分析习题答案
算法设计与分析习题答案算法设计与分析是计算机科学中一个重要的领域,它涉及到算法的创建、优化以及评估。
以下是一些典型的算法设计与分析习题及其答案。
习题1:二分查找算法问题描述:给定一个已排序的整数数组,编写一个函数来查找一个目标值是否存在于数组中。
答案:二分查找算法的基本思想是将数组分成两半,比较中间元素与目标值的大小,如果目标值等于中间元素,则查找成功;如果目标值小于中间元素,则在左半部分继续查找;如果目标值大于中间元素,则在右半部分继续查找。
这个过程会不断重复,直到找到目标值或搜索范围为空。
```pythondef binary_search(arr, target):low, high = 0, len(arr) - 1while low <= high:mid = (low + high) // 2if arr[mid] == target:return Trueelif arr[mid] < target:low = mid + 1else:high = mid - 1return False```习题2:归并排序算法问题描述:给定一个无序数组,使用归并排序算法对其进行排序。
答案:归并排序是一种分治算法,它将数组分成两半,分别对这两半进行排序,然后将排序好的两半合并成一个有序数组。
```pythondef merge_sort(arr):if len(arr) > 1:mid = len(arr) // 2left_half = arr[:mid]right_half = arr[mid:]merge_sort(left_half)merge_sort(right_half)i = j = k = 0while i < len(left_half) and j < len(right_half): if left_half[i] < right_half[j]:arr[k] = left_half[i]i += 1else:arr[k] = right_half[j]j += 1k += 1while i < len(left_half):arr[k] = left_half[i]i += 1k += 1while j < len(right_half):arr[k] = right_half[j]j += 1k += 1arr = [38, 27, 43, 3, 9, 82, 10]merge_sort(arr)print("Sorted array is:", arr)```习题3:动态规划求解最长公共子序列问题问题描述:给定两个序列,找到它们的最长公共子序列。
算法设计技巧与分析习题答案
算法设计技巧与分析习题答案【篇一:算法设计与分析考试题及答案】一特殊类型问题的一系列运算,此外,算法还应具有以下五个重要特性:_________,________,________,__________,__________。
2.算法的复杂性有_____________和___________之分,衡量一个算法好坏的标准是______________________。
3.某一问题可用动态规划算法求解的显著特征是____________________________________。
4.若序列x={b,c,a,d,b,c,d},y={a,c,b,a,b,d,c,d},请给出序列x和y的一个最长公共子序列_____________________________。
5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含___________。
6.动态规划算法的基本思想是将待求解问题分解成若干____________,先求解___________,然后从这些____________的解得到原问题的解。
7.以深度优先方式系统搜索问题解的算法称为_____________。
8.0-1背包问题的回溯算法所需的计算时间为_____________,用动态规划算法所需的计算时间为____________。
9.动态规划算法的两个基本要素是___________和___________。
10.二分搜索算法是利用_______________实现的算法。
二、综合题(50分)1.写出设计动态规划算法的主要步骤。
2.流水作业调度问题的johnson算法的思想。
3.若n=4,在机器m1和m2上加工作业i所需的时间分别为ai和bi,且(a1,a2,a3,a4)=(4,5,12,10),(b1,b2,b3,b4)=(8,2,15,9)求4个作业的最优调度方案,并计算最优值。
4.使用回溯法解0/1背包问题:n=3,c=9,v={6,10,3},w={3,4,4},其解空间有长度为3的0-1向量组成,要求用一棵完全二叉树表示其解空间(从根出发,左1右0),并画出其解空间树,计算其最优值及最优解。
算法分析与设计作业及参考答案
算法分析与设计作业及参考答案作业题目1、请分析冒泡排序算法的时间复杂度和空间复杂度,并举例说明其在实际中的应用场景。
2、设计一个算法,用于在一个未排序的整数数组中找到第二大的元素,并分析其时间复杂度。
3、比较贪心算法和动态规划算法的异同,并分别举例说明它们在解决问题中的应用。
参考答案1、冒泡排序算法时间复杂度:冒泡排序的基本思想是通过相邻元素的比较和交换,将最大的元素逐步“浮”到数组的末尾。
在最坏情况下,数组完全逆序,需要进行 n 1 轮比较和交换,每一轮比较 n i 次(i 表示当前轮数),所以总的比较次数为 n(n 1) / 2,时间复杂度为 O(n^2)。
在最好情况下,数组已经有序,只需要进行一轮比较,时间复杂度为 O(n)。
平均情况下,时间复杂度也为 O(n^2)。
空间复杂度:冒泡排序只在原数组上进行操作,不需要额外的存储空间,空间复杂度为 O(1)。
应用场景:冒泡排序算法简单易懂,对于规模较小的数组,或者对算法的简单性要求较高而对性能要求不是特别苛刻的场景,如对少量数据进行简单排序时,可以使用冒泡排序。
例如,在一个小型的学生成绩管理系统中,需要对一个班级的少量学生成绩进行排序展示,冒泡排序就可以满足需求。
2、找到第二大元素的算法以下是一种使用遍历的方法来找到未排序整数数组中第二大元素的算法:```pythondef find_second_largest(arr):largest = arr0second_largest = float('inf')for num in arr:if num > largest:second_largest = largestlargest = numelif num > second_largest and num!= largest:second_largest = numreturn second_largest```时间复杂度分析:这个算法需要遍历数组一次,所以时间复杂度为O(n)。
算法设计技巧与分析答案
算法设计技巧与分析参考答案第1章算法分析基本概念1.1(a)6 (b)5 (c)6 (d)61.4算法执行了7+6+5+4+3+2+1=28次比较1.5(a)算法MODSELECTIONSORT执行的元素赋值的最少次数是0,元素已按非降序排列的时候达到最小值。
(b) 算法MODSELECTIONSORT执行的元素赋值的最多次数是3(1)2n n ,元素已按非升序排列的时候达到最小值。
1.7由上图可以看到执行的比较次数为1+1+2+2+2+6+2=16次。
1.11由上图可以得出比较次数为5+6+6+9=26次。
1.13FTF,TTT,FTF,TFF,FTF 1.16(a) 执行该算法,元素比较的最少次数是n-1。
元素已按非降序排列时候达到最小值。
(b) 执行该算法,元素比较的最多次数是(1)2n n -。
元素已按非升序排列时候达到最大值。
(c) 执行该算法,元素赋值的最少次数是0。
元素已按非降序排列时候达到最小值。
(d) 执行该算法,元素赋值的最多次数是3(1)2n n -。
元素已按非升序排列时候达到最大值。
(e)n 用O 符号和Ω符号表示算法BUBBLESORT 的运行时间:2()t O n =,()t n =Ω(f)不可以用Θ符号来表示算法的运行时间:Θ是用来表示算法的精确阶的,而本算法运行时间由线性到平方排列,因此不能用这一符号表示。
1.27不能用关系来比较2n 和2100n 增长的阶。
∵221lim0100100n n n →∞=≠ 2n ∴不是2(100)o n 的,即不能用关系来比较2n 和2100n 增长的阶。
1.32(a)当n 为2的幂时,第六步执行的最大次数是:12,2k k n j -==时,11[log ]log n ni i k n n n ====∑∑(b)由(a)可以得到:当每一次循环j 都为2的幂时,第六步执行的次数最大,则当33,22k kmn j ===(其中32k 取整)时,11[log(31)]log(1)n nkii i m n n ===-=-∑∑(c)用O 符号表示的算法的时间复杂性是(log )O n n 已证明n=2k 的情况,下面证明n=2k +1的情况:因为有⎥⎦⎥⎢⎣⎢+=⎥⎦⎥⎢⎣⎢21222k k所以n=2k +1时,第六步执行的最大次数仍是n log n 。
算法设计技巧与分析英文版课后练习题含答案
Algorithm Design Techniques and Analysis: English VersionExercise with AnswersIntroductionAlgorithms are an essential aspect of computer science. As such, students who are part of this field must master the art of algorithm design and analysis. Algorithm design refers to the process of creating algorithms that solve computational problems. Algorithm analysis, on the other hand, focuses on evaluating the resources required to execute those algorithms. This includes computational time and memory consumption.This document provides students with helpful algorithm design and analysis exercises. The exercises are in the formof questions with step-by-step solutions. The document is suitable for students who have completed the English versionof the Algorithm Design Techniques and Analysis textbook. The exercises cover various algorithm design techniques, such as divide-and-conquer, dynamic programming, and greedy approaches.InstructionEach exercise comes with a question and its solution. Read the question carefully and try to find a solution withoutlooking at the answer first. If you get stuck, look at the solution. Lastly, try the exercise agn without referring to the answer.Exercise 1: Divide and ConquerQuestion:Given an array of integers, find the maximum possible sum of a contiguous subarray.Example:Input: [-2, -3, 4, -1, -2, 1, 5, -3]Output: 7 (the contiguous subarray [4, -1, -2, 1, 5]) Solution:def max_subarray_sum(arr):if len(arr) ==1:return arr[0]mid =len(arr) //2left_arr = arr[:mid]right_arr = arr[mid:]max_left_sum = max_subarray_sum(left_arr)max_right_sum = max_subarray_sum(right_arr)max_left_border_sum =0left_border_sum =0for i in range(mid-1, -1, -1):left_border_sum += arr[i]max_left_border_sum =max(max_left_border_sum, left_b order_sum)max_right_border_sum =0right_border_sum =0for i in range(mid, len(arr)):right_border_sum += arr[i]max_right_border_sum =max(max_right_border_sum, righ t_border_sum)return max(max_left_sum, max_right_sum, max_left_border_s um+max_right_border_sum)Exercise 2: Dynamic ProgrammingQuestion:Given a list of lengths of steel rods and a corresponding list of prices, determine the maximum revenue you can get by cutting these rods into smaller pieces and selling them. Assume the cost of each cut is 0.Lengths: [1, 2, 3, 4, 5, 6, 7, 8]Prices: [1, 5, 8, 9, 10, 17, 17, 20]If the rod length is 4, the maximum revenue is 10.Solution:def max_revenue(lengths, prices, n):if n ==0:return0max_val =float('-inf')for i in range(n):max_val =max(max_val, prices[i] + max_revenue(length s, prices, n-i-1))return max_valExercise 3: Greedy AlgorithmQuestion:Given a set of jobs with start times and end times, find the maximum number of non-overlapping jobs that can be scheduled.Start times: [1, 3, 0, 5, 8, 5]End times: [2, 4, 6, 7, 9, 9]Output: 4Solution:def maximum_jobs(start_times, end_times):job_list =sorted(zip(end_times, start_times))count =0end_time =float('-inf')for e, s in job_list:if s >= end_time:count +=1end_time = ereturn countConclusionThe exercises presented in this document provide a practical way to master essential algorithm design and analysis techniques. Solving the problems without looking at the answers will expose students to the type of problems they might encounter in real life. The document’s solutionsprovide step-by-step instructions to ensure that students can approach the problems with confidence.。
【分析】算法分析与设计作业参考答案
【关键字】分析《算法分析与设计》作业参考答案作业一一、名词解释:1.递归算法:直接或间接地调用自身的算法称为递归算法。
2.程序:程序是算法用某种程序设计语言的具体实现。
2、简答题:1.算法需要满足哪些性质?简述之。
算法是若干指令的有穷序列,满足性质:1)输入:有零个或多个外部量作为算法的输入。
2)输出:算法产生至少一个量作为输出。
3)确定性:组成算法的每条指令清晰、无歧义。
4)有限性:算法中每条指令的执行次数有限,执行每条指令的时间也有限。
2.简要分析分治法能解决的问题具有的特征。
分析分治法能解决的问题主要具有如下特征:1)该问题的规模缩小到一定的程度就可以容易地解决;2)该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质;3)利用该问题分解出的子问题的解可以合并为该问题的解;4)该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题。
3.简要分析在递归算法中消除递归调用,将递归算法转化为非递归算法的方法。
将递归算法转化为非递归算法的方法主要有:1)采用一个用户定义的栈来模拟系统的递归调用工作栈。
该方法通用性强,但本质上还是递归,只不过人工做了本来由编译器做的事情,优化效果不明显。
2)用递推来实现递归函数。
3)通过Cooper变换、反演变换能将一些递归转化为尾递归,从而迭代求出结果。
后两种方法在时空复杂度上均有较大改善,但其适用范围有限。
三、算法编写及算法应用分析题:1.冒泡排序算法的基本运算如下:for i ←1 to n-1 dofor j ←1 to n-i doif a[j]<a[j+1] then交换a[j]、a[j+1];分析该算法的时间复杂性。
解答:排序算法的基本运算步为元素比较,冒泡排序算法的时间复杂性就是求比较次数与n的关系。
1)设比较一次花时间1;2)内循环次数为:n-i次,(i=1,…n),花时间为:3)外循环次数为:n-1,花时间为:2.设计一个分治算法计算一棵二叉树的高度。
算法分析与设计(习题答案)
算法分析与设计教程习题解答第1章 算法引论1. 解:算法是一组有穷的规则,它规定了解决某一特定类型问题的一系列计算方法。
频率计数是指计算机执行程序中的某一条语句的执行次数。
多项式时间算法是指可用多项式函数对某算法进行计算时间限界的算法。
指数时间算法是指某算法的计算时间只能使用指数函数限界的算法。
2. 解:算法分析的目的是使算法设计者知道为完成一项任务所设计的算法的优劣,进而促使人们想方设法地设计出一些效率更高效的算法,以便达到少花钱、多办事、办好事的经济效果。
3. 解:事前分析是指求出某个算法的一个时间限界函数(它是一些有关参数的函数);事后测试指收集计算机对于某个算法的执行时间和占用空间的统计资料。
4. 解:评价一个算法应从事前分析和事后测试这两个阶段进行,事前分析主要应从时间复杂度和空间复杂度这两个维度进行分析;事后测试主要应对所评价的算法作时空性能分布图。
5. 解:①n=11; ②n=12; ③n=982; ④n=39。
第2章 递归算法与分治算法1. 解:递归算法是将归纳法的思想应用于算法设计之中,递归算法充分地利用了计算机系统内部机能,自动实现调用过程中对于相关且必要的信息的保存与恢复;分治算法是把一个问题划分为一个或多个子问题,每个子问题与原问题具有完全相同的解决思路,进而可以按照递归的思路进行求解。
2. 解:通过分治算法的一般设计步骤进行说明。
3. 解:int fibonacci(int n) {if(n<=1) return 1;return fibonacci(n-1)+fibonacci(n-2); }4. 解:void hanoi(int n,int a,int b,int c) {if(n>0) {hanoi(n-1,a,c,b); move(a,b);hanoi(n-1,c,b,a); } } 5. 解:①22*2)(−−=n n f n② )log *()(n n n f O =6. 解:算法略。
算法设计与分析课后答案
5..证明等式gcd(m,n)=gcd(n,m mod n)对每一对正整数m,n都成立.Hint:根据除法的定义不难证明:●如果d整除u和v, 那么d一定能整除u±v;●如果d整除u,那么d也能够整除u的任何整数倍ku.对于任意一对正整数m,n,若d能整除m和n,那么d一定能整除n和r=m mod n=m-qn;显然,若d能整除n和r,也一定能整除m=r+qn和n。
数对(m,n)和(n,r)具有相同的公约数的有限非空集,其中也包括了最大公约数。
故gcd(m,n)=gcd(n,r)6.对于第一个数小于第二个数的一对数字,欧几里得算法将会如何处理?该算法在处理这种输入的过程中,上述情况最多会发生几次?Hint:对于任何形如0<=m<n的一对数字,Euclid算法在第一次叠代时交换m和n, 即gcd(m,n)=gcd(n,m)并且这种交换处理只发生一次.7.a.对于所有1≤m,n≤10的输入, Euclid算法最少要做几次除法?(1次)b. 对于所有1≤m,n≤10的输入, Euclid算法最多要做几次除法?(5次)gcd(5,8)习题1.21.(农夫过河)P—农夫W—狼G—山羊C—白菜2.(过桥问题)1,2,5,10---分别代表4个人, f—手电筒4. 对于任意实系数a,b,c, 某个算法能求方程ax^2+bx+c=0的实根,写出上述算法的伪代码(可以假设sqrt(x)是求平方根的函数)算法Quadratic(a,b,c)//求方程ax^2+bx+c=0的实根的算法//输入:实系数a,b,c//输出:实根或者无解信息D←b*b-4*a*cIf D>0temp←2*ax1←(-b+sqrt(D))/tempx2←(-b-sqrt(D))/tempreturn x1,x2else if D=0 return –b/(2*a)else return “no real roots”else //a=0if b≠0 return –c/belse //a=b=0if c=0 return “no real numbers”else return “no real roots”5.描述将十进制整数表达为二进制整数的标准算法a.用文字描述b.用伪代码描述解答:a.将十进制整数转换为二进制整数的算法输入:一个正整数n输出:正整数n相应的二进制数第一步:用n除以2,余数赋给Ki(i=0,1,2...),商赋给n第二步:如果n=0,则到第三步,否则重复第一步第三步:将Ki按照i从高到低的顺序输出b.伪代码算法DectoBin(n)//将十进制整数n转换为二进制整数的算法//输入:正整数n//输出:该正整数相应的二进制数,该数存放于数组Bin[1...n]中i=1while n!=0 do {Bin[i]=n%2;n=(int)n/2;i++;}while i!=0 do{print Bin[i];i--;}9.考虑下面这个算法,它求的是数组中大小相差最小的两个元素的差.(算法略) 对这个算法做尽可能多的改进.算法MinDistance(A[0..n-1])//输入:数组A[0..n-1]//输出:the smallest distance d between two of its elements习题1.31.考虑这样一个排序算法,该算法对于待排序的数组中的每一个元素,计算比它小的元素个数,然后利用这个信息,将各个元素放到有序数组的相应位置上去.a.应用该算法对列表‖60,35,81,98,14,47‖排序b.该算法稳定吗?c.该算法在位吗?解:a. 该算法对列表‖60,35,81,98,14,47‖排序的过程如下所示:b.该算法不稳定.比如对列表‖2,2*‖排序c.该算法不在位.额外空间for S and Count[]4.(古老的七桥问题)习题1.41.请分别描述一下应该如何实现下列对数组的操作,使得操作时间不依赖数组的长度. a.删除数组的第i 个元素(1<=i<=n)b.删除有序数组的第i 个元素(依然有序) hints:a. Replace the i th element with the last element and decrease the array size of 1b. Replace the ith element with a special symbol that cannot be a value of the array ’s element(e.g., 0 for an array of positive numbers ) to mark the i th position is empty. (―lazy deletion ‖)第2章 习题2.17.对下列断言进行证明:(如果是错误的,请举例) a. 如果t(n )∈O(g(n),则g(n)∈Ω(t(n)) b.α>0时,Θ(αg(n))= Θ(g(n)) 解:a. 这个断言是正确的。
算法设计技巧与分析课后答案吴永昶
算法设计技巧与分析课后答案吴永昶习题1-2 方法头签名方法签名由方法的名称和它的每一个形参(按从左到右的顺序)的类型和种类(值、引用或输出)组成。
需注意的是,方法签名既不包含返回类型,也不包含params 修饰符(它可用于最右边的参数)。
实例构造函数签名由它的每一个形参(按从左到右的顺序)的类型和种类(值、引用或输出)组成。
具体说来,实例构造函数的签名不包含可为最右边的参数指定的params 修饰符。
索引器签名由它的每一个形参(按从左到右的顺序)的类型组成。
具体说来,索引器的签名不包含元素类型。
运算符签名由运算符的名称和它的每一个形参(按从左到右的顺序)的类型组成。
具体说来,运算符的签名不包含结果类型。
签名是对类、结构和接口的成员实施重载的机制:方法重载允许类、结构或接口用同一个名称声明多个方法,条件是它们的签名在该类、结构或接口中是唯一的。
实例构造函数重载允许类或结构声明多个实例构造函数,条件是它们的签名在该类或结构中是唯一的。
索引器重载允许类、结构或接口声明多个索引器,条件是它们的签名在该类、结构或接口中是唯一的。
运算符重载允许类或结构用同一名称声明多个运算符,条件是它们的签名在该类或结构中是唯一的。
习题1-10 函数渐进阶大写O符号(上界,最坏)f(n)=O(g(n)),这里f(n)是分析出来算法的执行次数的函数,O的定义:当且仅当存在正的常数c和n0,使得对于所有的n>=n0,有f(n)<=cg(n)。
这里cg(n)就是函数f(n)的上限。
几种函数的例子:1.线性函数f(n)=3n+2,当n>=2时,3n+2<=3n+n=4n。
所以f(n)=O(n),这里c 就是4,n0=2。
2.平方函数f(n)=2n^2+3n+3,当n>=3时,3n+3<=4n,当n>=4时,4n<n^2,f(n)=2n^2+n^2=3n^2。
f(n)=O(n^2),这里c是3,n0=4。
算法设计与分析复习题目及参考答案
算法设计与分析复习题目及参考答案算法设计与分析复习题目及参考答案一。
选择题1、二分搜索算法是利用( A )实现的算法。
A、分治策略B、动态规划法C、贪心法D、回溯法2、下列不是动态规划算法基本步骤的是( A )。
A、找出最优解的性质B、构造最优解C、算出最优解D、定义最优解3、最大效益优先是( A )的一搜索方式。
A、分支界限法B、动态规划法C、贪心法D、回溯法4、在下列算法中有时找不到问题解的是( B )。
A、蒙特卡罗算法B、拉斯维加斯算法C、舍伍德算法D、数值概率算法5. 回溯法解旅行售货员问题时的解空间树是( B )。
A、子集树B、排列树C、深度优先生成树D、广度优先生成树6.下列算法中通常以自底向上的方式求解最优解的是( B )。
B、动态规划法C、贪心法D、回溯法7、衡量一个算法好坏的标准是(C )。
A 运行速度快B 占用空间少C 时间复杂度低D 代码短8、以下不可以使用分治法求解的是(D )。
A 棋盘覆盖问题B 选择问题C 归并排序D 0/1背包问题9. 实现循环赛日程表利用的算法是( A )。
A、分治策略B、动态规划法C、贪心法D、回溯法10、下列随机算法中运行时有时候成功有时候失败的是(C )A 数值概率算法B 舍伍德算法C 拉斯维加斯算法D 蒙特卡罗算法11.下面不是分支界限法搜索方式的是( D )。
A、广度优先B、最小耗费优先C、最大效益优先D、深度优先12.下列算法中通常以深度优先方式系统搜索问题解的是( D )。
B、动态规划法C、贪心法D、回溯法13.备忘录方法是那种算法的变形。
( B )A、分治法B、动态规划法C、贪心法D、回溯法14.哈弗曼编码的贪心算法所需的计算时间为(B )。
A、O(n2n)B、O(nlogn)C、O(2n)D、O(n)15.分支限界法解最大团问题时,活结点表的组织形式是( B )。
A、最小堆B、最大堆C、栈D、数组16.最长公共子序列算法利用的算法是( B )。
算法设计与分析书后参考答案
参考答案第1章一、选择题1. C2. A3. C4. C A D B5. B6. B7. D 8. B 9. B 10. B 11. D 12. B二、填空题1. 输入;输出;确定性;可行性;有穷性2. 程序;有穷性3. 算法复杂度4. 时间复杂度;空间复杂度5. 正确性;简明性;高效性;最优性6. 精确算法;启发式算法7. 复杂性尽可能低的算法;其中复杂性最低者8. 最好性态;最坏性态;平均性态9. 基本运算10. 原地工作三、简答题1. 高级程序设计语言的主要好处是:(l)高级语言更接近算法语言,易学、易掌握,一般工程技术人员只需要几周时间的培训就可以胜任程序员的工作;(2)高级语言为程序员提供了结构化程序设计的环境和工具,使得设计出来的程序可读性好,可维护性强,可靠性高;(3)高级语言不依赖于机器语言,与具体的计算机硬件关系不大,因而所写出来的程序可移植性好、重用率高;(4)把复杂琐碎的事务交给编译程序,所以自动化程度高,发用周期短,程序员可以集中集中时间和精力从事更重要的创造性劳动,提高程序质量。
2. 使用抽象数据类型带给算法设计的好处主要有:(1)算法顶层设计与底层实现分离,使得在进行顶层设计时不考虑它所用到的数据,运算表示和实现;反过来,在表示数据和实现底层运算时,只要定义清楚抽象数据类型而不必考虑在什么场合引用它。
这样做使算法设计的复杂性降低了,条理性增强了,既有助于迅速开发出程序原型,又使开发过程少出差错,程序可靠性高。
(2)算法设计与数据结构设计隔开,允许数据结构自由选择,从中比较,优化算法效率。
(3)数据模型和该模型上的运算统一在抽象数据类型中,反映它们之间内在的互相依赖和互相制约的关系,便于空间和时间耗费的折衷,灵活地满足用户要求。
(4)由于顶层设计和底层实现局部化,在设计中出现的差错也是局部的,因而容易查找也容易纠正,在设计中常常要做的增、删、改也都是局部的,因而也都容易进行。
算法分析与设计重点课后习题答案
算法分析与设计重点课后习题答案习题13.设计算法求数组中相差最小的两个元素(称为最接近数)的差。
要求分别给出伪代码和C++描述。
//采用分治法//对数组先进行快速排序//在依次比较相邻的差#includeusing namespace std;int partions(int b[],int low,int high){int prvotkey=b[low];b[0]=b[low];while (low<high)< p="">{while (low<high&&b[high]>=prvotkey)</high&&b[high]>--high;b[low]=b[high];while (low<high&&b[low]<=prvotkey)< p="">++low;b[high]=b[low];}b[low]=b[0];return low;}void qsort(int l[],int low,int high){int prvotloc;if(low<high)< p="">{prvotloc=partions(l,low,high); //将第一次排序的结果作为枢轴qsort(l,low,prvotloc-1); //递归调用排序由low 到prvotloc-1qsort(l,prvotloc+1,high); //递归调用排序由 prvotloc+1到 high }}void quicksort(int l[],int n){qsort(l,1,n); //第一个作为枢轴,从第一个排到第n个}int main(){int a[11]={0,2,32,43,23,45,36,57,14,27,39};int value=0;//将最小差的值赋值给valuefor (int b=1;b<11;b++)cout<<a[b]<<' ';<="" p="">cout<<endl;< p="">quicksort(a,11);for(int i=0;i!=9;++i){if( (a[i+1]-a[i])<=(a[i+2]-a[i+1]) )value=a[i+1]-a[i];elsevalue=a[i+2]-a[i+1];}cout<<value<<endl;< p="">return 0;}4.设数组a[n]中的元素均不相等,设计算法找出a[n]中一个既不是最大也不是最小的元素,并说明最坏情况下的比较次数。
算法设计技巧与分析习题答案
算法设计技巧与分析习题答案算法设计技巧与分析习题答案【篇一:算法设计与分析考试题及答案】一特殊类型问题的一系列运算,此外,算法还应具有以下五个重要特性:_________,________,________,__________,__________。
2.算法的复杂性有_____________和___________之分,衡量一个算法好坏的标准是______________________。
3.某一问题可用动态规划算法求解的显著特征是____________________________________。
4.若序列x={b,c,a,d,b,c,d},y={a,c,b,a,b,d,c,d},请给出序列x和y的一个最长公共子序列_____________________________。
5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含___________。
6.动态规划算法的基本思想是将待求解问题分解成若干____________,先求解___________,然后从这些____________的解得到原问题的解。
7.以深度优先方式系统搜索问题解的算法称为_____________。
8.0-1背包问题的回溯算法所需的计算时间为_____________,用动态规划算法所需的计算时间为____________。
9.动态规划算法的两个基本要素是___________和___________。
10.二分搜索算法是利用_______________实现的算法。
二、综合题(50分)1.写出设计动态规划算法的主要步骤。
2.流水作业调度问题的johnson算法的思想。
3.若n=4,在机器m1和m2上加工作业i所需的时间分别为ai和bi,且(a1,a2,a3,a4)=(4,5,12,10),(b1,b2,b3,b4)=(8,2,15,9)求4个作业的最优调度方案,并计算最优值。
4.使用回溯法解0/1背包问题:n=3,c=9,v={6,10,3},w={3,4,4},其解空间有长度为3的0-1向量组成,要求用一棵完全二叉树表示其解空间(从根出发,左1右0),并画出其解空间树,计算其最优值及最优解。
算法设计与分析复习题目及答案
算法设计与分析复习题目及答案一、算法的基本概念1、什么是算法?算法是指解决特定问题的一系列明确步骤,它具有确定性、可行性、有穷性、输入和输出等特性。
例如,计算两个数的最大公约数的欧几里得算法,就是通过反复用较小数去除较大数,然后将余数作为新的较小数,直到余数为 0,此时的除数就是最大公约数。
2、算法的复杂度包括哪些?它们的含义是什么?算法的复杂度主要包括时间复杂度和空间复杂度。
时间复杂度是指算法执行所需要的时间量,通常用大 O 记号来表示。
例如,一个算法的时间复杂度为 O(n),表示其执行时间与输入规模 n成正比。
空间复杂度则是算法在运行过程中所需要的额外存储空间的大小。
比如说,一个算法需要创建一个大小为 n 的数组来存储数据,那么其空间复杂度就是 O(n)。
二、分治法1、分治法的基本思想是什么?分治法的基本思想是将一个规模为 n 的问题分解为 k 个规模较小的子问题,这些子问题相互独立且与原问题结构相同。
然后分别求解这些子问题,最后将子问题的解合并得到原问题的解。
2、请举例说明分治法的应用。
例如归并排序算法。
将一个未排序的数组分成两半,对每一半分别进行排序,然后将排好序的两部分合并起来。
其时间复杂度为 O(nlogn),空间复杂度为 O(n)。
三、动态规划1、动态规划的基本步骤有哪些?动态规划的基本步骤包括:(1)定义问题的状态。
(2)找出状态转移方程。
(3)确定初始状态。
(4)计算最终的解。
2、解释最长公共子序列问题,并给出其动态规划解法。
最长公共子序列问题是指找出两个序列的最长公共子序列的长度。
假设我们有两个序列 X 和 Y,用 dpij 表示 X 的前 i 个字符和 Y 的前 j 个字符的最长公共子序列长度。
状态转移方程为:如果 Xi 1 == Yj 1,则 dpij = dpi 1j 1 + 1否则 dpij = max(dpi 1j, dpij 1)四、贪心算法1、贪心算法的特点是什么?贪心算法在每一步都做出当前看起来最优的选择,希望通过这种局部最优选择达到全局最优解。
算法设计与分析-课后习题集答案
第一章3. 最大公约数为1。
快1414倍。
程序1-2的while 循环体做了10次,程序1-3的while 循环体做了14141次(14142-2循环)8.(1)画线语句的执行次数为log n ⎡⎤⎢⎥。
(log )n O 。
(2)画线语句的执行次数为111(1)(21)16jnii j k n n n ===++=∑∑∑。
3()n O 。
(3)画线语句的执行次数为。
O 。
(4)当n 为奇数时画线语句的执行次数为(1)(1)4n n +-, 当n 为偶数时画线语句的执行次数为 (2)4n n +。
2()n O 。
10.(1) 当 1n ≥ 时,225825n n n -+≤,所以,可选 5c =,01n =。
对于0n n ≥,22()5825f n n n n =-+≤,所以,22582()-+=O n n n 。
(2) 当 8n ≥ 时,2222582524n n n n n -+≥-+≥,所以,可选 4c =,08n =。
对于0n n ≥,22()5824f n n n n =-+≥,所以,22582()-+=Ωn n n 。
(3) 由(1)、(2)可知,取14c =,25c =,08n =,当0n n ≥时,有22212582c n n n c n ≤-+≤,所以22582()-+=Θn n n 。
11. (1) 当3n ≥时,3log log n n n <<,所以()20log 21f n n n n =+<,3()log 2g n n n n =+>。
可选212c =,03n =。
对于0n n ≥,()()f n cg n ≤,即()(())f n g n =O 。
(2) 当 4n ≥ 时,2log log n n n <<,所以 22()/log f n n n n =<,22()log g n n n n =≥。
可选 1c =,04n =。
算法设计技巧与分析课后习题答案沙特
算法设计技巧与分析课后习题答案沙特【篇一:高级算法设计实验指导书2009(李淑琴)】=txt>一、适用专业计算机科学与技术专业研究生二、实验目的与任务算法分析与设计是计算机科学与技术专业本科学生第八学期专业选修课程。
实验课的目的是通过对一些常见而有代表性算法的上机实践,使学生理解和掌握算法设计的主要方法,培养学生对算法复杂性进行正确分析的能力,从而为独立地设计算法和对给定算法进行复杂性分析奠定坚实的基础。
三、实验内容安排实验一数据的排序算法比较(一)、实验目的1.通过上机实践,进一步理解、掌握几种著名的数据排序算法; 2.对排序算法的时间复杂性学会比较、分析。
(二)、实验内容及要求(1)从已学过的内部排序算法中至少选择4种算法,比较这四种算法的关键字移动次数以及比较次数。
(2)待排序数据用随机数产生程序产生。
(3)数据表的长度不小于100000,并且至少用五组不同的输入数据作比较。
(4)最后对结果作出简单分析,包括对各组数据得出结果波动大小的解释。
(三)、实验步骤1.2.3.4.5. 对于以上题目要认真分析和理解题意,设计出算法;详细写出正确的高级语言源程序;上机录入并调试程序;请指导教师审查程序和运行结果并评定成绩;撰写并上交实验报告。
(四)、实验报告内容1.班级、学号、姓名、实验日期;2.实验题目;3.对于实验题目的理解与说明;4.程序功能与框架;5.设计说明(存储结构、特别构思等);6.调试报告(调试过程中遇到的问题及如何解决此问题,程序设计的得失,对于改进程序的设想、经验、体会等);7.对算法进行比较分析;8.附录:源程序清单(加必要的注释)、测试数据及运行结果。
(五)、实验成绩考核方法实验成绩由实验结果、问题回答以及实验报告综合评定。
实验二递归与分治策略(一)、实验目的通过编程实现递归与分治策略的有关算法,理解递归与分治策略算法的原理,掌握递归与分治策略基本思想与应用技巧。
(二)、实验内容及要求实验内容给定平面上的至少n个点(n〉=20),找出其中的一对点,使得在n个点组成的所有点对中,该点对间的距离最小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
算法设计技巧与分析参考答案第1章算法分析基本概念 1.1 (a)6 (b)5 (c)6 (d)6 1.4 算法执行了7+6+5+4+3+2+1=28次比较 45 33 24 45 12 12 24 12 12 33 24 45 45 12 24 12 12 12 24 45 45 33 24 12 12 12 12 45 45 33 24 24 12 24 12 12 45 33 45 24 12 12 12 24 24 33 45 45 12 12 12 24 24 33 45 45 12 12 12 24 24 33 45 45 1.5 (a)算法MODSELECTIONSORT执行的元素赋值的最少次数是0,元素已按非降序排列的时候达到最小值。
(b) 算法MODSELECTIONSORT执行的元素赋值的最多次数是,元素已按非升序排列的时候达到最小值。
2 1.7 4 3 12 5 6 7 2 9 1次 3 4 1次 3 4 12 2次 3 4 5 123 4 5 6 12 2次 7 12 3 4 5 6 2次 2 3 4 5 6 7 12 6次 7 9 23 4 5 6 12 2次由上图可以看到执行的比较次数为1+1+2+2+2+6+2=16次。
1.11 比较9次 2 4 5 7 8 11 12 13 15 17 19 比较为6次 2 4 5 8 11 13 17 19 7 12 15 比较为3次,2 5 17 19 4 8 11 13 7 12 15 2次,1次 2 17 5 19 11 134 8 12 15 7比较均为1次,共5次 2 17 19 5 13 11 4 8 15 12 7 由上图可以得出比较次数为5+6+6+9=26次。
1.13 FTF,TTT,FTF,TFF,FTF 1.16 (a)执行该算法,元素比较的最少次数是n-1。
元素已按非降序排列时候达到最小值。
(b) 执行该算法,元素比较的最多次数是。
元素已2按非升序排列时候达到最大值。
(c) 执行该算法,元素赋值的最少次数是0。
元素已按非降序排列时候达到最小值。
(d) 执行该算法,元素赋值的最多次数是。
元素已2按非升序排列时候达到最大值。
(e)用O符号和符号表示算法BUBBLESORT的运行时间:,2(f)不可以用符号来表示算法的运行时间:是用来表示算法的精确阶的,而本算法运行时间由线性到平方排列,因此不能用这一符号表示。
1.27 不能用关系来比较和增长的阶。
∵22不是22100nn2n1的,即不能用关系来比较和增长的阶。
1.32222o(100n)100nn(a)当n为2的幂时,第六步执行的最大次数是:时,(b)由(a)可以得到:当每一次循环j都为2的幂时,第六步执行的次数最大,k k33则当(其中取整)时,22nn(c)用符号表示的算法的时间复杂性是O(nlogn)kk已证明n=2的情况,下面证明n=2+1的情况:因为有所以n=2+1时,第六步执行的最大次数仍是n log n。
(d) 用符号表示的算法的时间复杂性是。
当满足取整为奇数时,算法执行的次数是次,其他情况算法执行次数均大于。
n(e)O更适合表示算法的时间复杂性。
因为本算法时间复杂性从到,而是表示精确阶的。
1.38 对个数进行排序。
n第5章归纳法 5.3(本题不仅有以下一个答案) 1.max(n) 过程:max(i) if n=1 return a[1] t=max(i-1) if a[i-1]>t return a[i-1] else return t end if 5.6 最多次数:最少次数:-1 5.7参考例5.1 5.14 (a)不稳定,例如: 12 45 4524 12 45 45 24 12 24 45 45 12 24 45 45 可见SELECTIONSORT中相等元素的序在排序后改变。
(b)(c)(d)(f)稳定 5.17 (a)利用10取,P005.18 (a)第6章分治6.3 输入:A[1,2,…n]输出:max,min 1.for i=1 to mid 2. j=high-i 3. if a[i]>a[j], then exchange a[i],a[j] 4.end for 5.for i=low to mid 6. if a[i+1]<a[low], then exchange a[low],a[i+1] 7.end for 8.for i=mid+1 to high 9. if a[i+1]>a[high], then exchangea[high],a[i+1] 10.end for 6.5 输入:一个整数数组A[1,2,…,n] 输出:sum 1.if high-low=1 then 2. sum=a[low]+a[high] 3.else 4. mid=(low+high)/2 5 sum1=sum(low,mid) 6 sum2=sum(mid+1,high) 7. sum=sum1+sum28.end if9.return sum 算法需要的工作空间为3 6.10.32 15 14 15 11 17 25 51 11 14 15 15 17 25 32 51 32 15 14 1511 17 25 51 14 15 15 32 11 17 25 51 32 15 14 15 11 17 25 51 15 32 14 15 11 17 25 51 32 15 14 15 11 17 25 51 32 15 14 15 1117 25 51 12 25 17 19 51 32 45 18 22 37 15 12 15 17 18 19 22 2532 37 45 51 12 25 17 19 51 32 45 18 22 37 15 12 17 19 25 32 5115 18 22 37 45 12 25 17 19 51 32 45 18 22 37 15 12 17 25 19 32 51 18 22 45 15 37 12 25 17 19 51 32 45 18 22 37 15 12 25 17 19 51 32 18 45 22 37 15 12 25 19 51 45 18 12 25 19 51 45 186.31 27 13 31 18 45 16 17 53 27 13 31 18 45 16 17 53 27 13 31 18 45 16 17 53 13 18 27 31 45 16 17 53 27 13 18 31 45 16 17 53 27 13 18 16 45 31 17 53 27 13 18 16 17 31 45 53 17 13 18 16 27 31 45 53 彩色代表i,j所指的数字j总在i前6.3623 32 27 18 45 11 63 12 19 16 25 52 14 14 11 12 18 19 16 23 32 45 27 25 52 63 14 18 11 12 19 16 12 11 14 18 19 16 12 11 11 12 11 11 18 19 16 16 18 19 16 16 19 19 32 45 27 25 52 63 25 27 32 45 52 63 25 27 25 27 27 27 45 52 63 45 52 63 52 63 52 63 63 63 11 12 14 16 18 19 23 25 27 32 45 52 636.42 Quicksort不是稳定的。
6.43 bcefg均为适应的,a、h不是适应的。
第7章动态规划7.1 (c),算法BOTTOMUPSORT 7.5 字符串A=”xzyzzyx”和B=”zxyyzxz”的最长公共子序列长度为4,共有6个最长公共子序列,分别是:①zyyx ②zyzz ③zyzx ④xyyx ⑤xyzz ⑥xyzx 7.9C[1,5]=C[1,1]+C[2,5]+r[1]*r[2]*r[6]=307 C[1,5]=C[1,2]+C[3,5]+r[1]*r[3]*r[6]=252 C[1,5]=C[1,3]+C[4,5]+r[1]*r[4]*r[6]=372 C[1,5]=C[1,4]+C[5,5]+r[1]*r[5]*r[6]=260 所以最优括号表达式为(M1M2)((M3M4)M5) 7.153433347.210 1 2 3 4 5 6 7 8 9 10 11 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 3 3 3 3 3 3 3 3 3 3 2 0 0 3 4 4 7 7 7 7 7 7 7 3 0 0 3 4 4 7 7 8 9 9 12 12 4 0 0 3 4 4 7 7 8 10 11 12 14 7.23 当物品体积为负值时,运行算法会发生溢出错误。
第八章贪心算法 8.12 1 s a 2 3 t 由算法从s 到t 要选择先到a 然后到t,其结果为4,而从s 到t 距离为2,所以探索不总是产生从s 到t 的距离8.13 12 9 12 2 4 5 4 312 9 12 9 12 2 4 2 49 20 8 16 12 9 12 2 4 9 122 4 5 5 28 43 1 64 31 6 4 4 15 15 3 5 13 3 54 13 13 4 13 8 12 16 9 122 4 5 43 28 1 64 15 35 13 4 13 8.23(共有4棵最小生成树,此处仅举一例)1 3 5 1 3 52 4 6 2 4 6 13 5 1 3 5 24 6 2 4 6 1 35 2 46 8.24(共有4棵最小生成树,此处仅举一例) 13 5 1 3 5 24 6 2 4 6 1 35 1 3 5 2 46 2 4 6 1 3 5 1 3 5 24 6 2 4 68.31 38 22 10 16 5 12 2 3 5 7 9 f cb e a d 每一个二叉树都取左边为0,右边为1 则最优编码为a:10 b:001 c:0001 d:0000 e:01 f:11 注意:编码不唯一回溯法。